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GAN basics

MC crucial for LHC physics

— goal: data-to-data with fundamental physics input only
— MC challenges

higher-order precision in bulk
coverage of tails
inversion/unfolding to access fundamental QCD

— neural network benefits

best available interpolation

structured latent space

lightning speed, once trained

inversion solved

training on MC and/or data, anything goes

— GANs the coolest kid on the block

generator trying to produce best events
discriminator trying to catch generator
— competing towards (Nash) equilibrium




GAN algorithm

GANning LHC events

Lp

— training: true events {x7} following pr(x) 2
output: generated events {r} — {xg} following pg(x)
— discriminator constructing D(x) [p(x) = 1, 0 true/generator]
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GANSs at LHC

Phase space networks

— MC integration [Bendavit (2017)]
— NNVegas (kimek (2018)]

Existing GAN studies

Jet Images  (de Oliveira (2017), Carazza (2019)]

Particle shower in Calorimeters  [paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018)]

Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

Unfolding [patta (2018), Bellagente (2019)]
Templates for QCD factorization (in 2019)]
EFT models [emwin (2018)]

Event subtraction [sutter (2019)]

MC generators

— neural importance sampling  [Bothmann (2020)]
— i-flow in SHERPA  [Gao (2020))



1— How to GAN LHC Events

Idea: replace ME for hard process (sutter, TP, Winterhalder]

— medium-complex final state ff — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]
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Idea: replace ME for hard process (sutter, TP, Winterhalder]

— medium-complex final state ff — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]
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1— How to GAN LHC Events

Idea: replace ME for hard process (sutter, TP, Winterhalder]

— medium-complex final state ff — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]
— direct observables with tails [statistical error indicated]
— constructed observables similar

1M true events x10"
— improved resolution (1M training events]

4.0

3.0

Dy

2.0

1.0

i




1— How to GAN LHC Events

Idea: replace ME for hard process (sutter, TP, Winterhalder]

— medium-complex final state ff — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
direct observables with tails [statistical error indicated]
constructed observables similar

improved resolution [10M generated events]

10M generated events x 102
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1— How to GAN LHC Events

Idea: replace ME for hard process (sutter, TP, Winterhalder] w
. ) _ . w
— medium-complex final state {t — 6 jets ;
t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
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Intermediate resonances

Narrow phase space structures

— VEGAS: adaptive sampling
— MC: phase space mapping [Bw — fiat, multi-channel]
— generally 1D features

phase space boundaries
kinematic cuts
invariant masses [top, W]
— batch-wise comparison of distributions, MMD loss with kernel k

MMD? = (k(x, X)), s + (K Y))y yrpy = 2(KOGY) o pr
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Event quality

Study of MMD loss [coming again, later]

— input: function of 4-momenta, rough resolution

not:  value of intermediate mass
not: value of width [dynamic feature]

— minor impact of kernel function and width
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Event quality

Study of MMD loss [coming again, later]

— input: function of 4-momenta, rough resolution

not:  value of intermediate mass
not: value of width [dynamic feature]

— minor impact of kernel function and width

Challenges

— momentum conservation to per-cent
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Event quality

Study of MMD 10SS  [coming again, later]

— input: function of 4-momenta, rough resolution

not:  value of intermediate mass
not: value of width [dynamic feature]

— minor impact of kernel function and width

Challenges

— momentum conservation to per-cent
— 2D correlations
— Case convincing?
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2— How to GAN event subtraction

Idea: subtract event samples without bins  (suteer, TP, winterhaider]

— statistical uncertainty
b5 = Angng nghis = /B2 + A2y = \/mNe + iENs > max(B, S)
— applications in LHC physics
soft-collinar subtraction, multi-jet merging

on-shell subtraction
background/signal subtraction

— GAN setup
1. differential, steep class label

2. sample normalization
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Subtracted events

How to beat statistics by subtracting

1— 1D toy example
1 1
Pg(x) = PR Ps(x) = il Pg_s=0.1

— statistical fluctuations reduced (sic!)
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Subtracted events

How to beat statistics by subtracting

1— 1D toy example

1 1
PB(X): ; +0.1 Ps(X): ; = PB,s:O.‘]
— statistical fluctuations reduced (sic!)
2— event-based background subtraction  weird notation, sorry]
pp—ee” B pp—oy—ee” (S
— Z-pole remaining
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Subtracted events

How to beat statistics by subtracting
1— 1D toy example

1 1
PB(X) = ; + 0.1 PS(X) = ; = Pg_s=0.1

— statistical fluctuations reduced (sic!)
2— event-based background subtraction weird notation, sorry]
pp—ete” B) pp—y—ete (S
— Z-pole remaining
3— collinear subtraction

[assumed non-local]

pp — Zg (B: matrix element, S: collinear approximation)
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— Proper new idea, any applications?




