How to GAN for LHC

Tilman Plehn

Universität Heidelberg

CERN-TH 6/2020

How to GAN Tilman Plehn

How to GAN Tilman Plehr Basics

Fundamental understanding of big data

Machine Learning for LHC

- LHC and data-driven, but only fundamental with theory
 - 1. simulation from first principles [Pythia, Sherpa, Madgraph]
 - 2. interpretation frameworks [SMEFT, SUSY]
 - 3. best use of the data [using 1, 2, our brains, and ML]
- 1991 visionaries: NN-based quark-gluon tagger
 USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LÖNNBLAD*, Carsten PETERSON** and Thorsteinn RÖGNVALDSSON*** Department of Theoretical Physics, University of Lund, Sölvegatan 14A, S-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jett is presented. The idea is to find an efficient mapping between certain observed hadronic kinematical variables and the quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal functions using a gradient descent procedure, where the errors are back-propagated through the network. With this method we are able to separate gluon from quark jets originating from Monte Carlo generated e^+e^- events with $\sim 85\%$ approach. The result is independent of the MC model used. This approach for isolating the gluon jet is then used to study the so-called string effect.

In addition, heavy quarks (b and c) in c^+c^- reactions can be identified on the 50% level by just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and purity, which is comparable with what is expected from vertex detectors. We also speculate on how the neural network method can be used to disentangle different hadronization schemes by compressing the dimensionality of the state space of hadrons.

 \Rightarrow not new, not a question *if* experimentalists will use it

How to GAN

Tilman Plehn

Basics Events Subtract

Unfolding

Inverting

Simple classification done

SciPost Physics

The Machine Learning Landscape of Top Taggers

G. Kasieczka (el)¹, T. Pielm (ed)², A. Batter², K. Cranner³, D. Dekaath⁴, B. M. Dillou⁵, M. Fairishim⁶, D. A. Faroughy⁵, W. Felotok⁷, C. Guy⁵, I. Gousko⁴, J. F. Kamenik^{5,0}, P. T. Komisk^{6,0}, S. Leis³, A. Lister², S. Macaluco⁵, H. E. M. Mctoller^{10,9}, L. Moore¹¹, B. Nachman,^{10,11}, K. Nortström^{14,15}, J. Penrke⁷, H. Qu⁵, Y. Rath¹⁶, M. Rieger¹⁰, D. Shih⁴, J. M. Thompson⁷, and S. Varma⁶

1 Institut für Experimentalphysik, Universität Hamburg, Germany 2 Institut für Theoretische Physik, Universität Heidelberg, Germany 3 Center for Cosmology and Particle Physics and Center for Data Science, NYU, USA 4 NHECT, Dept. of Physics and Astronomy, Rutgers, The State University of NJ, USA 5 Jozef Stefan Institute, Ljubljana, Slovenia 6 Theoretical Particle Physics and Cosmology, King's College London, United Kingdom 7 Department of Physics and Astronomy, The University of British Columbia, Canada 8 Department of Physics, University of California, Santa Barbara, USA 9 Faculty of Mathematics and Physics, University of Ljubliana, Ljubliana, Slovenia 10 Center for Theoretical Physics, MIT, Cambridge, USA 11 CP3, Universitéxx Catholique de Louvain, Louvain-la-Neuve, Belgium 12 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, USA 13 Simons Inst. for the Theory of Computing, University of California, Berkeley, USA 14 National Institute for Subatomic Physics (NIKHEF), Amsterdam, Netherlands 15 LPTHE, CNRS & Sorbonne Université, Paris, France 16 III. Physics Institute A. RWTH Aachen University, Germany

> gregor.kasieczka@uni-hamburg.de plehn@uni-heidelberg.de

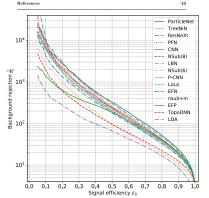
> > July 24, 2019

Abstract

Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter updnt. While their network architectures are wastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.

