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Nothing is ever new

Machine learning and top tagging

– 1991: NN-based quark-gluon tagger [Lönnblad, Peterson, Rögnvaldsson]

– but unclear how to define quarks vs gluons
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Nothing is ever new

Machine learning and top tagging

– 1991: NN-based quark-gluon tagger [Lönnblad, Peterson, Rögnvaldsson]

– but unclear how to define quarks vs gluons

– top jets from t → bqq̄′ vs QCD jets

motivation: Z ′ → t t̄ with pT ,t > 300 GeV

theory: top decays perturbative QCD

experiment: labelled semileptonic t t̄ events

simulation: fast and high-quality MC data

⇒ Fat top jets perfect ML playground 1
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Jet image machines

Next step in LHC analyses [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

– why intermediate high-level variables?

– as much data as possible

– calorimeter output as image

– eventually, adding tracker output

⇒ Deep learning = modern networks on low-level observables
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Jet image machines

Next step in LHC analyses [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

– why intermediate high-level variables?

– as much data as possible

– calorimeter output as image

– eventually, adding tracker output

⇒ Deep learning = modern networks on low-level observables

Convolutional network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]
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– image recognition standard ML task

– rapidity vs azimuthal angle, colored by energy deposition

– 40× 40 bins through calorimeter resolution
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Theory work?

4-vector input — graph CNN [Butter, Kasieczka, TP, Russell; much better versions by now]

– physics objects from calorimeter and tracker

– distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by QFT

– input 4-vectors (kµ,i )

– jet algorithm −→ combination layer

kµ,i
CoLa−→ k̃µ,j = kµ,i Cij

– observables −→ Lorentz layer

k̃j
LoLa−→ k̂j =


m2(k̃j )

pT (k̃j )

...


⇒ Learn Minkowski metric

g =diag(0.99±0.02,

−1.01±0.01,−1.01±0.02,−0.99±0.02)
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Jet classification done

– many networks successful [ask Martin]

– which direction to follow?

⇒ Error bars, maybe? [Nachman 1909.03081]
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Jet classification with error bars

Jet-by-jet uncertainties

– (60±??)% top, uncertainty from training

– probability for test event p(c∗|C) [classifier output C, network ω]

p(c∗|C) =

∫
dω p(c∗|ω,C) p(ω|C) =

∫
dω p(c∗|ω,C) q(ω)

– loss function from minimizing Kullbeck-Leibler divergence [Bayes’ theorem]

KL[q(ω), p(ω|C)] =

∫
dω q(ω) log

q(ω)

p(ω|C)

=

∫
dω q(ω) log

q(ω)p(C)

p(C|ω)p(ω)

= KL[q(ω), p(ω)]︸ ︷︷ ︸
L2-regularization

+ log p(C)

∫
dω q(ω)︸ ︷︷ ︸

normalization of q, irrelevant

−
∫

dω q(ω) log p(C|ω)︸ ︷︷ ︸
likelihood, maximized

⇒ L = KL[q(ω), p(ω)]−
∫

dω q(ω) log p(C|ω)
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Jet classification with error bars

Jet-by-jet uncertainties

– (60±??)% top, uncertainty from training

– probability for test event p(c∗|C) [classifier output C, network ω]

p(c∗|C) =

∫
dω p(c∗|ω,C) p(ω|C) =

∫
dω p(c∗|ω,C) q(ω)

– loss function from minimizing Kullbeck-Leibler divergence [Bayes’ theorem]

KL[q(ω), p(ω|C)] =

∫
dω q(ω) log

q(ω)

p(ω|C)

=

∫
dω q(ω) log

q(ω)p(C)

p(C|ω)p(ω)

= KL[q(ω), p(ω)]︸ ︷︷ ︸
L2-regularization

+ log p(C)

∫
dω q(ω)︸ ︷︷ ︸

normalization of q, irrelevant

−
∫

dω q(ω) log p(C|ω)︸ ︷︷ ︸
likelihood, maximized

⇒ L = KL[q(ω), p(ω)]−
∫

dω q(ω) log p(C|ω)

⇒ sample ω to extract (µpred, σpred)

check prior independence

check frequentist many-networks
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Jet classification with error bars

Jet-by-jet uncertainties

– (60±??)% top, uncertainty from training

– probability for test event p(c∗|C) [classifier output C, network ω]

p(c∗|C) =

∫
dω p(c∗|ω,C) p(ω|C) =

∫
dω p(c∗|ω,C) q(ω)

⇒ sample ω to extract (µpred, σpred)

Complication with classification

– sigmoid to map on closed interval [0, 1]

