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Physics story: Nothing is ever new

LHC visionaries

— 1991: NN-based quark-gluon tagger (isionary: Lénnblad, Peterson, Régnvaldsson] %
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A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is 1o find an cfficicnt mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are hack-propazated through the
network. With this method we are able 1o separate gluon from quark jets oniginating from Monte
Carlo generated ¢*c events with ~ 85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used 10 siudy the so-called string
effect.
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Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
10 reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
examples considered are the_semileptonic decays of
a heavy Higgs boson at_/s=16TeV, and of top
quark-antiquark pairs at \/s=18 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a_slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons [5], and a longitudinally-
invariant & -clustering_algorithm for hadron-hadron
collisions was proposed [6]. This algorithm has been

¢ algorithm

reconstructing the hadronic decays of

which was also studied in a preliminary

scarch for, and study of, these particles
most important goals of current and p|
hadron collider experiments. In both ca:

~ 1970: People with visions should see a doctor  [Heimut Schmidt, wrong for once]



Fat jet taggers

Look what makes jets [Pre-LHC, jets were just annoying]

— top jets from t — bgq’ vs QCD jets

— top decays well-defined in theory

— labelled sample: semileptonic {f events
= Fat jets as LHC physics playground

Simple top tagging  [BDRS; TR, Salam, Spannowsky, Takeuchil
1— fat jet with pr > 200 GeV
2
3— top mass window myo3 = [150,200] GeV

filtering defining 3-5 decay jets

4— mass plane cuts extracting m; ~ my

= Not rocket science, but crucial to build trust
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Multi-variate taggers

Developing the benchmark

— multivariate analysis generally old news
multivariate tagger to keep up with shower deconstruction [soper, Spannowsky]

optimal fat jet size Ropt [large to decay jets, small to avoid combinatorics, compute from kinematics]

Ry Ry
|m123— gzgnax)l < 0.2 mszgna)() = Ropt

— add N'SUbjettineSS [Thaler, van Tilburg]

! fil
= {mi23, fw, Ropt — Héﬁc),ﬁy‘q(' 1}

= Theory all but precision

\s=14Tev

Fat jet and top kinematics

— jet radiation major problem for Z’ search 0
— tag and reconstruction in each other’s way
_ i) (il r
{ mﬂ‘apT t-m i 1pT]} 10°EF o PR“Dgg ,
= Best we can do? ; HT[T[JHEP]1010] :

--- filtered fat jets (2.3)
5 variable masses (2.4)
10 optimalR (3.2)

—— N-subjettiness (3.4)
— Qjets (3.7, 0.1x0.1 cells)
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Jet image machines

Natural next step  [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]
— why intermediate high-level variables?
— as much data as possible
— calorimeter output as image
=- Deep learning = modern networks on low-level observables
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Jet image machines

Natural next step  [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]
— why intermediate high-level variables?
— as much data as possible
— calorimeter output as image
=- Deep learning = modern networks on low-level observables

Convolutional network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]

image recognition standard ML task

rapidity vs azimuthal angle, colored by energy deposition
top tagging on 2D jet images
40 x 40 bins through calorimeter resolution

Fealure Feature Feature Feature Hidden  Hidden  Hidden

Inputs units um s units Outputs
1@40x40 5639x39 8033x38 Sorax18 o177
@ Eﬂx oolng
Convolution ~ Convolution  Convolution Convolution Flatten  Fully Fully Full

ly
4x4 kernel 4x4 kernel 4x4 kernel 4x4 kernel connected connected connected




Why LHC? Why jets?

Data from ATLAS & CMS
— most LHC interactions qq, g9 — qq, g9
— quarks/gluon visible as jets  op,_,; x £ ~ 108fb x 80/fb ~ 100 events
= It's big data

YATLAS




Why LHC? Why jets?

Data from ATLAS & CMS

— most LHC interactions qq, g9 — qq, g9
— quarks/gluon visible as jets oy, X £ &~ 108fb x 80/fb ~ 1010 events
= It's big data

Physics in jets

— re-summed perturbative QFT prediction from QCD
— jets as decay products
67% W —jj 70%Z —jj 60%H—j 67%t—jj 60%T—j..
— new physics in ‘dark showers’
= It's fundamentally interesting
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= It's fundamentally interesting

Monte Carlo data
— QCD simulation: Sherpa, Pythia, Herwig madgraph]
— fast detector simulation: Delphes
— data-to-data comparison: MC vs LHC
= We can simulate it
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Monte Carlo data
— QCD simulation: Sherpa, Pythia, Herwig (madgraph)
— fast detector simulation: Delphes
— data-to-data comparison: MC vs LHC
= We can simulate it




Why LHC? Why jets?

