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Why LHC? Why jets?

Data from ATLAS & CMS

— colliding protons on protons at E ~ 13000 x mp

— most interactions qq, 99 — qq, 99

— quarks/gluon visible as jets oy, X £ & 108fb x 80/fb ~ 100 events
= It's proper big data
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— most interactions qgq, g9 — qq, gg

— quarks/gluon visible as jets oy, X £ &~ 108fb x 80/fb ~ 1010 events
= It's proper big data

Physics in jets

— re-summed perturbative QFT prediction from QCD
— jets as decay products
67% W —jj 70%Z—j 60%H—j 67%t—jj 60%7T—j..
— new physics in ‘dark showers’
= It's interesting




Why LHC? Why jets?

Data from ATLAS & CMS

— colliding protons on protons at E ~ 13000 x mp

— most interactions qgq, g9 — qq, gg

— quarks/gluon visible as jets oy, X £ &~ 108fb x 80/fb ~ 1010 events
= It's proper big data

Physics in jets

— re-summed perturbative QFT prediction from QCD
— jets as decay products
67% W —jj 70%Z—j 60%H—j 67%t—jj 60%7T—j..
— new physics in ‘dark showers’
= It's interesting

Monte Carlo data
— QCD simulation: Sherpa, Herwig (pythia, Madgraph]
— data-to-data comparison: MC vs LHC
= We can simulate it




Why not LHC?

ATLAS & CMS YWzt s TMVA
— 3000 know-it-alls per experiment & One framework for most common MVA-techniques, available in F
— strong top-down structures B e D e

) ) » Have common data pre-processing capabiliies
— strongly organized analysis groups  Train and test all classifiers on same data sample and evaluate consistently

»was a good idea 10year ago, now unfortunatly imposes some unnecessa

= Small groups drivi ng innovation constraints but nothing which could not be dealt with by ‘running independ

» Provide common analysis (ROOT scripts) and application framework
. » Provide access with and without ROOT, through macros, C++ executables o
Expertize

E Integrated and distributed with ROOT
— LHC data format: ROOT il i .

® some info is still located at its original sourceforge location
— multi-variate analyses tool: TMVA Home/page s !

list of classifier options ...

— Tensorflow from TMVA/ROOT Mailg  Blucyonder meun souors  cosomes  compony

= Limited sense of ML-urgency

Best Decisions,
Delivered Daily

i SN R We deliver decisions to
Experlment VS theory 2 N retailers that boost
” revenues, increase margin
and enable rapid response
to changing market

— theorists linked to lack of team compatibility &5 \ dymarmies
— simulated data as good as actual data
— excellent personal ex-th connections
= Theory driving developments we should not...




Jets classification: Nothing is ever new

LHC visionaries

— 1991: NN-based quark-gluon tagger [Lénnblad, Peterson, Régnvaldsson]

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD *, Carsten PETERSON** and Thorsteinn ROGNVALDSSON * =+
Department of Theoretical Physics. University of Lund, SGlvegatan 14A, 5-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is 1o find an cfficicnt mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are hack-propazated through the
network. With this method we are able 1o separate gluon from quark jets oniginating from Monte
Carlo generated ¢*c events with ~ 85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used 10 siudy the so-called string
effect.




Jets classification: Nothing is ever new

LHC visionaries

— 1991: NN-based quark-gluon tagger (Lénnblad, Peterson, Régnvaldsson]
— 1994: jet algorithm for W, top...

[Seymour]
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Searches for new particles using cone and cluster jet algorithms:

a comparative study

Michael H. Seymour
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Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
10 reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
examples considered are the_semileptonic decays of
a heavy Higgs boson at_/s=16TeV, and of top
quark-antiquark pairs at 8 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a_slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons [5], and a longitudinally-
invariant & -clustering_algorithm for hadron-hadron
collisions was proposed [6]. This algorithm has been
compared with the more commonly used cone algorithm
from the viewpoints of a parton-shower Monte Carlo
program [6, 7], and a fixed-order matrix-clement calcu-
lation [8], and ‘advantages of the cluster algorithm were
reported in both cases. This paper is concerned With
a comparison between the algorithms for the task of
reconstructing the hadronic decays of heavy particles,
which was also studied in a preliminary way in [9).

