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Story’s starting point: Nothing is ever new

LHC visionaries

– 1991: NN-based quark-gluon tagger [visionary: Lönnblad, Peterson, Rögnvaldsson]
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Story’s starting point: Nothing is ever new

LHC visionaries

– 1991: NN-based quark-gluon tagger [visionary: Lönnblad, Peterson, Rögnvaldsson]

– 1994: jet-algorithm W /top-tagger [Seymour]

∼ 1970: People with visions should see a doctor [Helmut Schmidt, wrong for once]
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Fat jet taggers (2000s)

Look what makes jets [Pre-LHC, jets were just annoying]

– top jets from t → bqq̄′ vs QCD jets

– top decays well-defined in theory

– labelled sample: semileptonic t t̄ events

⇒ Fat jets as LHC physics playground [Andrew & Dan]
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Simple top tagging [BDRS; TP, Salam, Spannowsky, Takeuchi]

1– fat jet with pT > 200 GeV

2– filtering defining 3-5 decay jets

3– top mass window m123 = [150, 200] GeV

4– mass plane cuts extracting mij ≈ mW

⇒ Not rocket science, but crucial to build trust
12/m13arctan m

0 0.5 1 1.5

12
3

/m
23

m

0

0.2

0.4

0.6

0.8

1

W=m23m

W=m12m W=m13m

12/m13arctan m
0 0.5 1 1.5

12
3

/m
23

m

0

0.2

0.4

0.6

0.8

1

W=m23m

W=m12m W=m13m



Machine Learning

Tilman Plehn

2000s Taggers

2010s Multi-variate

2020s Jet images

DeepTop

Reality

Anomalies

Uncertainties

Multi-variate taggers (2010s)

Developing the benchmark

– multivariate analysis generally old news
multivariate tagger to keep up with shower deconstruction [Soper, Spannowsky]

– optimal fat jet size Ropt [large to decay jets, small to avoid combinatorics, compute from kinematics]

|m123−m(Rmax)
123 | < 0.2 m(Rmax)

123 ⇒ Ropt

– add N-subjettiness [Thaler, van Tilburg]

– {m123, fW ,Ropt − R(calc)
opt , τj , τ

(filt)
j }

⇒ Theory all but precision

Fat jet and top kinematics

– jet radiation major problem for Z ′ search

– tag and reconstruction in each other’s way

– {...,mtt , pT ,t ,m
(filt)
jj , p(filt)

T ,j }
⇒ Driven by experimental performance
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Jet image machines (2020s)

The natural next step [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

– why intermediate high-level variables?

– learn theory through more NN layers

– calorimeter output as image

– as data-based as possible

⇒ Deep learning = modern networks on low-level observables
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Jet image machines (2020s)

The natural next step [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

– why intermediate high-level variables?

– learn theory through more NN layers

– calorimeter output as image

– as data-based as possible

⇒ Deep learning = modern networks on low-level observables

Convolutional network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]
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– image recognition standard ML task

– rapidity vs azimuthal angle, colored by energy deposition

– top tagging on 2D jet images

– 40× 40 bins through calorimeter resolution
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ Understandable performance gain
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ Understandable performance gain
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Inside DeepTop — Arguing with Andrew

Particle physicists as weird users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

– 2+2 convolutional layers

– 3 fully connected layers

– Pearson input-output correlation [pixel x vs label y ]

rij ≈
∑

images

(
xij − x̄ij

)
(y − ȳ)

– comparison to MotherOfTaggers BDT

⇒ Understandable performance gain

Typical reaction: ‘F*** you, you f***ing machine’

– full control for supervised learning
easy checks for correctly identified signal/background

– MC truth vs MotherOfTaggers vs DeepTop

fat jet mass
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⇒ It works and we know why
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Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

– sparsely filled picture: graph CNN

– physics objects from calorimeter and tracker

– distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

– input 4-vectors
(kµ,i ) =

k0,1 k0,2 · · · k0,N
k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N


– on-shell conditions for top tag
– combined 4-vectors

kµ,i
CoLa−→ k̃µ,j = kµ,i Cij C =


1 0 · · · 0 C1,N+2 · · · C1,M

0 1
... C2,N+2 · · · C2,M

...
...

