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Useful theorists?

Fundamental understanding of LHC data

— LHC and dark matter data-driven, but never fundamental without theory
— just work with data and SM?  ernejs talk]

1. simulation from first principles  (pythia, Sherpal
2. interpretation frameworks [svEFT, susy ;)
3. best use of the data [using 1, 2, our brains, and ML]

— 1991 visionaries: NN-based quark-gluon tagger (Lsnnblad, Peterson, Régnvaldsson]
USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD*, Carsten PETERSON ** and Thorsteinn ROGNVALDSSON ***
Department of Theoretical Physics, University of Lund, Solvegatan 14A, S-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e” events with ~85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to study the so-called string
effect.

In addition, heavy quarks (b and c) in e*e ™~ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.

= Lots of theory-related questions




Top tagging
Look what makes jets [Pre-LHC, jets were just annoying]

— top jets from t — bgq’ vs QCD jets

— top decays well-defined in theory

— labelled sample: semileptonic tf events
= Fat jets as LHC physics playground

% 200400

ML from low-level observables [cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]

— why intermediate high-level variables?
— calorimeter with all information
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Top tagging
Look what makes jets [Pre-LHC, jets were just annoying]

— top jets from t — bgq’ vs QCD jets

— top decays well-defined in theory

— labelled sample: semileptonic {f events 10
= Fat jets as LHC physics playground
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ML from low-level observables [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]
— why intermediate high-level variables?
— calorimeter with all information l E

tops from conv network  [kasieczka, TP, Russell, Schell; Macaluso, Shih]
40 x 40 bins through calorimeter resolution
image recognition standard ML task

Feature Feature Feature Feature Hidden  Hidden  Hidden
Inputs maps maps maps maps units units units Outputs
1@40x40 64 64 64 2
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Convolution  Convolution ~ Convolution ~ Convolution Flatten  Fully Fully Fully
4x4 kernel 4x4 kernel 4x4 kernel 4xa kernel connected connected connected




Theory inspiration

4-vector input — graph CNN [Butter, Kasieczka, TP, Russell; much better versions by now]

— physics objects from calorimeter and tracker
— distance measure known from e&m (atternatively: Erdmann, Rath, Rieger]

Inspired by QFT

— input 4-vectors (K, ;)
— jet algorithm — combination layer
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Jet classification done
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Beyond central values

Better Bayesian networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; cf Nachman]

— neural network: deterministic functions
particle physics data: statistical
— neural network output: statistical or wrong

— classification: (60+77)% top?
— histogramming networks unrealistic
sampling network weights standard  [8ayesian networks]
— formally: systematic approach to regularization and drop-out
- uncertainty from training statistics [parabola from closed interval output]
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Beyond central values

Better Bayesian networks  [Boliweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; of Nachman]

— neural network: deterministic functions
particle physics data: statistical
— neural network output: statistical or wrong

— classification: (60+77)% top?

— histogramming networks unrealistic
sampling network weights standard [Bayesian’ networks]

— formally: systematic approach to regularization and drop-out
- uncertainty from training statistics [parabola from closed interval output]
— uncertainty from pile-up
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Beyond central values

Better Bayesian networks  [Boliweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; of Nachman]

— neural network: deterministic functions
particle physics data: statistical
— neural network output: statistical or wrong

— classification: (60+77)% top?

— histogramming networks unrealistic
sampling network weights standard [Bayesian’ networks]

— formally: systematic approach to regularization and drop-out
— uncertainty from training statistics [parabola from closed interval output]
— uncertainty from pile-up

— instability from pile-up
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Beyond central values

Better Bayesian networks [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; cf Nachman]

— neural network: deterministic functions
particle physics data: statistical
— neural network output: statistical or wrong

— classification: (60+77)% top?

— histogramming networks unrealistic
sampling network weights standard  [8ayesian networks]

— formally: systematic approach to regularization and drop-out
- uncertainty from training statistics [parabola from closed interval output]
— uncertainty from pile-up

— instability from pile-up

— tagger calibration part of the training

— performance just like usual taggers

— Lots of advantages, no cost
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Learning from background

Hypothesis-free BSM searches [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; Dillon etal]

train on ‘background’, search for deviations
established ML concept: autoencoder

— reconstruct typical QCD jet from data
reduce central weights, compress information
search for outliers

= Making an okay tagger
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Learning from background

100 400

HypOtheSiS'free BSM searches [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; Dillon etal]

— train on ‘background’, search for deviations
— established ML concept: autoencoder

— reconstruct typical QCD jet from data
reduce central weights, compress information

search for outliers

= Making an okay tagger

De-correlate background shaping

— established ML concept: adversary [Cranmer, Shimmin; Spannowsky etal]

— atypical QCD jets typially with large jet mass
ignore jet mass from network training

= Still open questions
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Understanding networks

Capsule networks [Diefenbacher, Frost, Kasieczka, TP, Thompson]

— vector output instead of scalar classification [pooling vs stride]
— agreement by parallel vectors in feature space
— vector components for properties and geometry  feyes, nose, mouth]

Boosted tops from Z’ resonance

signal capsule for signal events

two components distinctive through radius

rotation remaining symmetric
average event per region

signal identifying ;
azimuthal angle insensitive

signal capsule dimension 0
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Understanding networks

Capsule networks [Diefenbacher, Frost, Kasieczka, TP, Thompson]

— vector output instead of scalar classification [pooling vs stride]
— agreement by parallel vectors in feature space
— vector components for properties and geometry  feyes, nose, mouth]

Boosted tops from Z’ resonance

— signal capsule for signal events

— two components distinctive through radius

— rotation remaining symmetric
— average event per region

signal identifying ;
azimuthal angle insensitive

background identifying back-to-back
= Useful?

background capsule dimension 0
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The future

Machine learning is an amazing tool box...

...LHC physics really is big data

...imagine recognition is a starting point
...Bayesian networks with error bars
...capsule networks useful for visualization
Not even talked about GAN, reinforcement learning, and fun stuff...
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