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Story’s starting point: Nothing is ever new

LHC visionaries

— 1991: NN-based quark-gluon tagger (isionary: Lénnblad, Peterson, Régnvaldsson] %
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A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is 1o find an cfficicnt mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are hack-propazated through the
network. With this method we are able 1o separate gluon from quark jets oniginating from Monte
Carlo generated ¢*c events with ~ 85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used 10 siudy the so-called string
effect.




Story’s starting point: Nothing is ever new

LHC visionaries

1991: NN-based quark—gluon tagger [visionary: Lonnblad, Peterson, Rognvaldsson]

1994: jet-algorithm W/top-tagger (seymour
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Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
10 reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
examples considered are the_semileptonic decays of
a heavy Higgs boson at_/s=16TeV, and of top
quark-antiquark pairs at \/s=18 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a_slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons [5], and a longitudinally-
invariant & -clustering_algorithm for hadron-hadron
collisions was proposed [6]. This algorithm has been

it the more commonly used cone algorithm

a comparison between the algorithms
reconstructing the hadronic decays of

scarch for, and study of, these particles
ant goals of current and pl
hadron collider experiments. In both ca:

~ 1970: People with visions should see a doctor  [Heimut Schmidt, wrong for once]



Fat jet taggers (2000s)

Look what makes jets [Pre-LHC, jets were just annoying]

— top jets from t — bgq’ vs QCD jets

— top decays well-defined in theory

— labelled sample: semileptonic {f events
= Fat jets as LHC physics playground  {andrew & ban]

Simple top tagging  [BDRS; TR, Salam, Spannowsky, Takeuchil
1— fat jet with pr > 200 GeV
2
3— top mass window myo3 = [150,200] GeV

filtering defining 3-5 decay jets

4— mass plane cuts extracting m; ~ my

= Not rocket science, but crucial to build trust
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Multi-variate taggers (2010s)

Developing the benchmark

— multivariate analysis generally old news

multivariate tagger to keep up with shower deconstruction [soper, Spannowsky]

Ry Ry
|m123—m$2g”a")| < 0.2 mszgna)() = Ropt

— add N'SUbjettineSS [Thaler, van Tilburg]

! fil
= {mi23, fw, Ropt — Héﬁc),ﬁy‘q(' 1}

= Theory all but precision

Fat jet and top kinematics

— jet radiation major problem for Z’ search
— tag and reconstruction in each other’s way

fil fil
- {7 My, PT ¢t mj(“lt)a p(TIV;)}

= Driven by experimental performance

10°

10°

optimal fat jet size Ropt [large to decay jets, small to avoid combinatorics, compute from kinematics]
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Jet image machines (2020s)

The natural next step  [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)
— why intermediate high-level variables?
— learn theory through more NN layers

calorimeter output as image

as data-based as possible

= Deep learning = modern networks on low-level observables
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Jet image machines (2020s)

The natural next step [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)
— why intermediate high-level variables?
— learn theory through more NN layers

calorimeter output as image

as data-based as possible ‘ i ?

= Deep learning = modern networks on low-level observables

I

Convolutional network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]

image recognition standard ML task

rapidity vs azimuthal angle, colored by energy deposition
top tagging on 2D jet images

40 x 40 bins through calorimeter resolution
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shin .

— 2+2 convolutional layers
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shin .

— 2+2 convolutional layers
— 3 fully connected layers
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shinf§

— 2+2 convolutional layers
— 3 fully connected layers
— Pearson input-output correlation  [pixel x vs label y]
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shinf§

2+2 convolutional layers
3 fully connected layers

Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7)

images

comparison to MotherOfTaggers BDT
= Understandable performance gain
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shinf§

— 2+2 convolutional layers
3 fully connected layers

Y (G-%) (v -7)

images

comparison to MotherOfTaggers BDT
= Understandable performance gain

1/eg

Pearson input-output correlation  [pixel x vs label y]

DgepTop jgts

— DeepTop minimal
10° —— Training

~— Avrchitecture

— Preprocessing
—— Sample size
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shinf§

— 2+2 convolutional layers
3 fully connected layers

Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7)

images

comparison to MotherOfTaggers BDT
= Understandable performance gain

Typical reaction: ‘F*** you, you f***ing machine’

— full control for supervised learning
easy checks for correctly identified signal/background

