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Why not LHC?
ATLAS & CMS Yirali 5 TMVA
— 3000 know-it-alls per expe”ment ® One framework for most common MVA-techniques, available in RO
— many just interested in detector GO0 L forall MVA classification and
» Have common data pre-processing capabilities

— top-down organized analysis groupS . i and testai ciassifers on same data sample and evaluate consistenty
= Shockingly little innovation »was a good idea 10year ago, now imposes some

constraints but nothing which could not be dealt with by ‘running lndependenw

s

Provide common analysis (ROOT scripts) and application framework

L

Provide access with and without ROOT, through macros, C++ executables or p

Expertize

Integrated and distributed with ROOT

— LHC data format: ROOT

some info is still located at its original sourceforge location

— multi-variate analyses tool: TMVA RS e 4
list of classifier options ...
— Tensorflow from TMVA/ROOT Mailng  glucyonder -

= Limited sense of ML-urgency

Best Decisions,
Delivered Daily

We deliver decisions to

Experiment VS theory Y retailers that boost
‘ revenues, increase margins
and enable rapid responses

— theorists linked to lack of team compatibility \ g

— simulated data as good as actual data

— excellent personal ex-th connections
= Someone has to drive developments...




1— Jet classification: Nothing is ever new

LHC visionaries
— 1991: NN-based quark-gluon tagger (Lsnnblad, Peterson, Régnvaldsson]

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD*, Carsten PETERSON ** and Thorsteinn ROGNVALDSSON ***
Department of Theoretical Physics, University of Lund, Solvegatan 144, S-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e” events with ~85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to siudy the so-called string
effect.

In addition, heavy quarks (b and c) in e*e™ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.




1-— Jet classification:

LHC visionaries

1991: NN-based quark—gluon tagger [Lonnblad, Peterson, Régnvaldsson]
1994: jet algorithm for W, top...

Nothing is ever new

[Seymour]

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD*, Carsten PETERSON ** and Thorsteinn ROGNVALDSSON ***

Department of Theoretical Physics, University of Lund, Solvegatan 144, S-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal

functions using a gradient descen
network. With this method we an
Carlo generated e*e” events v
model used. This approach for i
effect.

In addition, heavy quarks (b
just observing the hadrons. In pa
purity, which is comparable with
how the neural network method
compressing the dimensionality ¢

Searches for new particles using cone and cluster jet algorithms:

a comparative study
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Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
t0 reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
cxamples considered are the semileptonic decays of
a heavy Higgs boson at_\/s=16TeV, and of top
quark-antiquark pairs at \/s= 1.8 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons [S], and a longitudinally-
invariant k,lusering algoriim for badron-adron
collisions was proposed [6). This algorithm has been
compared with the more commornly used cone agorthm
from the viewpoints of a parton-shower Monte Carlo
program [6, 7], and a fixed-order matrix-clement calcu-
lation (8], and advantages of the cluster algorithm were
reported in both cases. This paper is concerned with
a comparison between the algorithms for the task of
reconstructing the hadronic decays of heavy particles,

ich was also studied in a preliminary way in

‘The only as-yet unobserved particles of the minimal
Standard Model are the top quark and Higgs boson. The
scarch for, and study of, these particles are among the
most important goals of current and planned hadron-
oe POl e P




And it is also done

Experiments driving, for once... (Benstalk

— 2014/15: first jet image papers
— 2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work [1902.09914]
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Abstract

Based on the established task of identifying boosted, hadronically decaying top
quarks, we compare a wide range of modern machine learning approaches. Unlike
most established methods they rely on low-level input, for instance calorimeter
output. While their network architeetures are vastly different, their performance
is comparatively similar. In general, we find that these new approaches are ex-
tremely powerful and great, fun.

= Jet classification understood and done
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Experiments driving, for once... (Benstalk

— 2014/15: first jet image papers
— 2017: first (working) ML top tagger
ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work  [1902.09914]
= Jet classification understood and done
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And it is also done

Experiments driving, for once... (gen'stak]

2014/15: first jet image papers

2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work [1902.08914]
= Jet classification understood and done

What is new and cool and fun?




