Jets in the 21st Century

Tilman Plehn

Universität Heidelberg

Mainz 11/2018
Rise of the Machines

Brief history of jets

1994 jet-algo W-tagger for heavy Higgs [Seymour]
1994 jet-algo top tagger for fun [Seymour]
2008 jet-algo Higgs tagger [Butterworth, Davison, Rubin, Salam; Kribs, Martin, Spannowsky]
2008 jet-algo top tagger [Kaplan, Rehermann, Schwartz, Tweedie]
2009 jet-algo HEPTopTagger [TP, Salam, Spannowsky]
2009 template top tagger [Almeida, Lee, Perez, Sterman, Sung, Virzi]
2011 Shower Deconstruction [Soper, Spannowsky]
2015 Multi-variate HEPTopTagger [Kasieczka, TP, Schell, Strebler, Salam]
2014 image recognition W-tagger [Cogan, Kagan, Strass, Schwartzman]
2015 jet images [de Oliveira, Kagan), Mackey, Nachman, Schwartzman]
2017 image recognition top tagger [Kasieczka, Plehn, Russell, Schell]
2017 language recognition W-tagger [Louppe, Cho, Becot, Cranmer]
2017 4-vector-based top tagger [Butter, Kasieczka, Plehn, Russel]
2018 adversarial autoencoder [Heinel, Kasieczka, Plehn, Thompson; Shi etal]
Jet-level analyses (1990s)

Jets as analysis objects

- jet–parton duality ⇔ what are partons in detector?
- crucial for any LHC analysis [really??]
- infrared safety the main issue
⇒ any of this true for LHC?

QCD recombination algorithms [FASTJET: Cacciari, Salam, Soyez]

- define jet–jet and jet–beam distances [exclusive with resolution y_{cut}]

\[
\begin{align*}
\text{kt} & \quad y_{ij} = \frac{\Delta R_{ij}}{R} \min \left(p_{T,i}, p_{T,j} \right) \quad y_{iB} = p_{T,i} \\
\text{CA} & \quad y_{ij} = \frac{\Delta R_{ij}}{R} \quad y_{iB} = 1 \\
\text{anti-kt} & \quad y_{ij} = \frac{\Delta R_{ij}}{R} \min \left(p_{T,i}^{-1}, p_{T,j}^{-1} \right) \quad y_{iB} = p_{T,i}^{-1}.
\end{align*}
\]

- (1) find minimum $y_{\text{min}} = \min_{ij} (y_{ij}, y_{iB})$
 (2a) if $y_{\text{min}} = y_{ij}$ merge subjets i and j, back to (1)
 (2b) if $y_{\text{min}} = y_{iB}$ remove i from subjets, go to (1)
⇒ fat jets/substructure: use clustering history [k_T, CA only]
Heavy resonance taggers (2000s)

Tagging boosted tops

- hadronic decays vs QCD splittings
- SM sample: semileptonic $t\bar{t}$ events

\Rightarrow substructure playground
Heavy resonance taggers (2000s)

Tagging boosted tops

- hadronic decays vs QCD splittings
- SM sample: semileptonic $t\bar{t}$ events

⇒ substructure playground

HEPTopTagger [BDRS; TP, Salam, Spannowsky, Takeuchi]

1– C/A fat jet, $R = 1.5$ and $p_T > 200$ GeV [FastJet limitation]
2– mass drop, cutoff $m_{\text{sub}} > 30$ GeV
3– filtering leading to hard substructure triple
4– top mass window $m_{123} = [150, 200]$ GeV
5– A-shaped mass plane cuts as function of m_W/m_t
6– consistency condition $p_T^{(\text{tag})} > 200$ GeV
Heavy resonance taggers (2000s)

Tagging boosted tops

- hadronic decays vs QCD splittings
- SM sample: semileptonic $t\bar{t}$ events

⇒ substructure playground

HEPTopTagger [BDRS; TP, Salam, Spannowsky, Takeuchi]

1- C/A fat jet, $R = 1.5$ and $p_T > 200$ GeV [FastJet limitation]
2- mass drop, cutoff $m_{\text{sub}} > 30$ GeV
3- filtering leading to hard substructure triple
4- top mass window $m_{123} = [150, 200]$ GeV
5- A-shaped mass plane cuts as function of m_W / m_t
6- consistency condition $p_T^{(\text{tag})} > 200$ GeV

⇒ LHC break-through
N-Subjettiness

N-Jettiness to count subjets inside fat jet [Thaler, van Tilburg]