‘The only as-yet unobserved particles of the minimal
Standard Model are the top quark and Higgs boson. The
scarch for, and study of, these particles are among the
most important goals of current and planned hadron-
hadron collider experiments. In both cases, which




Benchmark: fat jets (2000s)

Look inside jets [Pre-LHC, jet were just annoying]

— top jets from t — bgq’ vs QCD jets
— top decays well-defined in theory
— labelled sample: semileptonic {f events

Simple top tagging [BDRs; TR, Salam, Spannowsky, Takeuchi]
1— fat jet with pr > 200 GeV
2— filtering defining 3-5 decay jets
3
4

top mass window my23 = [150,200] GeV

mass plane cuts extracting mj;; ~ my

= Not rocket science, but crucial to build trust

1 E
arctan m,/m,



Multi-variate taggers (2010s)

Developing the benchmark

— multivariate analysis generally old news

|m123_m(ﬁmax)| <02 msgénax)

123 = Ropt

add N‘SubjettineSS [Thaler, van Tilburg]
| filt
- {m1237 fWa Ropt - R(()(:)?C)> Tjs T, j(l )}

Fat jet and top kinematics
— jet radiation major problem for Z’ search
— combine top and fat jet information
filty (filt
- { > Mit, PT ¢t j(]l 7pTII)}
= Performance increase, as expected

4
10

3
10

10°

optimal fat jet size Fl)opt [large to decay jets, small to avoid combinatorics, compute from kinematics]

. ED[PRD89]
* HTT[JHEP1010]

-.-.-.- filtered fat jets (2.3)
variable masses (2.4)

- optimalR (3.2)

—— N-subjettiness (3.4)

—— Qjets (37, 0.1x0.1 cells)

\s=14Tev
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Jet images (2020s)

Natural next step  [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]
— why intermediate high-level variables?
— calorimeter output as image
— learn theory through more NN layers
=- Deep learning = modern networks on low-level observables
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Jet images (2020s)

Natural next step  [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]
— why intermediate high-level variables?
— calorimeter output as image
— learn theory through more NN layers
=- Deep learning = modern networks on low-level observables

Convolutional network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]

image recognition standard ML task

rapidity vs azimuthal angle, colored by energy deposition
top tagging on 2D jet images
40 x 40 bins through calorimeter resolution

Feature Featu re Feature Fealure Hidden  Hidden  Hidden

units units units Ou(uuts
1@40x40 5639x39 Be58x38 o188 3617317
@ Eax ooling
Convolution Convolution Convolution Convolution Flatten  Fully Fully

ully
4x4 kernel 4x4 kernel 4x4 kemel 4x4 kernel Connected connected conhected

e




Inside DeepTop

Particle physicists as Users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
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Inside DeepTop

Particle physicists as users [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
— 3 fully connected layers

Feature

Inputs

1@40x40

Convolution
x4 kernel

Feature

Feature

9
Convolution

axd kernel

Feature

Convolution
x4 kerel

Hidden  Hidden Hidden
units
64 64 64

SR ANNN

Convolution
axa kernel

Flatten  Fully Fully Fully
connected connected connected



Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]
— 2+2 convolutional layers

— 3 fully connected layers
— Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7) .

images

0.24
0.18

0.12
L] o

0 5

10 15 20 25 30 35
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Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7) 0

images

‘ SOFTDR‘OP+N-su£)jettiness meeenans

MOTHEROFTAGGERS -
DeepTop full

DEeEPTOP minimal - ----- J

comparison to MotherOfTaggers BDT
= Understandable performance gain

— =
=) =)
T w

Background rejection 1/ep
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Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y]

i = Z (X = X) (y = %) ‘ ‘ Deeplop jefs : :
images — DeepTop minimal
. 10° — Training
— comparison to MotherOfTaggers BDT — Architscture
. —— Preprocessing
= Understandable performance gain 104 i