Submission

1 Introduction 13 2 Data set 3 Taggers 3.1 Imaged-based taggers 3.1.1 CNN 3.1.2 ResNeXt 3.2 4-Vector-based taggers 3.2.1 TopoDNN 3.2.2 Multi-Body N-Subjettiness 3.2.3 TreeNiN 3.2.4 P-CNN 3.2.5 ParticleNet 10 3.3 Theory-inspired taggers 10 3.3.1 Lorentz Boost Network 10 3.3.2 Lorentz Laver 3.3.3 Latent Dirichlet Allocation 3.3.4 Energy Flow Polynomials 3.3.5 Energy Flow Networks 13 3.3.6 Particle Flow Networks 14 4 Comparison 14 5 Conclusion 18



How to GAN Tilman Plehn Basics

- Events Subtracti
- Unfolding
- Inverting

(Theory) Networks beyond classification

Phase space networks

- MC integration [Bendavit (2017)]
- NNVegas [Klimek (2018), Carrazza (2020)]

Event generation

- parton densities [NNPDF (since 2002)]
- amplitudes [Bishara (2019), Badger (2020)]
- neural importance sampling [Bothmann (2020)]
- i-flow in SHERPA [Gao (2020)]

Generative networks

- Jet Images [de Oliveira (2017), Carazza (2019)]
- Detectors [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]
- Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]
- Unfolding [Datta (2018), Bellagente (2019)]
- Templates for QCD factorization [Lin (2019)]
- Models [Erbin (2018), Otten (2018)]
- Event subtraction [Butter (2019)]

Basics Events Subtraction Unfolding Inverting

Inspiration from art

GANGogh [Bonafilia, Jones, Danyluk (2017)]

- can networks create new pieces of art?
- train on 80,000 pictures [organized by style and genre]
- map noise vector to images
- generate flowers

to GAN Insp

Basics Events Subtraction Unfolding

Inspiration from art

GANGogh [Bonafilia, Jones, Danyluk (2017)]

- can networks create new pieces of art?
- train on 80,000 pictures [organized by style and genre]
- map noise vector to images
- generate portraits

How to GAN Tilman Plehn Basics

Inspiration from art

GANGogh [Bonafilia, Jones, Danyluk (2017)]

- can networks create new pieces of art?
- train on 80,000 pictures [organized by style and genre]
- map noise vector to images

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

- trained on 15,000 portraits
- sold for \$432.500
- \Rightarrow all about marketing and sales

- Basics Events Subtract
- Inverting

GAN basics

MC crucial for LHC physics

- goal: data-to-data with fundamental physics input only
- MC challenges
 - higher-order precision in bulk coverage of tails unfolding to access fundamental QCD
- neural network benefits

best available interpolation structured latent space lightning speed, once trained inversion solved training on MC and/or data, anything goes

GANs the cool kid

generator trying to produce best events discriminator trying to catch generator

 \longrightarrow competing towards (Nash) equilibrium

Basics Events Subtraction Unfolding Inverting

GAN algorithm

Example: LHC events

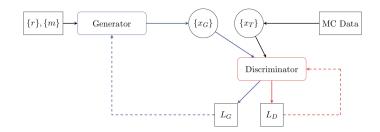
- training: true events $\{x_T\}$ following $p_T(x)$ output: generated events $\{r\} \to \{x_G\}$ following $p_G(x)$
- discriminator constructing D(x) [D(x) = 1, 0 true/generator]

$$L_{D} = \langle -\log D(x) \rangle_{x \sim P_{T}} + \langle -\log(1 - D(x)) \rangle_{x \sim P_{G}} \rightarrow -2\log 0.5$$

- generator giving events [D needed]

 $L_G = \langle -\log D(x) \rangle_{x \sim P_G}$

- loss function evaluated over batch
- noise reduction/stabilization: gradient penalty [alternatively WGAN]
- ⇒ statistically independent copy of training events



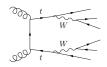
- Basics
- Events
- Subtraction Unfolding

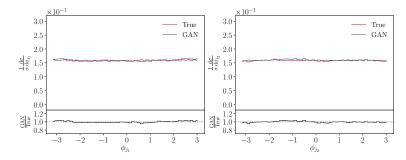
1- How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

- medium-complex final state $t\bar{t} \rightarrow 6$ jets t/\bar{t} and W^{\pm} on-shell with BW 6 × 4 = 18 dof on-shell external states \rightarrow 12 dof [constants hard to learn]

- flat observables flat [phase space coverage okay]

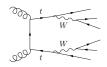


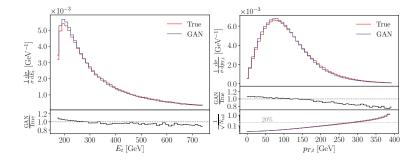


- Basics
- Events
- Subtraction Unfolding

1- How to GAN LHC events

- medium-complex final state $t\bar{t} \rightarrow 6$ jets t/\bar{t} and W^{\pm} on-shell with BW 6 × 4 = 18 dof on-shell external states \rightarrow 12 dof [constants hard to learn]
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- constructed observables similar