- how many subjets do the calo entries correspond to?

\[\tau_N = \frac{1}{\sum_{\alpha \in \text{jet}} p_{T,\alpha} R_0^{\beta}} \sum_{\alpha \in \text{jet}} p_{T,\alpha} \min_{k=1,\ldots,N} (\Delta R_{k,\alpha})^{\beta} \]

- choice of reference axes
 1- from subjet algorithm
 2- from minimization of \(\tau_N \)

- \(\tau_N \rightarrow 1 \) means many calo entries away from \(N \) axes
- \(\tau_N \rightarrow 0 \) means perfect matching

- systematics cancelled in ratios
 \(\tau_{N+1}/\tau_N \rightarrow 0 \) for \(N + 1 \) subjets

\(\Rightarrow \) easily added to any other tagger
Multi-variate top taggers (2010s)

OptimalR and N-Subjettiness [Kasieczka, TP, Salam, Schell, Strebler]

- multivariate analysis old idea [Lonnblad, Peterson, Rognvaldsson]
 HEPTopTaggerv2 to keep up with shower deconstruction [Soper, Spannowsky]

- optimal fat jet size R_{opt} [large to decay jets, small to avoid combinatorics, compute from kinematics]

$$|m_{123} - m_{123}^{(R_{max})}| < 0.2 m_{123}^{(R_{max})} \Rightarrow R_{opt}$$

- add N-subjettiness [Thaler, van Tilburg]

- $\{m_{123}, f_W, R_{opt} - R_{opt}^{(calc)}, \tau_j, \tau_j^{(filt)}\}$
Multi-variate top taggers (2010s)

OptimalR and N-Subjettiness
[Kasieczka, TP, Salam, Schell, Strebler]

- multivariate analysis old idea
[Lonnnblad, Peterson, Rognvaldsson]

HEPTopTagger v2 to keep up with shower deconstruction
[Soper, Spannowsky]

- optimal fat jet size R_{opt}
[large to decay jets, small to avoid combinatorics, compute from kinematics]

$$\left| m_{123} - m_{123}^{(R_{\text{max}})} \right| < 0.2 m_{123}^{(R_{\text{max}})} \Rightarrow R_{\text{opt}}$$

- add N-subjettiness
[Thaler, van Tilburg]

$$\{ m_{123}, f_W, R_{\text{opt}} - R_{\text{opt}}^{(\text{calc})}, \tau_j, \tau_j^{(\text{filt})} \}$$

Fat jet and top kinematics

- FSR major problem for Z' search
- tag and reconstruction in each other's way

$$\Rightarrow \{ ..., m_{tt}, p_{T,t}, m_{jj}^{(\text{filt})}, p_{T,j}^{(\text{filt})} \}$$
Multi-variate top taggers (2010s)

OptimalR and N-Subjettiness
[Kasieczka, TP, Salam, Schell, Strebler]

- multivariate analysis old idea
 [Lonnblad, Peterson, Rognvaldsson]

 HEPTopTaggerv2 to keep up with shower deconstruction
 [Soper, Spannowsky]

- optimal fat jet size R_{opt}
 [large to decay jets, small to avoid combinatorics, compute from kinematics]

$$|m_{123} - m_{123}^{(R_{max})}| < 0.2 m_{123}^{(R_{max})} \Rightarrow R_{opt}$$

- add N-subjettiness
 [Thaler, van Tilburg]

 \[\{ m_{123}, f_W, R_{opt} - R_{opt}^{(calc)}, \tau_j, \tau_{j}^{(filt)} \} \]

Fat jet and top kinematics

- FSR major problem for Z' search

- tag and reconstruction in each other's way

$$\Rightarrow \{ ..., m_{tt}, p_{T,t}, m_{jj}^{(filt)}, p_{T,j}^{(filt)} \}$$

$$\Rightarrow \text{outperforming deterministic taggers}$$

![Graph showing performance of different algorithms](image)
‘Deep learning’ = modern architectures on low-level observables

- why high-level observables as input?
- wavelet transformation [Rentala, Shepherd, Tait; Monk]
- W-tagging with image recognition [Cogan et al, Oliveira et al, Baldi et al]
- top-tagging attempt [Almeida, Backovic, Cliche, Lee, Perelstein]
- QCD and shower study [Barnard et al]
- quark-gluon discrimination including tracks [Komiske et al]

⇒ new hammer for jet nails
Jet images (2020s)

‘Deep learning’ = modern architectures on low-level observables

– why high-level observables as input?
– wavelet transformation [Rentala, Shepherd, Tait; Monk]
– W-tagging with image recognition [Cogan et al, Oliveira et al, Baldi et al]
– top-tagging attempt [Almeida, Backovic, Cliche, Lee, Perelstein]
– QCD and shower study [Barnard et al]
– quark-gluon discrimination including tracks [Komiske et al]
⇒ new hammer for jet nails

Experimental questions

– does it work?
– what is the training sample? [Metodiev, Nachman, Thaler]
– how do we get it past the jets experts?

