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Why LHC? Why jets?

Data from ATLAS & CMS

— colliding protons on protons at E ~ 13000 x mp

— most interactions qq, 99 — qq, 99

— quarks/gluon visible as jets oy, X £ & 108fb x 80/fb ~ 100 events
= It's big data
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Why not LHC?

ATLAS & CMS Wizt s TMVA
— 3000 know-it-alls per eXperiment ¥ One framework for most common MVA-techniques, available in F
% Have a common i for all MVA ification and ion-

— strong top-down structures )
® Have common data pre-processing capabilities
— strongly organized analysis groups » Train and test allclassifiers on same data sample and evaluate consistently

»was a good idea 10year ago, now unfortunatly imposes some unnecessa

= Small groups drivi ng innovation constraints but nothing which could not be dealt with by ‘running independ

» Provide common analysis (ROOT scripts) and application framework
i » Provide access with and without ROOT, through macros, C++ executables o
Expertize
B Integrated and distributed with ROOT
- I—HC data format: ROOT B some info is still located at its original sourceforge location
. . ) Home page ................. /
— multi-variate analyses tool: TMVA e
Mail

— Tensorflow from TMVA/ROOT aling] BlueYonder ol Sowions  Cutomers Company

ML challenges running
= Little sense of ML-urgency

Best Decisions,
Delivered Daily

X S R We deliver decisions to
Experlment VS theory y retailers that boost
(3 revenues, increase margin
and enable rapid response
to changing market

— theorists linked to lack of team compatibility : \ s
— simulated data as good as actual data
— excellent personal ex-th connections

=- Theory driving non-theory developments




Jets story’s starting point: Nothing is ever new

LHC visionaries

— 1991: NN-based quark-gluon tagger (isionary: Lénnblad, Peterson, Régnvaldsson] %
USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD *, Carsten PETERSON** and Thorsteinn ROGNVALDSSON * =+
Department of Theoretical Physics. University of Lund, SGlvegatan 14A, 5-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is 1o find an cfficicnt mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are hack-propazated through the
network. With this method we are able 1o separate gluon from quark jets oniginating from Monte
Carlo generated ¢*c events with ~ 85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used 10 siudy the so-called string
effect.




Jets story’s starting point: Nothing is ever new

LHC visionaries

1991: NN-based quark—gluon tagger [visionary: Lonnblad, Peterson, Rognvaldsson]

1994: jet-algorithm W/top-tagger (seymour

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD*, Carsten PETERSON** and Thorsteinn ROGNVALDSSON
Department of Theoretical Physics, University of Lund, Slvegatan 14A, §-22362 Lund, Sweden

Received 29 June 1990

Searches for new particles using cone and cluster jet algorithms:

a comparative study

Michael H. Seymour

Department of Theoretical Physics, University of Lund, Salvegatan 144, 5-22362 Lund, Sweden

Received 18 June 1993; in revised form 16 September 1993

Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
10 reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
examples considered are the_semileptonic decays of
a heavy Higgs boson at_/s=16TeV, and of top
quark-antiquark pairs at \/s=18 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a_slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons [5], and a longitudinally-
invariant & -clustering_algorithm for hadron-hadron
collisions was proposed [6]. This algorithm has been

it the more commonly used cone algorithm

a comparison between the algorithms
reconstructing the hadronic decays of

scarch for, and study of, these particles
ant goals of current and pl
hadron collider experiments. In both ca:

~ 1970: People with visions should see a doctor  [Heimut Schmidt, wrong for once]



Fat jet taggers (2000s)

Look what makes jets [Pre-LHC, jet were just annoying]

— top jets from t — bgq’ vs QCD jets
— top decays well-defined in theory t e, LS
— labelled sample: semileptonic {f events
= LHC physics playground % 00 w0

Simple top tagging  [BDRS; TR, Salam, Spannowsky, Takeuchil
1— fat jet with pr > 200 GeV
2
3— top mass window myo3 = [150,200] GeV

filtering defining 3-5 decay jets

4— mass plane cuts extracting m; ~ my

= Not rocket science, but crucial to build trust

15
arctan m,y/m,




Multi-variate taggers (2010s)

Developing the benchmark

— multivariate analysis generally old news

multivariate tagger to keep up with shower deconstruction [soper, Spannowsky]

(F’max)l <0.2 msggax)

123 = Fopt

[Miz3—m

— add N'SUbjettineSS [Thaler, van Tilburg]

optimal fat jet size Ropt [large to decay jets, small to avoid combinatorics, compute from kinematics]