Data from ATLAS & CMS

— most LHC interactions qq, g9 — qq, g9
— quarks/gluon visible as jets oy, X £ &~ 108fb x 80/fb ~ 1010 events
= It's big data

Physics in jets

— re-summed perturbative QFT prediction from QCD
— jets as decay products
67% W —jj 70%Z —jj 60%H—j 67%t—jj 60%T—j..
— new physics in ‘dark showers’
= It's fundamentally interesting

Monte Carlo data
— QCD simulation: Sherpa, Pythia, Herwig madgraph]
— fast detector simulation: Delphes
— data-to-data comparison: MC vs LHC
= We can simulate it




Why not LHC?

ATLAS & CMS

— 3000 know-it-alls per experiment =

— strong top-down structures

— strongly organized analysis groups
= Incentive for innovation?

Expertize

LHC data format: ROOT
multi-variate analyses tool: TMVA
Tensorflow from TMVA/ROOT

— ML challenges running
= Little sense of ML-urgency

Help from theory

Wizt 1 TMVA

One framework for most common MVA-techniques, available in R

* Have a common i for all MVA ification and ion-

» Have common data pre-processing capabilities
» Train and test all classifiers on same data sample and evaluate consistently

»was a good idea 10year ago, now unfortunatly imposes some unnecessa
constraints but nothing which could not be dealt with by ‘running independ

3

Provide common analysis (ROOT scripts) and application framework

L

Provide access with and without ROOT, through macros, C++ executables o

Integrated and distributed with ROOT

some info is still located at its original sourceforge location
Home page ................... !
list of classifier options ..

Mailing  gj,eYonder Retail  Solutions  Customers  Company
2 ny JOA Software

Best Decisions,
Delivered Daily

We deliver decisions to

retailers that boost

revenues, increase margin
and enable rapid response
to changing market

— theorists linked to lack of team compatibility e \ dymarmics

— simulated data as good as actual data
— excellent personal ex-th connections

= Theory driving non-theory developments



Networks for LHC

Neural networks in particle physics
— classification — signal extraction
generative — help with Monte Carlo  [ask Anja & Ramon]
— deep network: many layers/weights
— cross-entropy loss function: probability output
= Network just a learned function p(X)

Need to focus

— not: understand neural networks using physics
— not: improve standard analyses by 10%

not: tackle detector-limited problems

not: cats-dogs-icecream cones

= New analysis tools



Networks for LHC

Neural networks in particle physics
— classification — signal extraction
generative — help with Monte Carlo  [ask Anja & Ramon]
— deep network: many layers/weights
— cross-entropy loss function: probability output
= Network just a learned function p(X)

LHC physicist’s perspective

find architectures suitable for input
avoid re-learning known physics
control what network learns
ensure network is stable

assign error bars

find things to play with

= If you have the source code there is no black box!



Inside DeepTop

Particle physicists as ‘users’ [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
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Convolution
4x4 kernel

Convolution
4x4 kernel

Hidden

Hidden  Hidden

units units units Outputs
64 64 64 2
.
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Inside DeepTop

Particle physicists as ‘users’

— 2+2 convolutional layers
— 3 fully connected layers

[Kasieczka, TP, Russell, Schell; Macaluso & Shih]

Feature

Inputs

1@40x40

Convolution
x4 kernel

Feature

Feature

Convolution

axd kernel

Feature

Convolution
x4 kerel

Hidden  Hidden Hidden
units
64 64 64

EREE>= ANNN

Convolution
axa kernel

Flatten  Fully Fully Fully
connected connected connected



Inside DeepTop

Particle physicists as ‘users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]
— 2+2 convolutional layers

— 3 fully connected layers
— Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7) .

images
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Inside DeepTop

Particle physicists as ‘users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7) 0

images
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= Understandable performance gain
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Inside DeepTop

Particle physicists as ‘users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
3 fully connected layers

Pearson input-output correlation  [pixel x vs label y]

i~y (%) (y—7) ; : utrlon vl : :
images — DeepTop minimal
. 10° — Training
— comparison to MotherOfTaggers BDT — Architscture
= Understandable performance gain 108 o

—— Sample size

1/eg




Inside DeepTop

Particle physicists as ‘users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
— 3 fully connected layers

— Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7)

images

= Understandable performance gain

Typical reaction: ‘F*** you, you f***ing machine’

— full control for supervised learning
easy checks for correctly identified signal/background

— MC truth vs MotherOfTaggers vs DeepTop

. 002 Signal 0.02 Background
fat Jet mass ! "MOTHEROFTAGGERS . T
N-subjettiness 0.016 - 1 0016 1
DeepTopr
transverse momenta 0.012 - 1 { o012 ]
= The box is not black 0.008 |- truth [ { 0008 1
0.004 | 4 0.004 ," \\
o P S ol L ~
0 50 100 150 200 250 300 0 50 100 150 200 250 300

M [GeV] Mt [GeV]




Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN
— physics objects from calorimeter and tracker
— distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors kot ko2 - Ko
(koi) = ki Kz - kN
! kot k2 o0 ke
k3,1 ka2 -+ kKN
— combining them 1.0 -+ 0 Cwe - Cim
~ 0 1 e G
ki 28 K, =k Cj c=1|> | 2,42 2.1
: 0

0 0 -~ 1 Cywnz - OCnwm




Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN

— physics objects from calorimeter and tracker
— distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors (K, ;)

— combining them  k, ; 2$ k., ; =k, ; C;
Inspired by Jackson — Lorentz layer
— DNN on Lorentz scalars m?(k;)
ke k= | Prk)

= Learn Minkowski metric

g =diag(0.99+0.02,
—1.01+£0.01, —1.014+0.02, —0.99+0.02)

=
o
W

1/ False Positive Rate

102}

10°

low pr calo
— low pyr PF
---- high pr calo
— high py PF

0.2

0.4 0.6 0.8
True Positive Rate
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Meet the professionals

A brief history of achievement

2014/15: first jet image papers
— 2017: first (working) ML top tagger
ML4Jets 2017: What architecture works best?

= Jet classification understood and done

The Machine Learning Landscape of Top Taggers
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Abstract

Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
We find that they are extremely powerful and great fun.

ML4Jets 2018: Lots of architectures work [1902.09914]

Content
1 Introduction
2. Data set/

3 Taggers
3.1 Imaged-based taggers
[311_CNN

fector-based taggers|
1 TopoDNN
2 Multi-Body N-Subjettiness

[3.3_Theory-inspired taggers
33,1 Lorentz Boost Network
2 Lorentz Lay

Energy Flow Polynomials
.4 Energy Flow Networks|
|4 Comparison
[5_Conclusion!
[Reference




Meet the professionals

A brief history of achievement

2014/15: first jet image papers

— 2017: first (working) ML top tagger

— ML4Jets 2017: What architecture works best?

— ML4Jets 2018: Lots of architectures work (1902.09914]
=- Jet classification understood and done

The Machine Learning Landscape of Top Taggers
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Based on the established task of identifying boosted, hadronically decaying
Signal efficiency &5

top quarks, we compare a wide range of modern machine learning approaches.
We find that they are extremely powerful and great fun.




Meet the professionals

A brief history of achievement

2014/15: first jet image papers

2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work [1902.09914]
= Jet classification understood and done

= What’s new and cool?




When reality hits

ML-Life is not always nice to US  [Kasieczka, Kiefer, TP, Thompson]

— quark-gluon tagging a problem since 1991

— quark jets typical for resonance searches
gluon jets typical as dark matter recoil

— BDT/NN on high-level variables established
= deep-learning advantage gone after detector simulation, REALLY???

10° H
i —— Lola, Delphes
\ ---- Lola, particle
—— BDT, Delphes
1001 W ---- BDT, particle
N\ ---- BDT, reduced
5 —— BDT, Delphes, reduced
W
=
10!
10°

0.0 0.2 0.4 0.6 0.8 1.0




1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

— search for outliers hard to describe
= Making an okay tagger
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1@40x40  10@40x40  10@20x20 5@20x20 400100 1

5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]
— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

— search for outliers hard to describe
= Making an okay tagger

De-correlate background shaping

— established concept: adversary [shimmin,..]




1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]
— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

— search for outliers hard to describe
= Making an okay tagger

De-correlate background shaping

— established concept: adversary (shimmin,..]

