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Useful theorists?

Fundamental understanding of LHC data

– LHC and dark matter data-driven, but never fundamental without theory

– just work with data and SM? [Jernej’s talk]

1. simulation from first principles [Pythia, Sherpa]

2. interpretation frameworks [SMEFT, SUSY :)]

3. best use of the data [using 1, 2, our brains, and ML]

– 1991 visionaries: NN-based quark-gluon tagger [Lönnblad, Peterson, Rögnvaldsson]

⇒ Lots of theory-related questions
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Top tagging

Look what makes jets [Pre-LHC, jets were just annoying]

– top jets from t → bqq̄′ vs QCD jets

– top decays well-defined in theory

– labelled sample: semileptonic t t̄ events

⇒ Fat jets as LHC physics playground
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ML from low-level observables [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

– why intermediate high-level variables?

– calorimeter with all information
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Top tagging

Look what makes jets [Pre-LHC, jets were just annoying]

– top jets from t → bqq̄′ vs QCD jets

– top decays well-defined in theory

– labelled sample: semileptonic t t̄ events

⇒ Fat jets as LHC physics playground
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– why intermediate high-level variables?
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– tops from conv network [Kasieczka, TP, Russell, Schell; Macaluso, Shih]

– 40× 40 bins through calorimeter resolution

– image recognition standard ML task
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Theory inspiration

4-vector input — graph CNN [Butter, Kasieczka, TP, Russell; much better versions by now]

– physics objects from calorimeter and tracker

– distance measure known from e&m [alternatively: Erdmann, Rath, Rieger]

Inspired by QFT

– input 4-vectors (kµ,i )

– jet algorithm −→ combination layer

kµ,i
CoLa−→ k̃µ,j = kµ,i Cij

– observables −→ Lorentz layer

k̃j
LoLa−→ k̂j =


m2(k̃j )

pT (k̃j )

...


⇒ Learn Minkowski metric

g =diag(0.99±0.02,

−1.01±0.01,−1.01±0.02,−0.99±0.02)
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Jet classification done
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Beyond central values

Better Bayesian networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; cf Nachman]

– neural network: deterministic functions
particle physics data: statistical
−→ neural network output: statistical or wrong

– classification: (60±??)% top?

– histogramming networks unrealistic
sampling network weights standard [‘Bayesian’ networks]

– formally: systematic approach to regularization and drop-out

– uncertainty from training statistics [parabola from closed interval output]
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Beyond central values

Better Bayesian networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; cf Nachman]

– neural network: deterministic functions
particle physics data: statistical
−→ neural network output: statistical or wrong

– classification: (60±??)% top?

– histogramming networks unrealistic
sampling network weights standard [‘Bayesian’ networks]

– formally: systematic approach to regularization and drop-out

– uncertainty from training statistics [parabola from closed interval output]

– uncertainty from pile-up

– instability from pile-up
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Beyond central values

Better Bayesian networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; cf Nachman]

– neural network: deterministic functions
particle physics data: statistical
−→ neural network output: statistical or wrong

– classification: (60±??)% top?

– histogramming networks unrealistic
sampling network weights standard [‘Bayesian’ networks]

– formally: systematic approach to regularization and drop-out

– uncertainty from training statistics [parabola from closed interval output]

– uncertainty from pile-up

– instability from pile-up

– tagger calibration part of the training

– performance just like usual taggers

....

– Lots of advantages, no cost
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Learning from background

Hypothesis-free BSM searches [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; Dillon etal]

– train on ‘background’, search for deviations

– established ML concept: autoencoder

– reconstruct typical QCD jet from data
reduce central weights, compress information
search for outliers

⇒ Making an okay tagger
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Learning from background

Hypothesis-free BSM searches [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; Dillon etal]

– train on ‘background’, search for deviations

– established ML concept: autoencoder

– reconstruct typical QCD jet from data
reduce central weights, compress information
search for outliers

⇒ Making an okay tagger

De-correlate background shaping

– established ML concept: adversary [Cranmer, Shimmin; Spannowsky etal]

– atypical QCD jets typially with large jet mass
ignore jet mass from network training

⇒ Still open questions
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Understanding networks

Capsule networks [Diefenbacher, Frost, Kasieczka, TP, Thompson]

– vector output instead of scalar classification [pooling vs stride]

– agreement by parallel vectors in feature space

– vector components for properties and geometry [eyes, nose, mouth]

Boosted tops from Z ′ resonance

– signal capsule for signal events

– two components distinctive through radius

– rotation remaining symmetric

– average event per region
signal identifying ηj
azimuthal angle insensitive
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Understanding networks

Capsule networks [Diefenbacher, Frost, Kasieczka, TP, Thompson]

– vector output instead of scalar classification [pooling vs stride]

– agreement by parallel vectors in feature space

– vector components for properties and geometry [eyes, nose, mouth]

Boosted tops from Z ′ resonance

– signal capsule for signal events

– two components distinctive through radius

– rotation remaining symmetric

– average event per region
signal identifying ηj
azimuthal angle insensitive

background identifying back-to-back

⇒ Useful?
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The future

Machine learning is an amazing tool box...

...LHC physics really is big data

...imagine recognition is a starting point

...Bayesian networks with error bars

...capsule networks useful for visualization

Not even talked about GAN, reinforcement learning, and fun stuff...
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