What about error bars?

Jet-by-jet uncertainties [Walter: Bayesians have more fun]

— (60+77)% top,
— probability for test event p( c* ‘ C) [classifier output C, network w]

p(e’1C) = [ d plc” 0, C) p(w]C) = [ dw p(e’ w, C) q(e)
— loss: minimize KL-divergence + Bayes

KLIq().p(10)) = [ o q(e) og p‘(m)
4(w)p(C)
P(Cleo)p(e)

~ KLI(w). p(w)] +10gp(©) [ dw q(w) ~ [ d a(w) I0g p(Clw)
N e’

L2-regularization

= /dw g(w) log

normalization of g, irrelevant likelihood, maximized

= L= KLq(w). p(w)] = [ dw g()10g p(Cl)




What about error bars?

Jet-by-jet uncertainties [watter: Bayesians have more fun]

— (60£77)% top,
- probability for test event p( c* ‘ C) [classifier output C, network w]

p(e’1C) = [ o plc”l,C) p(w]C) = [ dw p(e . C) q(w)
— loss: minimize KL-divergence + Bayes

KL[g(w), p(w|C)] = / o q(w) log p?o(JTé)
_9(w)p(C)
P(Clw)p(w)

— KLG(). )] + 109 p(C) [ dw a(w) ~ [ do q(es)log p(Cl)
————

L2-regularization

= / dw q(w) log

normalization of g, irrelevant likelihood, maximized

= L=KLg(w), p(w)] ~ [ dw g(e)log p(Cle)

Ensemble of networks

= sample w to extract (tpred; Tpred) BNN
check prior independence A 'v' A
check frequentist many-networks & : 0 Horea
) o"". Opred




Statistics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa 105
— similar performance as deterministic network o
training time somewhat increased 10 —— Blola
— LloLa
o 103
g
w
~ 102
10!

10°
0.0 0.2 0.4 0.6 0.8
&t




Statistics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian version of DeepTop and LoLa

— similar performance as deterministic network
training time somewhat increased

— correlation between piyreq and opred  ftoy network, 10kjets]
- increasing training statistics [parabola from closed interval output]

predictive mean~[0.45, 0.55]
0.16
>
§ow|” |
015
K \
v
2 [
B 0.14
Z I
o
a
0.13 }:
0.12 1
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o o o
2 2 2
gos B gois gois
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Statistics and systematics

Regression: measure pr ;  [Kasieczka, Luchmann, Otterpohl, TP]

— effect of noisy and size-limited data separated
Opred- limited training sample
Ostoch: Statistical behavior of training data  (caussian likelihood]

(c—w?
20 0,2

StOCh

]
+ - log o2oep + const

log p(Clw) — log p(C|p, Tstoch) = 3

2 _ 2 2 )
Ttot = Ppred + Ogoch  [all Gaussian]

Ensemble of networks
-0.1

0.2 0.8
BNN

H ( 1), )
o Oistoch,
&
/\q(m) (O@Q
L

_ 1
/ 07 (= 2 (Prda,
'%M~ ) aneta.
\ o 02 o Oed = v Z «pp) = (P’
/ ( (PP )
Ostoch, wy

Output




Statistics and systematics

Regression: measure pr ;  [Kasieczka, Luchmann, Otterpohl, TP]

— effect of noisy and size-limited data separated
Opred- limited training sample
Ostoch: Statistical behavior of training data  (caussian likelihood]

IRCET 2
log p(C|w) — log p(Cllh Ustoch) = T + 5 log Ostoch + CONst

stoch
2 _ 2 2 )
Ttot = Ppred + Ogoch  [all Gaussian]

- sample size dependence [statistics saturating]

pr,j = 600...620 GeV

MSE
Otot.
Ostoch

w
o
—_—

ot bt bt et

Opred

104 10° 10°
Training size




Statistics and systematics

Regression: measure pr ;  [Kasieczka, Luchmann, Otterpohl, TP]