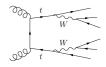


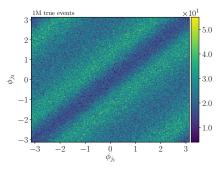


- Basics
- Events
- Unfolding
- Inverting

1- How to GAN LHC events

- medium-complex final state $t\bar{t} \rightarrow 6$ jets t/\bar{t} and W^{\pm} on-shell with BW 6 × 4 = 18 dof on-shell external states \rightarrow 12 dof [constants hard to learn]
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- constructed observables similar
- improved resolution [1M training events]

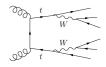


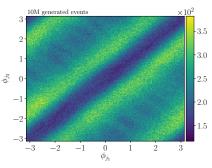


- Basics
- Events
- Subtraction Unfolding

1- How to GAN LHC events

- medium-complex final state $t\bar{t} \rightarrow 6$ jets t/\bar{t} and W^{\pm} on-shell with BW 6 × 4 = 18 dof on-shell external states \rightarrow 12 dof [constants hard to learn]
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- constructed observables similar
- improved resolution [10M generated events]

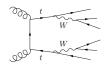


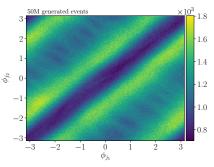


- Basics
- Events
- Unfolding
- Inverting

1- How to GAN LHC events

- medium-complex final state $t\bar{t} \rightarrow 6$ jets t/\bar{t} and W^{\pm} on-shell with BW 6 × 4 = 18 dof on-shell external states \rightarrow 12 dof [constants hard to learn]
- flat observables flat [phase space coverage okay]
- direct observables with tails [statistical error indicated]
- constructed observables similar
- improved resolution [50M generated events]
- concept promising





Basics

Events Subtract

Unfolding

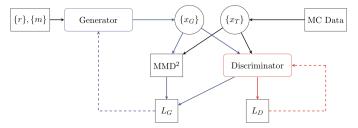
Inverting

Intermediate resonances

GAN version of adaptive sampling

- generally 1D features
 phase space boundaries
 kinematic cuts
 invariant masses [top, w]
- batch-wise comparison of distributions, MMD loss with kernel k

$$\begin{split} \mathsf{MMD}^2 &= \left\langle k(x,x') \right\rangle_{x,x' \sim \mathcal{P}_T} + \left\langle k(y,y') \right\rangle_{y,y' \sim \mathcal{P}_G} - 2 \left\langle k(x,y) \right\rangle_{x \sim \mathcal{P}_T, y \sim \mathcal{P}_G} \\ \mathcal{L}_G &\to \mathcal{L}_G + \lambda_G \, \mathsf{MMD}^2 \;, \end{split}$$



Basics

Events

Unfolding

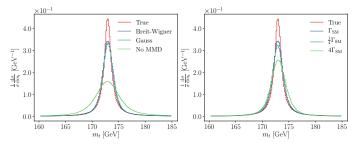
Inverting

Intermediate resonances

GAN version of adaptive sampling

- generally 1D features
 phase space boundaries
 kinematic cuts
 invariant masses [top, w]
- batch-wise comparison of distributions, MMD loss with kernel k

$$\begin{split} \mathsf{MMD}^2 &= \big\langle k(x,x') \big\rangle_{x,x' \sim P_T} + \big\langle k(y,y') \big\rangle_{y,y' \sim P_G} - 2 \big\langle k(x,y) \big\rangle_{x \sim P_T, y \sim P_G} \\ \mathcal{L}_G &\to \mathcal{L}_G + \lambda_G \, \mathsf{MMD}^2 \;, \end{split}$$



 \Rightarrow minor impact of kernel function and width

How to GAN Tilman Plehn Basics Events Subtraction Unfolding

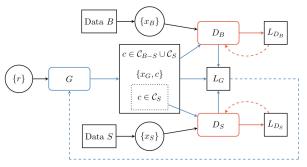
2- How to GAN event subtraction

Idea: subtract event samples without bins [Butter, TP, Winterhalder]