1/eg




Inside DeepTop

Particle physicists as users  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y]

Y (G-%) (v -7)

images

comparison to MotherOfTaggers BDT
= Understandable performance gain

Colleagues my age: ‘F*** you, you f***ing machine’

— full control for supervised learning
easy checks for correctly identified signal/background

— MC truth vs MotherOfTaggers vs DeepTop

. Signal Background

fat Jet mass 0.02 "MOTHEROFTAGGERS 0.02 " T T T T

N-subjettiness 0.016 |- 1 0016 1
DeepTop

transverse momenta 0012 a\! 1 o012 1
= It works and we know why 0-008 - truth Ly 1 000 1
0.004 | ] 1 oooa | f \

0 o -~ R P R

0 50 100 150 200 250 300 0 50 100 150 200 250 300

miat [GeV] Mia [GeV]



Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN
— physics objects from calorimeter and tracker
— distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors kot ko2 - Ko
(koi) = ki Kz - kN
! ki ko2 - kN
k3,1 ka2 -+ kKN
— on-shell conditions for top tag
— combined 4-vectors 10 - 0 GCinez -+ Ciu
~ 0 1 o, G
k”,,' % k“,j = Kk i Cij C= ) ) ) 2,.N+2 2.,M
oo o 0 :
0 0 -~ 1 Cwwnyz -+ OCwnm

= Physics step, easy to interpret




Grand theory ideas

Networks with 4-vector input [Butter, Kasieczka, TP, Russell; many more by now]

— sparsely filled picture: graph CNN

— physics objects from calorimeter and tracker
— distance measure known from e&m (atternatively: Erdmann, Rath, Rieger]

Inspired by jet algorithm — combination layer

— input 4-vectors (K, ;)
— on-shell conditions for top tag

. Cola
— combined 4-vectors K, ; = Kk, j = K,;

=- Physics step, easy to interpret

Inspired by Jackson — Lorentz layer
— DNN on Lorentz scalars m? (k)
ko= | pr(k)

= Learn Minkowski metric

g =diag(0.99+0.02,
—1.01£0.01, —1.01£0.02, —0.99+0.02)

103
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10°

low pr calo
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Meet the professionals

Brief history of jet classification

2014/15: first jet image papers
2017: first (working) ML top tagger
ML4Jets 2017: what architecture best

sci Scost Phys. 7, 014 (2019)

The Machine Learning landscape of top taggers

‘Gregor Kasieczka'", Tilman Plehn®', Anja Butter”, Kyle Cranmer”, Dipsikha Debnath,
Barry M. Dillon”, Malcolm Fairbairn®, Darius A. Faroughy®, Wojtek Fedorko’,
Christophe Gay’, Loukas Gouskos®, Jernej F, Kamenik®®, Patrick T. Komiske',

ML4Jets 2018: Lots of architectures work [1902.09914, point clouds win]

Simon Leiss!, Alison Lister”, Sebastian Macaluso®, Eric M. Metodievi?, Liam Moore',
Ben Nachman'>1%, Karl Nordstrom'*15, Jannicke Pearkes’, Huilin Qu®, Yannik Kalh“
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335 Particle Flow Networks

Abstract

Based on the established task of identifying boosted, hadronically decaying top quarks, 4 Comparison

we compare a wide range of modern machine learning approaches. Unlike most estab- ;

h s " . heir 5 Conclusion
network architectures are vastly different, their performance is comparatively similar. Reference
In general, po and great fun. rences

coea &




Meet the professionals

Brief history of jet classification

2014/15: first jet image papers

2017: first (working) ML top tagger

ML4Jets 2017: what architecture best

ML4Jets 2018: Lots of architectures work (190209914, point clouds win]

sci Scost Phys. 7, 014 (2019)