— effect of noisy and size-limited data separated
Opred- limited training sample
Ostoch: Statistical behavior of training data  (caussian likelihood]

(C—pfP 1 2
log p(Clw) — log p(C|p, Tstoch) = 252 + > 109 0gicn + CONSE
T stoch
2 _ 2 2 .
Gtot = Gpred + Ustoch [all Gaussian]
- sample size dependence [statistics saturating]
— dependence on ISR and top-ness 801 — VMSE
R ey
= Reasonable error estimate 70 with ISR
3
%60 -7 without ISR
5 50
s
b=
E
540 without ISR
(25% most top like)
30
20

500 550 600 650 700 750 800
pr.; [GeV]




Jet calibration

Calibration means error propagation
— training on smeared data??
better: training with smeared labels [p7 measured elsewhere, with error]
— Gaussian noise over pr ; label [eg. 4%]

— distribution of extracted pr ;
correlation extending to error bars
slice with expected non-Gaussian tail from QCD radiation

pr,;=600...620 GeV

900
0.010 [ truth
850 -=--- predicted
800 0.008
750
= § 0.006
2 700 S0
5 £
5 650 5
= 0.004
600 i
1
- o 1
550 max +/- 0 (68%) 0.002 !
— truth ||
500 ---- predicted i .
45012 0.000 - .
500 600 700 800 900 400 600 800 1000 1200

pr.; [GeV] pr.: [GeV]




Jet calibration

Calibration means error propagation
— training on smeared data??
better: training with smeared labels [p7 measured elsewhere, with error]
— Gaussian noise over pr ; label [eg. 4%]

distribution of extracted pr ;
correlation extending to error bars
slice with expected non-Gaussian tail from QCD radiation

trace label smearing to network output

making sense of oypise pr = 600...620 GeV

120
= Works!
100

80

o[GeV]

60
40

20 .
K *  smearing input
ol i BNN o

0 20 40 60 80 100 120
Osmear [GeV]




2— Learning from art

GANGogh  (Bonailia, Jones Danyluk (2017)]
— old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?
— train on 80,000 pictures [organized by style and genre]
— map noise vector to ias ]
— generate flowers I e
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2— Learning from art

GANGoOgh  [Bonafilia, Jones Danyluk (2017)]
— old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?
— train on 80,000 pictures [organized by style and genre]
— map noise vector to images

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

— trained on 15,000 portraits
— sold for $432.500
= all about marketing and sales

;{ . B K [y0)] E, Loy - 2500



2— Learning from art

GANGogh  (Bonafilia, Jones Danyluk (2017)]

— old news: NNs turning pictures into art of a certain epoch

but can they create new pieces of art?
— train on 80,000 pictures [organized by style and genre]
— map noise vector to images

GANGogh for jet images  [de Oliveira, Paganini, Nachman]
— start with calorimeter images or jet images
sparsity the technical challenge
1- reproduce valid jet images from training data
2- organize them by QCD vs W-decay jets
— high-level observables to check
— not sold for cash
= all about understanding

e (6)

[Transformed] Azimuthal Angl

l.bl

-10

05 00 05 10
[Transformed] Pseudorapidity ()



GANs at LHC

Phase space networks

— MC integration  (Bendavit (2017)]

- NNVegas [Klimek (2018), not really generative network]

Existing GAN studies (anjas taki

Jet Images  (de Oliveira (2017), Carazza (2019)]

Detector simulations  (Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

Unfolding [patta (2018), Bellagente (2019)]
Templates for QCD factorization [Lin 2019)]
EFT models [ewin (2018)]

Event subtraction [sutter (2019)]

Event generators

— neural importance sampling  (Bothmann (2020)]
— i-flow in SHERPA  [Gao (2020)



GANs at LHC

Phase space networks

— MC integration  (gendavit 2017)]

- NNVegas [Klimek (2018), not really generative network]

Existing GAN studies (anjas tak]

— Jet Images (de Oliveira (2017), Carazza (2019)]

Detector simulations  (paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

Unfolding [patta (2018), Bellagente (2019)]
Templates for QCD factorization (Lin 2019)]
EFT models [emin (2018)]

— Event subtraction (sutter (2019)]

Event generators

— neural importance sampling  [Bothmann (2020)]
— i-flow in SHERPA [Gao (2020)]

What is new and cool and fun?