- statistical uncertainty

$$\Delta_{B-S} = \sqrt{\Delta_B^2 + \Delta_S^2} \max(\Delta B, \Delta S)$$

- applications in LHC physics soft-collinar subtraction, multi-jet merging on-shell subtraction background/signal subtraction
- GAN setup
 - 1. differential, steep class label
 - 2. sample normalization



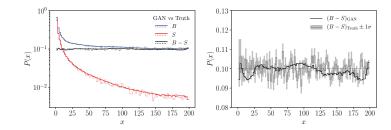
How to GAN Subtracted events

How to beat statistics by subtracting

1- 1D toy example

$$P_B(x) = \frac{1}{x} + 0.1$$
 $P_S(x) = \frac{1}{x} \Rightarrow P_{B-S} = 0.1$

- statistical fluctuations reduced (sic!)



Subtracted events

How to beat statistics by subtracting

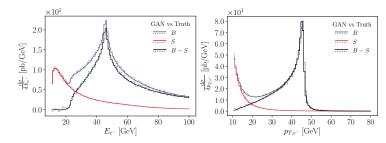
1- 1D toy example

$$P_B(x) = \frac{1}{x} + 0.1$$
 $P_S(x) = \frac{1}{x} \Rightarrow P_{B-S} = 0.1$

- statistical fluctuations reduced (sic!)

2- event-based background subtraction [weird notation, sorry]

 $pp \rightarrow e^+e^-$ (B) $pp \rightarrow \gamma \rightarrow e^+e^-$ (S) $\Rightarrow pp \rightarrow Z \rightarrow e^+e^-$ (B-S)



How to GAN

Tilman Plehn

How to GAN Subtracted events

How to beat statistics by subtracting

1- 1D toy example

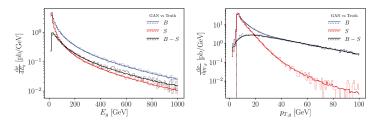
$$P_B(x) = \frac{1}{x} + 0.1$$
 $P_S(x) = \frac{1}{x} \Rightarrow P_{B-S} = 0.1$

- statistical fluctuations reduced (sic!)
- 2- event-based background subtraction [weird notation, sorry]

 $pp \rightarrow e^+e^-$ (B) $pp \rightarrow \gamma \rightarrow e^+e^-$ (S) $\Rightarrow pp \rightarrow Z \rightarrow e^+e^-$ (B-S)

3- collinear subtraction [assumed non-local]

 $pp \rightarrow Zg$ (B: matrix element, S: collinear approximation)



How to GAN Tilman Plehn Basics Events Subtraction Unfolding

3- How to GAN away detector effects

Bottom line from SFitter etc

- total rates lacking information STXS model-dependent unfolded distributions extremely convenient [tī results]
- benefits

access to hard matrix element/first-principles QCD matrix element method

- challenges

non-invertible detector simulation model dependence

General: invert Markov processes [Bellagente, Butter, Kasiczka, TP, Winterhalder]

- detector simulation typical Markov process
- inversion possible, in principle [entangled convolutions]
- GAN task

partons $\overset{\text{DELPHES}}{\longrightarrow}$ detector $\overset{\text{GAN}}{\longrightarrow}$ partons

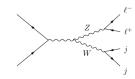
 \Rightarrow full phase space unfolded

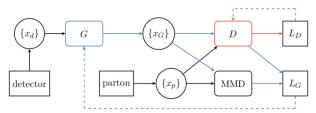
Basics Events Subtractio

Standard GAN

Reconstructing the parton level

- $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$
- broad *jj* mass peak narrow $\ell\ell$ mass peak modified 2 \rightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]



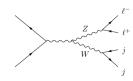


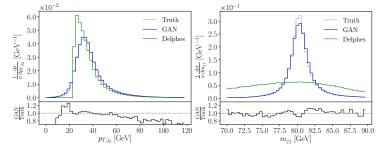
Basics Events Subtractic Unfolding

Standard GAN

Reconstructing the parton level

- $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$
- broad *jj* mass peak narrow $\ell\ell$ mass peak modified 2 \rightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]
- full inversion fine





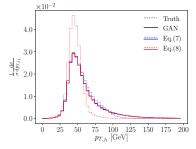
Basics Events Subtractio

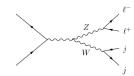
Standard GAN

Reconstructing the parton level

- $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$
- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 \rightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]
- full inversion fine
- problem: kinematics cuts in test data [88%, 38% events]

$$p_{T,j_1} = 30 \dots 100 \text{ GeV}$$
 (7)
 $p_{T,j_1} = 30 \dots 60 \text{ GeV}$ and $p_{T,j_2} = 30 \dots 50 \text{ GeV}$ (8)