Sigmoid(x) =
ex

1 + ex

– predictive mean

µpred =

∫ ∞
−∞

dω Sigmoid(ω) Gµ,σ(ω)

=

∫ 1

0
dx

x
x(1− x)

Gµ,σ
(

log
x

1− x

)
∈ [0, 1]

– predictive standard deviation

σpred ≈ µpred
(
1− µpred

)
σ

(unconstr)
pred

⇒ Additional complication...
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased

– correlation between µpred and σpred [toy network, 10k jets]

– increasing training statistics [parabola from closed interval output]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased

– correlation between µpred and σpred [toy network, 10k jets]

– increasing training statistics [parabola from closed interval output]

Noise/pile-up

– increasing pile-up, stable [LoLa, ordered constituents]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased

– correlation between µpred and σpred [toy network, 10k jets]

– increasing training statistics [parabola from closed interval output]

Noise/pile-up

– increasing pile-up, stable [LoLa, ordered constituents]

– increasing pile-up, unstable [DeepTop, jet image]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased

– correlation between µpred and σpred [toy network, 10k jets]

– increasing training statistics [parabola from closed interval output]

Jet energy scale

– systematics effect in test sample

1– shift of hardest constituent

– adversarial example: hierarchical subjets = top
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased

– correlation between µpred and σpred [toy network, 10k jets]

– increasing training statistics [parabola from closed interval output]

Jet energy scale

– systematics effect in test sample

1– shift of hardest constituent

– adversarial example: hierarchical subjets = top

2– uncorrelated shift of all constituents

– tiny degradation for signal

⇒ Better control needed
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Jet measurements with error bars

Regression: measure pT ,t [Kasieczka, Luchmann, TP (soon)]

– effect of noisy and size-limited data separated

σpred: limited training sample

σnoise: statistical behavior of training data [Gaussian likelihood]

log p(C|ω)→ log p(C|µ, σnoise) =
(C − µ)2

2σ2
noise

+
1
2

logσ2
noise + const

σ2
tot = σ2

pred + σ2
noise [all Gaussian]
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Jet measurements with error bars

Regression: measure pT ,t [Kasieczka, Luchmann, TP (soon)]

– effect of noisy and size-limited data separated

σpred: limited training sample

σnoise: statistical behavior of training data [Gaussian likelihood]

log p(C|ω)→ log p(C|µ, σnoise) =
(C − µ)2

2σ2
noise

+
1
2

logσ2
noise + const

σ2
tot = σ2

pred + σ2
noise [all Gaussian]

– sample size dependence [statistics saturating]
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Jet measurements with error bars

Regression: measure pT ,t [Kasieczka, Luchmann, TP (soon)]

– effect of noisy and size-limited data separated

σpred: limited training sample

σnoise: statistical behavior of training data [Gaussian likelihood]

log p(C|ω)→ log p(C|µ, σnoise) =
(C − µ)2

2σ2
noise

+
1
2

logσ2
noise + const

σ2
tot = σ2

pred + σ2
noise [all Gaussian]

– sample size dependence [statistics saturating]

– comparison with pT ,t vs pT ,j
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Jet measurements with error bars

Regression: measure pT ,t [Kasieczka, Luchmann, TP (soon)]

– effect of noisy and size-limited data separated

σpred: limited training sample

σnoise: statistical behavior of training data [Gaussian likelihood]

log p(C|ω)→ log p(C|µ, σnoise) =
(C − µ)2

2σ2
noise

+
1
2

logσ2
noise + const

σ2
tot = σ2

pred + σ2
noise [all Gaussian]

– sample size dependence [statistics saturating]

– comparison with pT ,t vs pT ,j

– dependence on ISR and top-ness

⇒ Accurate error estimate
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Jet calibration

Calibration means error propagation

– training on smeared data??
better: training with smeared labels [pT measured elsewhere, with error]

– Gaussian noise over pT ,t label [2, 4, 6...10%]

– distribution of extracted pT ,t
correlation extending to error bars
slice with expected non-Gaussian tail from QCD radiation
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Jet calibration

Calibration means error propagation

– training on smeared data??
better: training with smeared labels [pT measured elsewhere, with error]

– Gaussian noise over pT ,t label [2, 4, 6...10%]

– distribution of extracted pT ,t
correlation extending to error bars
slice with expected non-Gaussian tail from QCD radiation

– effect from calibration uncertainty alone
trace label smearing to network output
making sense of σnoise

⇒ Works!
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Looking into the future

Machine learning a great tool box...

...LHC physics really is big data

...imagine recognition is a starting point

...performance in tagging solved

...time for (more) interesting questions

...Bayesian networks do uncertainties better than current methods
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