The Machine Learning landscape of top taggers

Gregor Kasieczka™", Tilman Plehn?', Anja Butter?, Kyle Cranmer®, Dipsikha Debnath*,
Barry M. Dillon”, Malcolm Fairbairn®, Darius A. Faroughy®, Wojtek Fedorko’,
Ghristophe Gay’, Loukas Gouskos", Jenej F Kamenike”, Patrick T Komiske'",
Simon Leiss!, Alison Lister”, Sebastian Macaluso®", Eric M. Metodiev!®, Liam Moo

Ben Nachman'®"?, Karl Nordstrom %, Jannicke Fearkes”, Huilin Qu’, Yannik m.w T
Marcel Rieger'®, David Shih Jennifer M. Thompson?, and Sreedevi Varma® <7 Particleiet
TreeNiN
1 Institut ir Experimentalphysik, Universitit Hamburg, Germany " —:- ResNext
2 nstitut fur Theoretische Physik, Universitat Heidelberg, G:muny 10 o PEN
Particle Physics and Science, NYU, USA ]
-~ NSub(8)
L8

: NHICT, Dep.of Py o Astrnner Rty The Soxe Universityof N, USA
Jozef Stefan Institute, Liubljana, Slovenia
6 Theoretical Particle Physlu and Cosmology, King's College London, United Kingdom
7 Department of Physics and Astronomy, The University of Britsh Columbia, Canada
8 Department of Physics, University of California, Santa Barbara, USA
9F: d Physics, , Liubljana, Slovenia
10 Center for Theoretical Physics, MIT, Cambridge, USA
11 CP3, Universitéxx Catholique de Louvain, Louvain-la-Neuve, Belgium
12 Lawre Laboratory, Berkeley, USA
13 Simons Inst. for the Theory of Computing, University of California, Berkeley, USA
14 National Institute for Subatomic Physics (NIKHER), Amsterdam, Netherlands
15 LPTHE, CNRS & Sorbonne Université, Paris, France
16 111 Physics Institute A, RWTH Aachen University, Germany

1

Background rejection

Abstract 10t

Based on the established task of identifying boosted, hadronically decaying top quarks,
wide f mode hine ¢ iches. Unlike t estab-

e e e s it s 00 01 02 03 04 05 06 07 08 09 10

network architectures are vastly different, their performance is comparatively similar. Signal efficiency &5

In general, =




1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

New: autoencoder

FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

— search for outliers hard to describe
= Making an okay tagger

Background rejection 1/¢s

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency &s
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New: autoencoder

FU”y supervised classification bOI’iﬂg [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]
— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical

— search for outliers hard to describe
= Making an okay tagger

De-correlate background shaping

— established concept: adversary




1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

New: autoencoder

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

— search for outliers hard to describe
= Making an okay tagger

De-correlate background shaping

— established concept: adversary

— atypical QCD jets typially with large jet mass
remove jet mass from network training

0.012
least QCD-like 3 100%
0.010 100% £ 70%
0.010 1 40%
H H 1 10%
5 0.008 g
3 30008 0 5%
z z least QCD-like
3
S 0.006 3 0.006
g 3
2 8
H s
£ 0.004 £ 0.004
5 5
g 2
0.002 0.002
0.000 L—F = 0.000 ———————— -
0 50 100 150 200 250 300 0 50 100 150 200 250 300

jet mass [GeV] jet mass [GeV]



1@40x40  10@40x40  10@20x20 5@20x20 400 100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

New: autoencoder

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih]
— anomaly searches, only training on ‘background’

— established ML concept: autoencoder

reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

search for outliers hard to describe
= Making an okay tagger

The whole thlﬂg on anomalous LHC events [Cerri, Nguyen, Pierini, Spiropulu, Viimant]

— same thing on full events

10°
— training data a problem
— variational autoencoder more powerful "
= Proof of concept... 102
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AUC = 0.91 (0.98)
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105 h*>Tv