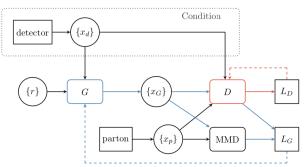


How to GAN Tilman Plehn Basics

Adding more random sampling to network

Fully conditional GAN

 map random numbers to parton level hadron level as condition [matched event pairs]



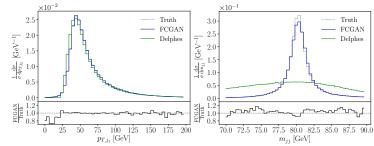
Basics Events Subtractic Unfolding

Inverting

Fully conditional GAN

Adding more random sampling to network

- map random numbers to parton level hadron level as condition [matched event pairs]
- full inversion fine [again]



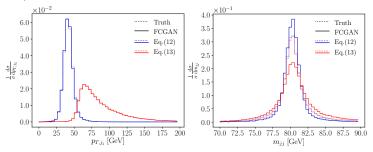
Basics Events Subtractio Unfolding

Fully conditional GAN

Adding more random sampling to network

- map random numbers to parton level hadron level as condition [matched event pairs]
- full inversion fine [again]
- tougher cuts challenging m_{jj} [14%, 39% events, no interpolation, MMD not conditional]

$$p_{T,j_1} = 30 \dots 50 \text{ GeV}$$
 $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$ (12)
 $p_{T,j_1} > 60 \text{ GeV}$ (13)



Basics Events Subtraction Unfolding

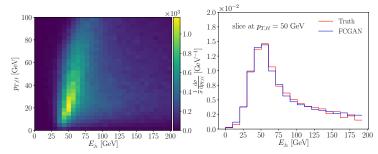
Fully conditional GAN

Adding more random sampling to network

- map random numbers to parton level hadron level as condition [matched event pairs]
- full inversion fine [again]
- tougher cuts challenging m_{jj} [14%, 39% events, no interpolation, MMD not conditional]

$$p_{T,j_1} = 30 \dots 50 \text{ GeV} \quad p_{T,j_2} = 30 \dots 40 \text{ GeV} \quad p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$$
(12)
 $p_{T,j_1} > 60 \text{ GeV}$ (13)

- pretty pictures in 2D



How to GAN Tilman Plehn Basics

Events

Subtraction

Unfolding

Inverting

BSM injection

Different training (MC) and actual data... [not in v1, thank you to Ben Nachman]

... or model dependence of unfolding

... or localization in latent space

- train: SM events test: 10% events with W' in *s*-channel \Rightarrow any guesses?

Basics Events Subtracti

Inverting

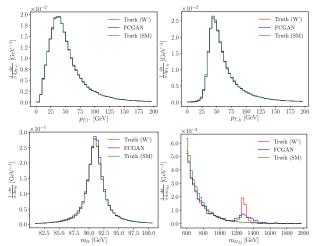
BSM injection

Different training (MC) and actual data... [not in v1, thank you to Ben Nachman]

... or model dependence of unfolding

... or localization in latent space

- train: SM events test: 10% events with W' in *s*-channel \Rightarrow any guesses?



Basics Events Subtractio Unfolding

4- Unfolding as inverting

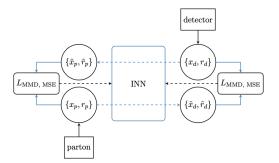
Invertible networks? [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder (soon)]

- network as bijective transformation normalizing flow Jacobian tractable — normalizing flow evaluation in both directions — INN [Ardizzone, Kruse, Rother, Köthe]
- building block: coupling layer

$$x_d \sim g(x_p)$$
 with $\frac{\partial g(x_p)}{\partial x_p} = \begin{pmatrix} \text{diag } e^{s_2(x_{p,2})} & \text{finite} \\ 0 & \text{diag } e^{s_1(x_{d,1})} \end{pmatrix}$

- padding by yet more random numbers

$$\begin{pmatrix} x_{\rho} \\ r_{\rho} \end{pmatrix} \xleftarrow{\mathsf{PYTHIA}, \mathsf{DELPHES}: g \to} \begin{pmatrix} x_{d} \\ r_{d} \end{pmatrix}$$