3— How to GAN away detector effects

Open problem of publishing kinematic information [e.g. giobal SMEFT analyses]

— total rates without necessary information
STXS model-dependent
unfolded distributions extremely convenient i resutts]

— challenges in unfolding

non-invertible detector simulation
model dependence
erX|b|I|ty/reI|ab|I|ty [training on some event set]

— benefits from unfolding actual data

access to hard matrix element/first-principles QCD
matrix element method

General: how to invert Markov processes  [Bellagente, Butter, Kasiczka, TP, Winterhalder]

— detector simulation typical Markov process
— inversion possible, in principle  (entangled convolutions]

— GAN task

DELPHES GAN
partons — — ~ detector == partons

= Full unfolded phase space



Standard GAN

Reconstructing the parton level

= pp — ZW — (£0) (jf)

— broad jj mass peak
narrow ¢¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MMD]

detector

parton {ap} [ MMD } L




Standard GAN -

) z
Reconstructing the parton level o
- pp — ZW — (££) (jj) w !
— broad jj mass peak j
narrow ¢¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries
— GAN same as event generation  fwith MMD]
— full inversion fine
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Standard GAN -
. Z o+
Reconstructing the parton level
- pp — ZW — (£0) (jj) w !
— broad jj mass peak J
narrow ¢¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries
— GAN same as event generation  with MmD]
— full inversion fine
— serious problem: kinematics cuts in test data [ss%, 38% events]
pr,j, =30 ... 100 GeV (7)
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Fully conditional GAN

Conditional GAN

— map random numbers to parton level
hadron level as condition  [matched event pairs]

Condition
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Fully conditional GAN

Conditional GAN
— map random numbers to parton level
hadron level as condition  [matched event pairs]
— full inversion also fine
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Fully conditional GAN

Conditional GAN
— map random numbers to parton level
hadron level as condition  [matched event pairs]
— full inversion also fine
— tougher cuts challenging mj;  14%, 39% events, no interpolation, MMD not conditional]

prj, =30..50 GeV pr;,=30..40 GeV p,, =20..50 GeV (12)

pr.j; > 60 GeV (13)
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Fully conditional GAN

Conditional GAN

— map random numbers to parton level
hadron level as condition  [matched event pairs]
— full inversion also fine
- tougher cuts challenging IMjj [14%, 39% events, no interpolation, MMD not conditional]

pr,j, =30...50 GeV pr;,=30...40 GeV p;,— =20...50 GeV (12)

pr.j; > 60 GeV (13)
— pretty pictures in 2D
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Dynamic MMD

Technical side-remark: dynamic MMD

— minimal input

functional form of correlation my;
kernel shape (irrelevant) and resolution

— Adaptive resolution?
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— multiple fixed-width kernels
— multiple kernels for conditional input
- Cooling kernel [from SD of generator m;;]
= Technical implementation still open...
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BSM Injection

Different training (MC) and actual data... [notin v1, thank you to Ben Nachman]

...or model dependence of unfolding
...or localization in latent space

— train: SM events
test: 10% events with W’ in s-channel =- Any guesses?
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4— Superresolution GANs (preview)

Getting inspired  [Blecher, Butter, Keilbach, TP + Irvine]

— take high-resolution calorimeter images
down-sample to 1/8th 1D resolution
GAN inversion

— works because the GAN learn structure [showers are QCD]

— start from low-resolution calorimeter images
GAN high-resolution images

— energy of constituents no.1,10,30
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= GANs are kind of magic




Outlook

Machine learning a great tool box

LHC physics really is big data
imagine classification was a starting point
jet classification largely established

generative networks good for theory
advantage 1: NN interpolation
advantage 2: latent space structures
advantage 3: training on MC and/or data

Any ideas?
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