— MC truth vs MotherOfTaggers vs DeepTop

. 0.02 Signal 0.02 Background

fat jet mass : “MOTHEROFTAGGERS : T
N-subjettiness 0.016 | 1 o0
| DeepTopr 1 oo

transverse momenta 0.012
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Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN
— physics objects from calorimeter and tracker
— distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors kot ko2 - Ko
(koi) = ki Kz - kN
! ki ko2 - kN
k3,1 ka2 -+ kKN
— on-shell conditions for top tag
— combined 4-vectors 10 - 0 GCinez -+ Ciu
~ 0 1 o, G
k”,,' % k“,j = Kk i Cij C= ) ) ) 2,.N+2 2.,M
oo o 0 :
0 0 -~ 1 Cwwnyz -+ OCwnm

= Physics step, easy to interpret




Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN

— physics objects from calorimeter and tracker
— distance measure known from e&m (atternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors (K, ;)
— on-shell conditions for top tag

. Cola
— combined 4-vectors  k, ; — K, j = K, i

=- Physics step, easy to interpret

Inspired by Jackson — Lorentz layer
— DNN on Lorentz scalars m? (k)
ko= | pr(k)

= Learn Minkowski metric

g =diag(0.99+0.02,
—1.01£0.01, —1.01£0.02, —0.99+0.02)
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Meet the professionals

A brief history of moving fast

2014/15: first jet image papers
2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work [1902.09914]
= For me, jet classification understood and done
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. Debnath®, M. Fairba
S. Leiss', A. Lister”, S,
dstrom’™ 12, J. Pearkes
b, J. M. Thompson?, and $. Varma®

G. Kasieczka «.\n' T. Plehn (cd)?, A. Butter”

W. Fedorko® %, L. Gouskos®, P
E. M. Metodiev”, L. Moore®, B. Nach
Y. Rath's, M. Riegler', D

1 Institut fiir Experimentalphysik, U
2 Institut fiir Theoretische Physik, U
Dept. of Physics and A

Germany
on y of NJ, USA
nd Cosmology, King’s College London, United Kingdom
'.r Bnmh ('»\umv.... Canada

al Particle Physic
of Physics

zkatiuni-ha
mi-heidelberg de

February 26, 2019

Abstract

Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
We find that they are extremely powerful and great fun.
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Meet the professionals

A brief history of moving fast

2014/15: first jet image papers

2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work [1902.09914]
= For me, jet classification understood and done

The Machine Learning Landscape of Top Taggers
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Abstract

Based on the established task of identifying boosted, hadronically decaying 00 01 02 03 50'4 ! ‘:(5 0.6 07 08 09 10
top quarks, we compare a wide range of modern machine learning approaches. ignal efficiency &s
We find that they are extremely powerful and great fun.




When reality hits

ML-Life is not always nice to US  [Kasieczka, Kiefer, TP, Thompson]

— Quark-gluon tagging a classic challenge (andrews taik]

— quark jets typical for resonance searches
gluon jets typical as dark matter recoil

— BDT/NN on high-level variables established
= deep-learning advantage gone after detector simulation, REALLY???

10%
i —— Lola, Delphes
\ ---- Lola, particle
\:\\ —— BDT, Delphes
102 Wy ---- BDT, particle
---- BDT, reduced
5 —— BDT, Delphes, reduced
=
10t
10°
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Learning background only

FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

— search for outliers hard to describe
= Making an okay tagger
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1@40x40  10@40x40  10@20x20 5@20x20 400100 1

5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]
— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

— search for outliers hard to describe
= Making an okay tagger

De-correlate background shaping

— established concept: adversary [shimmin,..]




1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]
— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

— search for outliers hard to describe
= Making an okay tagger

De-correlate background shaping

— established concept: adversary (shimmin,..]

— atypical QCD jets typially with large jet mass
remove jet mass from network training
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1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

search for outliers hard to describe
= Making an okay tagger

The whole thlﬂg on anomalous LHC events [Cerri, Nguyen, Pierini, Spiropulu, Viimant]

— same thing on full events

10°
— training data a problem
— variational autoencoder more powerful "
= Proof of concept... 10-2
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B****ian networks

Enhance network OUtpUt [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson (soon)]

— learn classification output and uncertainty

— (60 £ 30)% top is very different from (60 £ 1)% top
— tagger calibration part of the network training

— for instance: effect of MC statistics
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The future

Times are moving fast...

...LHC physics really is big data

...imagine recognition is a starting point

...deep learning is not just classification

...Jets are not the only interesting objects at LHC
...machine learning is an amazing tool box

Let’s find cool and fun applications!
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