How to GAN Tilman Plehn Basics

Events Subtractio Unfolding

4- Unfolding as inverting

Invertible networks? [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder (soon)]

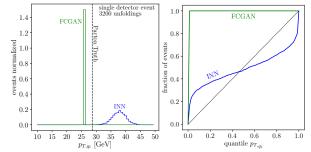
- network as bijective transformation normalizing flow Jacobian tractable — normalizing flow evaluation in both directions — INN [Ardizzone, Kruse, Rother, Köthe]
- building block: coupling layer

$$x_d \sim g(x_p)$$
 with $\frac{\partial g(x_p)}{\partial x_p} = \begin{pmatrix} \text{diag } e^{s_2(x_{p,2})} & \text{finite} \\ 0 & \text{diag } e^{s_1(x_{d,1})} \end{pmatrix}$

padding by yet more random numbers

$$\begin{pmatrix} x_{p} \\ r_{p} \end{pmatrix} \xleftarrow{\mathsf{PYTHIA},\mathsf{DELPHES}:g \to} \begin{pmatrix} x_{d} \\ r_{d} \end{pmatrix}$$

 \Rightarrow proper sampling

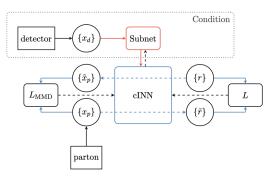


Basics Events Subtractio Unfolding

Conditional INN

Even more random sampling: conditional network

- same procedure as for GAN
- parton-level events from random numbers

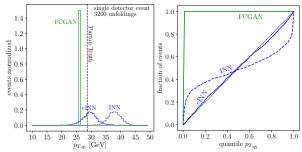


Basics Events Subtractio Unfolding

Conditional INN

Even more random sampling: conditional network

- same procedure as for GAN
- parton-level events from random numbers
- calibration for statistical unfolding



How to GAN Tilman Plehn Basics

- Events Subtraction Unfolding
- Inverting

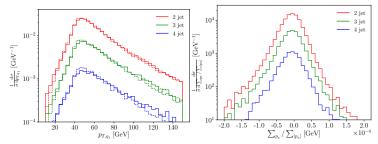
Conditional INN

Even more random sampling: conditional network

- same procedure as for GAN
- parton-level events from random numbers
- calibration for statistical unfolding

Unfolding extra jets

- detector-level process $pp \rightarrow ZW$ +jets [variable number of objects]
- parton-level hard process chosen 2 \rightarrow 2 [whatever you want]
- ME vs PS jets decided by network [including momentum conservation]



\Rightarrow proper statistical inversion!

How to GAN Tilman Plehn Basics Events Subtraction

Inverting

Outlook

Machine learning a great tool box

LHC physics really is big data jet classification was a starting point

generative networks exciting for theory advantage 1: NN interpolation advantage 2: latent space structures advantage 3: training on MC and/or data advantage 4: properly invertible

Any ideas for fun applications?

How to GAN Tilman Plehn Basics Events Subtraction

Unfolding

nverting

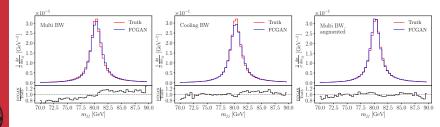
Dynamic MMD

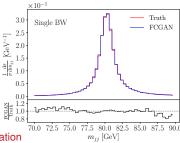
Technical side-remark: dynamic MMD

- minimal input functional form of correlation m_{ij} kernel shape (irrelevant) and resolution
- Adaptive resolution?

Technical side-remark: dynamic MMD implementation

- multiple fixed-width kernels
- multiple kernels for conditional input
- cooling kernel [from SD of generator m_{ij}]
- ⇒ Technical implementation still open...





How to GAN Tilman Plehn Basics Events

Subtraction

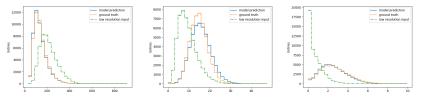
Unfolding

Inverting

Superresolution GANs (preview)

Getting inspired [Blecher, Butter, Keilbach, TP + Irvine]

- take high-resolution calorimeter images down-sample to 1/8th 1D resolution GAN inversion
- works because the GAN learn structure [showers are QCD]
- start from low-resolution calorimeter images GAN high-resolution images
- energy of constituents no.1,10,30



 \Rightarrow GANs are kind of magic