. ED[PRD89]
* HTT[JHEP1010]
- filtered fat jets (2.3)
variable masses (2.4)
- optimalR (3.2)
—— N-subjettiness (3.4)
—_— Qjets(S 7,0. leloeHs)

s=1aTev

I fil
= {mi23, fw, Ropt — Héﬁc),ﬁ,‘qm)}
Fat jet and top kinematics :“’;5
0
— jet radiation major problem for Z’ search
— tag and reconstruction in each other’s way e
filty (filt
- { mh‘:pTh /(II 7pTI/)}
= Performance increase, as expected 0
10°
0

0. 2 0.4




Jet image machines (2020s)

The natural next step [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)

— why intermediate high-level variables?

— learn theory through more NN layers

— calorimeter output as image

=- Deep learning = modern networks on low-level observables
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Jet image machines (2020s)

The natural next step  [cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/1¢
— why intermediate high-level variables?
— learn theory through more NN layers
— calorimeter output as image
=- Deep learning = modern networks on low-level observables

Convolutional network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]

image recognition standard ML task

rapidity vs azimuthal angle, colored by energy deposition
top tagging on 2D jet images
40 x 40 bins through calorimeter resolution

Feature Featu re Feature Fealure Hidden  Hidden  Hidden

units units units Ou(uuts
1@40x40 5639x39 Be58x38 o188 3617317
@ Eax ooling
Convolution Convolution Convolution Convolution Flatten  Fully Fully

ully
4x4 kernel 4x4 kernel 4x4 kemel 4x4 kernel Connected connected conhected

e




Inside DeepTop

Particle physicists as Users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers

‘. .
L] - " w T el L
/ . . " - .
" - - . . . -
a . ] -
- =~ " bl = =

L
r
L

Feature Feature Feature Feature

Inputs maps maps maps maps
1@40x40 8@39x39 8@38x38 8@18x18 8@17x17

oo
Convolution
4x4 kernel

Convolution
4x4 kernel

Convolution
4x4 kernel

Convolution
4x4 kernel

Hidden  Hidden Hidden
units units units Outputs
64 64 64 2

.

Flatten  Full Ful Full

ly ly ly
connected connected connected



Inside DeepTop

Particle physicists as users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
— 3 fully connected layers

Feature

Inputs

1@40x40

Convolution
x4 kernel

Feature

Feature

9
Convolution

axd kernel

Feature

Convolution
x4 kerel

Hidden  Hidden Hidden
units
64 64 64

SR ANNN

Convolution
axa kernel

Flatten  Fully Fully Fully
connected connected connected



Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]
— 2+2 convolutional layers

— 3 fully connected layers
— Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7) .

images

0.24
0.18

0.12
L] o
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Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7) 0

images

‘ SOFTDR‘OP+N-su£)jettiness meeenans

MOTHEROFTAGGERS -
DeepTop full

DEeEPTOP minimal - ----- J

comparison to MotherOfTaggers BDT
= Understandable performance gain

— =
=) =)
T w

Background rejection 1/ep

-
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Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y]

i = Z (X = X) (y = %) ‘ ‘ Deeplop jefs : :
images — DeepTop minimal
. 10° — Training
— comparison to MotherOfTaggers BDT — Architscture
. —— Preprocessing
= Understandable performance gain 104 i

1/eg




Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7)

images

comparison to MotherOfTaggers BDT
= Understandable performance gain

Typical reaction: ‘F*** you, you f***ing machine’

— full control for supervised learning
easy checks for correctly identified signal/background

— MC truth vs MotherOfTaggers vs DeepTop

. 0.02 Signal 0.02 Background

fat Jet mass ! "MOTHEROFTAGGERS : " " T T T

N-subjettiness 0.016 |- 1 0016 1
DeepTop

transverse momenta 0012 a\! 1 o012 1
= It works and we know why 0-008 - truth Ly 1 000 1
0.004 | ] 1 oooa | f \

0 o -~ R P R

0 50 100 150 200 250 300 0 50 100 150 200 250 300

miat [GeV] Mia [GeV]



Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN
— physics objects from calorimeter and tracker
— distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors kot ko2 - Ko
(koi) = ki Kz - kN
! ki ko2 - kN
k3,1 ka2 -+ kKN
— on-shell conditions for top tag
— combined 4-vectors 10 - 0 GCinez -+ Ciu
~ 0 1 o, G
k”,,' % k“,j = Kk i Cij C= ) ) ) 2,.N+2 2.,M
oo o 0 :
0 0 -~ 1 Cwwnyz -+ OCwnm