— atypical QCD jets typially with large jet mass
remove jet mass from network training

0.012
least QCD-like 3 100%
0.010 100% £ 70%
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5 0.008 g
3 30008 0 5%
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3
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1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

search for outliers hard to describe
= Making an okay tagger

The whole thlﬂg on anomalous LHC events [Cerri, Nguyen, Pierini, Spiropulu, Viimant]

— same thing on full events

10°
— training data a problem
— variational autoencoder more powerful "
= Proof of concept... 10-2
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AUC = 0.91 (0.98)

4
Lo
10-4 / AUC = 0.85 (0.94)
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AUC = 0.75 (0.90)
105 h*>Tv

— AUC =0.92 (0.97)
< 1000 SM evts/month

BSM efficiency
=
5]
b
N
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B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— learn classification output and uncertainty (60 + 0)% top different from (60 = 1)% top]
— error bars: limited training statistics
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B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— learn classification output and uncertainty |

— error bars: limited training statistics
— error bars: jet energy scale (correlated)
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B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

learn classification output and uncertainty (60 + 0)% top different from (60 = 1)% top]

error bars: limited training statistics
error bars: jet energy scale (correlated)
error bars: jet energy scale (uncorrelated)

N
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=
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B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

learn classification output and uncertainty [ o5

— error bars: limited training statistics 0200
. 0.175
— error bars: jet energy scale (correlated) 5 oaso
— error bars: jet energy scale (uncorrelated) o1 -
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B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

learn classification output and uncertainty (60 + 0)% top different from (60 = 1)% top]

error bars: limited training statistics

error bars: jet energy scale (correlated)
error bars: jet energy scale (uncorrelated)
stability detection: pile-up

predictive stddev

—F- shift=0
—E- shift=60
- shift=100
- shift=160
- shift=200
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B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

learn classification output and uncertainty (6o + 0)% top different from (60 = 1)% top]
error bars: limited training statistics

error bars: jet energy scale (correlated)

error bars: jet energy scale (uncorrelated)

stability detection: pile-up

tagger calibration part of the training

systematic approach to regularization and drop-out

performance just like usual taggers

Lots of conceptual and practical advantages at no cost
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Capsules vs CNN

[

conv9x9  conv9x9 conv5x5 conv3x3  primary output
str=2 str=2 =2 str=1 capsules capsules

Calorimeter images too big for CNN

— full detector instead of fat ]et [forget training for now]
— sparse in objects with sparse objects
— multi-label for different backgrounds

Capsule networks [Diefenbacher, Frost, Kasieczka, TP, Thompson]

vector output instead of scalar classification
agreement by parallel vectors in feature space
vector components for properties and geometry  feyes, nose, mouth]
— pooling vs stride convolutions? Lot
= boosted tops from Z’ resonance N
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mixed background
QCD curve
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CapSU|eS VS CNN 1@180x180  32@86x90 32@39x45 32@18x23 96@16x23 5888x6 2x8

Calorimeter images too big for CNN

conv9x9  conv9x9 conv5x5 conv3x3  primary output
str=2 str=2  str=2  str=1 capsules capsules

— full detector instead of fat jet [forget training for now]
— sparse in objects with sparse objects
— multi-label for different backgrounds

Visualization

signal capsule for signal events
two components distinctive through radius
rotation remaining symmetric
average event per region

signal identifying »;
azimuthal angle insensitive

signal capsule dimension 0

1.0}
-10 -08 -06 -04 -02 0.0 02 04 06 ™ 0 ks
signal capsule dimension 1 ¢




CapSU|eS VS CNN 1@180x180  32@86x90 32@39x45 32@18x23 96@16x23 5888x6 2x8

Calorimeter images too big for CNN

conv9x9  conv9x9 conv5x5 conv3x3  primary output
str=2 str=2  str=2  str=1 capsules capsules

— full detector instead of fat jet [forget training for now]
— sparse in objects with sparse objects
— multi-label for different backgrounds

Visualization

— signal capsule for signal events
— two components distinctive through radius

— rotation remaining symmetric o
— average event per region

signal identifying »;
azimuthal angle insensitive

background identifying back-to-back
— and we can also do {tHpp...

b)

° 4

a

background capsule dimension 0

DI

A LU

-0
-04 -02 0.0 0.2 0.4 0.6 08 1 T o
background capsule dimension 1 o

a




The future

Machine learning is an amazing tool box...

...LHC physics really is big data

...imagine recognition is a starting point

...deep learning is not just classification

...Jets are not the only interesting objects at LHC
...Bayesian networks are extremely likable
...capsule networks useful for full events

Let’s find some really cool applications!
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