Theoretical questions

– how much of all this is QCD?
– how can be improve the setup? [the future has not been written]
⇒ what does the network learn?
Jet images (2020s)

‘Deep learning’ = modern architectures on low-level observables

- why high-level observables as input?
- wavelet transformation [Rentala, Shepherd, Tait; Monk]
- W-tagging with image recognition [Cogan et al, Oliveira et al, Baldi et al]
- top-tagging attempt [Almeida, Backovic, Cliche, Lee, Perelstein]
- QCD and shower study [Barnard et al]
- quark-gluon discrimination including tracks [Komiske et al]
⇒ new hammer for jet nails

Neural network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]

- colored image as input
- binning through calorimeter resolution [$\Delta \eta = 0.1 \text{ vs } \Delta \phi = 5^\circ$]
- analyze geometric patterns [Facebook: convolutional network]
Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell]

- 2+2 convolutional layers probing 2D structure with kernel matrix
Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell]

- 2+2 convolutional layers probing 2D structure with kernel matrix
- 3 fully connected layers weight function linking input and output

![Diagram of DeepTop architecture](attachment:image.png)
Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell]

- 2+2 convolutional layers probing 2D structure with kernel matrix
- 3 fully connected layers weight function linking input and output
- signal-ness vs background-ness output [probability?]
Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell]

- 2+2 convolutional layers probing 2D structure with kernel matrix
- 3 fully connected layers weight function linking input and output
- signal-ness vs background-ness output [probability?]
- Pearson input-output correlation [pixel x vs label y]

\[
 r_{ij} \approx \sum_{\text{images}} (x_{ij} - \bar{x}_{ij}) (y - \bar{y})
\]
Inside DeepTop

Benchmarking image-based top tagger [Kasieczka, TP, Russell, Schell]

– 2+2 convolutional layers probing 2D structure with kernel matrix
– 3 fully connected layers weight function linking input and output
– signal-ness vs background-ness output [probability?]
– Pearson input-output correlation [pixel x vs label y]

\[r_{ij} \approx \sum_{\text{images}} (x_{ij} - \bar{x}_{ij}) (y - \bar{y}) \]

– comparison to MotherOfTaggers
 \{ m_{sd}, m_{fat}, m_{rec}, f_{rec}, \Delta R_{opt}, \tau_2, \tau_3, \tau_{2}^{sd}, \tau_{3}^{sd} \}

⇒ understandable performance gain
Just a new tool

Typical reaction: ‘Fuck you, you fucking machine’

– in principle, full control for fully supervised learning
– lots of events in the grey zone
 but checks possible for correctly identified signal/background events
– compare truth vs MotherOfTaggers vs DeepTop

1- fat jet mass and N-subjettiness
Just a new tool

Typical reaction: ‘Fuck you, you fucking machine’

– in principle, full control for fully supervised learning
– lots of events in the grey zone
 but checks possible for correctly identified signal/background events
– compare truth vs MotherOfTaggers vs DeepTop

1- fat jet mass and N-subjettiness
2- soft drop mass
Just a new tool

Typical reaction: ‘Fuck you, you fucking machine’

– in principle, full control for fully supervised learning
– lots of events in the grey zone
 but checks possible for correctly identified signal/background events
– compare truth vs MotherOfTaggers vs DeepTop
1- fat jet mass and N-subjettiness
2- soft drop mass
3- transverse momenta
⇒ it works and we know why
DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; see also Louppe et al, Pearkes et al]

- sparsely filled picture: graph CNN
- physics objects from calorimeter and tracker
- distance measure known from e&m
DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; see also Louppe et al, Pearkes et al]

- sparsely filled picture: graph CNN
- physics objects from calorimeter and tracker
- distance measure known from e&m