= Physics step, easy to interpret




Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN

— physics objects from calorimeter and tracker
— distance measure known from e&m (atternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors (K, ;)
— on-shell conditions for top tag

. Cola
— combined 4-vectors  k, ; — K, j = K, i

=- Physics step, easy to interpret

Inspired by Jackson — Lorentz layer
— DNN on Lorentz scalars m? (k)
ko= | pr(k)

= Learn Minkowski metric

g =diag(0.99+0.02,
—1.01£0.01, —1.01£0.02, —0.99+0.02)
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Meet the professionals

A brief history of hurry

2014/15: first jet image papers

2017: first (working) ML top tagger

ML4Jets 2017: what architecture best

ML4Jets 2018: Lots of architectures work (1902.09914]

The Machine Learning Landscape of Top Taggers

G. Kasieczkn mly' l Plehn ()%, A. Butter?, D. Debnath?, M. Firbairn’,

W. Fedorko .
E. M. Metodiev”, L. \lmn Noch
Y. Rath'3, M. Riegler™, D.

Content
1 Introduction
2 Data set

3 Taggers
3.1 Tmaged-based taggers

nology |\mg~('»u
ny, The University of British Columbia, Canada
> P

USA
e, Belgium B2
9 Physics Division, L atio horatory, Berkeley, USA
10 Simons Tnet. for the Theory of Compating, University of California, Berkeley, v N-Subjettiness
11 National Institute for Subatomic Physics (NIKHE] Netherlands 323 Recurtent Networks
12 LPTHE, CNRS & Sorboun 324 P-CNN
13 T11. Physics Institute A, RWNTH Aachen Univer 32,5 ParticleNet
33 Theory-inspired taggers

3.3.1

Boost Network|

Layer

Energy Flow Polynomials

February 26, 2019 334 Energy Flow Networks
335 Particle Flow Networks

idelberg de

Abstract 4 Comparison
Based on the established task of identifying boosted, hadronically decaying 5_Concluslon
top quarks, wo compare a wide range of modern machine learing approaches. Raferenc
We find that they are extremely powerful and great fun. erences.
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Abstract

Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine lenﬂuug approaches.
We find that they are extremely powerful and great fun.
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Background rejection £

[1902.09914]

ParticleNet
—— ResNext

— EFP
TopoDNN
nsub+m

04 056
Signal efficiency €5
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New analysis ideas

FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

— search for outliers hard to describe
= Making an okay tagger

Q’ 28
';‘ 102 26
S 24 &
8 23
- %
v 3
= 20 g
H oz
S 10! 16 8
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New analysis ideas
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FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

=

anomaly searches, only training on ‘background’
established ML concept: autoencoder

reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

search for outliers hard to describe
Making an okay tagger

De-correlate background shaping

established concept: adversary [aiso see Englert, Galler, Harris, Spannowsky]
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New analysis ideas

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]
— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

— search for outliers hard to describe
= Making an okay tagger

De-correlate background shaping

— established concept: adversary [aiso see Englert, Galler, Harris, Spannowsky]

— atypical QCD jets typially with large jet mass
remove jet mass from network training

0.012
least QCD-like 3 100%
0.010 100% £ 70%
0.010 1 40%
H H 1 10%
5 0.008 g
3 30008 0 5%
z z least QCD-like
3
S 0.006 3 0.006
g 3
2 8
H s
£ 0.004 £ 0.004
5 5
g 2
0.002 0.002
0.000 L—F = 0.000 ———————— -
0 50 100 150 200 250 300 0 50 100 150 200 250 300

jet mass [GeV] jet mass [GeV]
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New analysis ideas

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

search for outliers hard to describe
= Making an okay tagger

The whole thlﬂg on anomalous LHC events [Cerri, Nguyen, Pierini, Spiropulu, Viimant]

— same thing on full events

10°
— training data a problem
— variational autoencoder more powerful "
= Proof of concept... 10-2

A-4p
AUC = 0.91 (0.98)

4
Lo
10-4 / AUC = 0.85 (0.94)

ho-tT

AUC = 0.75 (0.90)
105 h*>Tv

— AUC =0.92 (0.97)
< 1000 SM evts/month

BSM efficiency
=
5]
b
N

10-° 10™> 10™* 10> 1072 107! 10°
SM efficiency




The future

Times are moving fast...

...LHC physics really is big data

...imagine recognition is a starting point

...deep learning is not just classification

...Jets are not the only interesting objects at LHC
...machine learning is an amazing tool box
...maybe at some time we can pay back a little
For now, join the fun!
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