Super-resolution (preview)?

Getting inspired  (Blecher, Butter, Keilbach, TP + Irvine]

— take high-resolution calorimeter images
down-sample to 1/8th 1D resolution
GAN inversion

— start from low-resolution calorimeter images
GAN high-resolution images

— works because GANs learn structure (showers are QCD]
— energy of constituents no.1,10,30

20000
12000 — model prediction s000 - — model presiction — model prediction
-~ grownd ruth ) -~ ground truh sl | -~ grownd ruth
—+ low resolution input. 000 — low resolution input. ! —~ low resolution input
10000 i
6000 ool
i
o000 s000 wsoo | |
H £ g !
£ o0 £ 4000 g0y
£ H
2000 mooq L
000
2000 5000
2000 1000 2500
3 o o
o 250 %o oo ED o © ) E) ) 3 p 3 3 4 B

= GANs are (kind of) magic




What about MC-inversion?

Unfolding as inversion [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Kruse, Rother, Kéthe]

— building block: coupling layer

. 29(%) _ (diag e2.2) finite
~ th P —
Xd Q(xp) wi 3Xp 0 diag es1 (Xd,1)
— padding by yet more random numbers
Xp PYTHIA,DELPHES:g— Xg
(rp) <— unfolding:g (rd>

Lymp, Mse




What about MC-inversion?

Unfolding as inversion [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder]

Jacobian tractable — normalizing flow

evaluation in both directions — INN
building block: coupling layer

Xq ~ g(Xp)

o

= proper sampling

i S2(Xp,2)
with  290%) _ (d'age P

Xp 0

padding by yet more random numbers

PYTHIA,DELPHES:g—

)

events normalized
=]
w

[CIS

o

Xd
<— unfolding:g Iy

single detector event
3200 unfoldings

1.0

network as bijective transformation — normalizing flow

[Ardizzone, Kruse, Rother, Kéthe]

finite
diag e°1 (xq,1)

FCGAN
0.8
z
£o06
£
©
g
204
£
&=
. 0.2
"'FH‘HL"\ 0.0
10 15 20 25 30 35 40 45 50 00 02 04 06 08 10

pra [GeV]
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Conditional INN

Even more random sampling: conditional network

— same as Anja’s FCGAN  [omnifold]
— parton-level events from random numbers




Conditional INN

Even more random sampling: conditional network

— same as Anja’s FCGAN  [omnifold]
— parton-level events from random numbers
— calibration for statistical unfolding

single detector event
14 3200 unfoldings 10
: FCGAN
e
g 0.8
= P
g £ 0.6
<
=]
204
2
&
0.2
0.2
0.0 = 0.0
10 15 20 25 30 35 40 45 50 0.0 02 04 06 08 10

Prg [GeV] quantile pr,




Conditional INN

Even more random sampling: conditional network

— same as Anja’'s FCGAN  (omnifold]
— parton-level events from random numbers
— calibration for statistical unfolding

Unfolding extra jets

— detector-level process pp — ZW+jets  (variable number of objects]
— parton-level hard process chosen 2 — 2 whatever you want]
— ME vs PS jets decided by network [including momentum conservation]

— 2jet
— 3jet

10t

102 — djet

107°

Lo e 10!
20 40 60 S0 100 120 140 20 -15 -1.0 05 0.0 05 10 15 20
pry [GeV] 2] Xy [GeV] x107!

= proper statistical inversion!



Outlook

Machine learning a great tool box

LHC physics really is big data
jet classification was a starting point
generative networks exciting for theory

physics questions: errors, precision, control, theory insight

What is new and cool and fun?
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