— AUC =0.92 (0.97)
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b
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New: B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— learn classification output and uncertainty (60 + 0)% top different from (60 = 1)% top]
— error bars: limited training statistics
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w o
2 2
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New: B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— learn classification output and uncertainty (60 + 0)% top different from (60 = 1)% top]
— error bars: limited training statistics
— error bar: jet energy scale (correlated)

I Top event

098 { [ [
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New: B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

learn classification output and uncertainty (60 + 0)% top different from (60 = 1)% top]

error bars: limited training statistics
error bar: jet energy scale (correlated)
error bar: jet energy scale (uncorrelated)

N
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) ges=0.4
=

migan = 0.0110 +/- 0.0004,
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New: B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

learn classification output and uncertainty [ o5
error bars: limited training statistics 0200
error bar: jet energy scale (correlated) o
error bar: jet energy scale (uncorrelated)

error bar and stability: pile-up :

o o
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New: B****ian networks

Slmply better networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

learn classification output and uncertainty (6o + 0)% top different from (60 = 1)% top]
error bars: limited training statistics

error bar: jet energy scale (correlated)

error bar: jet energy scale (uncorrelated)

error bar and stability: pile-up

tagger calibration part of the training

systematic approach to regularization and drop-out

performance just like usual taggers

Lots of conceptual and practical advantages at little cost



1@180x180  32@86x90 32@39x45 32@18x23 96@16x23 5888x6 2x8

Capsules vs CNN

[

conv9x9  conv9x9 conv5x5 conv3x3  primary output
str=2 str=2 =2 str=1 capsules capsules

Full calorimeter images

— full detector instead of fat ]et [forget training for now]
— sparse in objects with sparse objects
— multi-label for different backgrounds

Capsule networks [Diefenbacher, Frost, Kasieczka, TP, Thompson]

vector output instead of scalar classification
agreement by parallel vectors in feature space
vector components for properties and geometry  feyes, nose, mouth]
— pooling vs stride convolutions? Lot
= boosted tops from Z’ resonance N

1@180x180 1@45x45 32@15x45 _48@5x20
1@90x90  1@45x75 32@7x22 8006 3

mixed background
QCD curve

max-pool ¢-pad conv  max-pool conv
1 2x2 31x31 3x3

22 g
32646
@90x90  1@45x75 24@13u3 $10?
1@45x45 32@15x45  2236x6) 2
32x83x16 —
avg-pool =
3 output
¢-pad  conv conv
31331 33 10!
t
. 24@7x7 concar
2vgpool \ 1@ox9 196x6 --- 2classes

— 3 classes

3x3 0
R 10602 04 06 08 10
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CapSU|eS VS CNN 1@180x180  32@86x90 32@39x45 32@18x23 96@16x23 5888x6 2x8

Full calorimeter images

conv9x9  conv9x9 conv5x5 conv3x3  primary output
str=2 str=2  str=2  str=1 capsules capsules

— full detector instead of fat jet [forget training for now]
— sparse in objects with sparse objects
— multi-label for different backgrounds

Visualization

— signal capsule for signal events

— classification through radius

— rotation free to organize information
— average event per region

signal identifying »;
azimuthal angle insensitive

signal capsule dimension 0

1.0}
-10 -08 -06 -04 -02 0.0 02 04 06 ™ 0 ks
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Capsules vs CNN

Full calorimeter images
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— full detector instead of fat jet [forget training for now]
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— multi-label for different backgrounds

Visualization

— signal capsule for signal events

— classification through radius

— rotation free to organize information
— average event per region
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— ultimate-pain benchmark: ttHpp
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The future

Machine learning a tool box, not a black box

LHC physics really is big data

imagine recognition is a starting point

deep learning is not just classification

jets are not the only interesting objects at LHC
Bayesian networks are extremely likable
capsule networks useful for full events

physicists like things to play with
visualization/uncertainties becoming the focus
ask me about GANSs...
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