Inspired by jet algorithm — combination layer

- input 4-vectors

\[
(k_{\mu,i}) = \begin{pmatrix}
 k_{0,1} & k_{0,2} & \cdots & k_{0,N} \\
 k_{1,1} & k_{1,2} & \cdots & k_{1,N} \\
 k_{2,1} & k_{2,2} & \cdots & k_{2,N} \\
 k_{3,1} & k_{3,2} & \cdots & k_{3,N}
\end{pmatrix}
\]
DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; see also Louppe etal, Pearkes etal]

- sparsely filled picture: graph CNN
- physics objects from calorimeter and tracker
- distance measure known from e&m

Inspired by jet algorithm — combination layer

- input 4-vectors
- on-shell conditions for top tag

\[\tilde{k}_{\mu,1}^2 = (k_{\mu,1} + k_{\mu,2} + k_{\mu,3})^2 \overset{!}{=} m_t^2 \]
\[\tilde{k}_{\mu,2}^2 = (k_{\mu,1} + k_{\mu,2})^2 \overset{!}{=} m_W^2 \]
DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; see also Louppe et al, Pearkes et al]

- sparsely filled picture: graph CNN
- physics objects from calorimeter and tracker
- distance measure known from e&m

Inspired by jet algorithm — combination layer

- input 4-vectors
- on-shell conditions for top tag
- combined 4-vectors

\[
k_{\mu,i} \xrightarrow{\text{CoLa}} \tilde{k}_{\mu,j} = k_{\mu,i} C_{ij}
\]

\[
C = \begin{pmatrix}
1 & 0 & \cdots & 0 & C_{1,N+2} & \cdots & C_{1,M} \\
0 & 1 & \cdots & 0 & C_{2,N+2} & \cdots & C_{2,M} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & C_{N,N+2} & \cdots & C_{N,M}
\end{pmatrix}
\]

- after combination of input 4-vectors
 - original momenta \(k_i\)
 - \(M - N\) trainable linear combinations [M-N=15]

⇒ physics step, easy to interpret
DeepTopLoLa

Our version of graph network [Butter, Kasieczka, TP, Russell; see also Louppe et al, Pearkes et al]

- sparsely filled picture: graph CNN
- physics objects from calorimeter and tracker
- distance measure known from e&m

Inspired by jet algorithm — combination layer

- combined 4-vectors $k_{\mu,i} \xrightarrow{\text{CoLa}} \tilde{k}_{\mu,j} = k_{\mu,i} C_{ij}$

Inspired by Jackson — Lorentz layer

- DNN on Lorentz scalars
$$\tilde{k}_j \xrightarrow{\text{LoLa}} \hat{k}_j = \begin{pmatrix} m^2(\tilde{k}_j) \\ p_T(\tilde{k}_j) \\ \tilde{w}_{jm}^{(E)} E(\tilde{k}_m) \\ \tilde{w}_{jm}^{(d)} d_{jm}^2 \end{pmatrix}$$

- fun: measure Minkowski metric
$$g = \text{diag}(0.99 \pm 0.02, -1.01 \pm 0.01, -1.01 \pm 0.02, -0.99 \pm 0.02)$$

- extend to particle flow
- network with little but Lorentz invariance
Getting inspired

Anomaly search trained on background [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

- established concept: autoencoder
- reconstruct typical QCD jet image from many QCD jets
- reduce weights in central layer
- compress information on ‘typical’
- search for outliers hard to describe
- benchmark on top jets, search for Higgs or dark showers

![Graph showing signal efficiency and background rejection](image)
Getting inspired

Anomaly search trained on background

- established concept: autoencoder
- reconstruct typical QCD jet image from many QCD jets
- reduce weights in central layer
- compress information on ‘typical’
- search for outliers hard to describe
- benchmark on top jets, search for Higgs or dark showers

De-correlate background shaping

- established concept: adversary

[Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

[Google Go]
Getting inspired

Anomaly search trained on background [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

- established concept: autoencoder
- reconstruct typical QCD jet image from many QCD jets
- reduce weights in central layer
 compress information on ‘typical’
- search for outliers hard to describe
- benchmark on top jets, search for Higgs or dark showers

De-correlate background shaping

- established concept: adversary [Google Go]
- atypical QCD jets typically with large jet mass
 remove jet mass from network training
The future

Times are moving fast...

...jets are containers for subjet physics [was 1990s]
...deterministic taggers established/old/boring [was 2000s]
...multi-variate taggers an intermediate step [dying with the 2010s]
...imagine recognition a starting point [will be 2020s]
...DeepTop is not a black box
...DeepTopLoLa took Jackson
...Autoencoders really change analyses

Join the fun!