. . . 0
...

...
0 0 · · · 1 CN,N+2 · · · CN,M


⇒ Physics step, easy to interpret



Machine Learning

Tilman Plehn

2000s Taggers

2010s Multi-variate

2020s Jet images

DeepTop

Reality

Anomalies

Uncertainties

Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

– sparsely filled picture: graph CNN

– physics objects from calorimeter and tracker

– distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

– input 4-vectors (kµ,i )

– on-shell conditions for top tag

– combined 4-vectors kµ,i
CoLa−→ k̃µ,j = kµ,i Cij

⇒ Physics step, easy to interpret

Inspired by Jackson — Lorentz layer

– DNN on Lorentz scalars

k̃j
LoLa−→ k̂j =


m2(k̃j )

pT (k̃j )

...


⇒ Learn Minkowski metric

g =diag(0.99±0.02,

−1.01±0.01,−1.01±0.02,−0.99±0.02)



Machine Learning

Tilman Plehn

2000s Taggers

2010s Multi-variate

2020s Jet images

DeepTop

Reality

Anomalies

Uncertainties

Meet the professionals

A brief history of moving fast

– 2014/15: first jet image papers

– 2017: first (working) ML top tagger

– ML4Jets 2017: What architecture works best?

– ML4Jets 2018: Lots of architectures work [1902.09914]

⇒ For me, jet classification understood and done
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Meet the professionals

A brief history of moving fast

– 2014/15: first jet image papers

– 2017: first (working) ML top tagger

– ML4Jets 2017: What architecture works best?

– ML4Jets 2018: Lots of architectures work [1902.09914]

⇒ For me, jet classification understood and done
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When reality hits

ML-Life is not always nice to us [Kasieczka, Kiefer, TP, Thompson]

– Quark-gluon tagging a classic challenge [Andrew’s talk]

– quark jets typical for resonance searches
gluon jets typical as dark matter recoil

– BDT/NN on high-level variables established

⇒ deep-learning advantage gone after detector simulation, REALLY???
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Learning background only

Fully supervised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

– anomaly searches, only training on ‘background’

– established ML concept: autoencoder

– reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

– search for outliers hard to describe

⇒ Making an okay tagger
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Learning background only

Fully supervised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

– anomaly searches, only training on ‘background’

– established ML concept: autoencoder

– reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

– search for outliers hard to describe

⇒ Making an okay tagger

De-correlate background shaping

– established concept: adversary [Shimmin,...]
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Learning background only

Fully supervised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

– anomaly searches, only training on ‘background’

– established ML concept: autoencoder

– reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

– search for outliers hard to describe

⇒ Making an okay tagger

De-correlate background shaping

– established concept: adversary [Shimmin,...]

– atypical QCD jets typially with large jet mass
remove jet mass from network training
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Learning background only

Fully supervised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

– anomaly searches, only training on ‘background’

– established ML concept: autoencoder

– reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

– search for outliers hard to describe

⇒ Making an okay tagger

The whole thing on anomalous LHC events [Cerri, Nguyen, Pierini, Spiropulu, Vlimant]

– same thing on full events

– training data a problem

– variational autoencoder more powerful

⇒ Proof of concept...
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B****ian networks

Enhance network output [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson (soon)]

– learn classification output and uncertainty

– (60± 30)% top is very different from (60± 1)% top

– tagger calibration part of the network training

– for instance: effect of MC statistics
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The future

Times are moving fast...

...LHC physics really is big data

...imagine recognition is a starting point

...deep learning is not just classification

...jets are not the only interesting objects at LHC

...machine learning is an amazing tool box

Let’s find cool and fun applications!
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