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Data from ATLAS & CMS

– HL-LHC = 2000 × Tevatron

– jet production σpp→jj × L ≈ 108fb× 1000/fb ≈ 1011 events
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Data from ATLAS & CMS

– HL-LHC = 2000 × Tevatron

– jet production σpp→jj × L ≈ 108fb× 1000/fb ≈ 1011 events

⇒ It’s proper big data

Physics with jets

– re-summed perturbative QFT prediction from QCD

– jets as decay products
67% W → jj 70% Z → jj 60% H → jj 67% t → jjj 60% τ → j ...

– new physics in ‘dark showers’

⇒ It’s interesting
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– HL-LHC = 2000 × Tevatron

– jet production σpp→jj × L ≈ 108fb× 1000/fb ≈ 1011 events

⇒ It’s proper big data

Physics with jets

– re-summed perturbative QFT prediction from QCD

– jets as decay products
67% W → jj 70% Z → jj 60% H → jj 67% t → jjj 60% τ → j ...

– new physics in ‘dark showers’

⇒ It’s interesting

Monte Carlo data

– generators: Sherpa, Herwig, Pythia, Madgraph

– based on QFT-Lagrangian

– data-to-data comparison: MC vs LHC

⇒ It’s properly understood
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Why not LHC?

ATLAS & CMS

– 3000 know-it-alls per experiment

– many just interested in detector

– top-down organized analysis groups

⇒ Shockingly little innovation

Expertize

– LHC data format: ROOT

– multi-variate analyses tool: TMVA

– Tensorflow from TMVA/ROOT

⇒ Limited sense of ML-urgency

Experiment vs theory

– theorists linked to lack of team compatibility

– simulated data as good as actual data

– excellent personal ex-th connections

⇒ Someone has to drive developments...
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LHC visionaries
– 1991: NN-based quark-gluon tagger [Lönnblad, Peterson, Rögnvaldsson]
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1– Jet classification: Nothing is ever new

LHC visionaries
– 1991: NN-based quark-gluon tagger [Lönnblad, Peterson, Rögnvaldsson]

– 1994: jet algorithm for W , top... [Seymour]
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And it is also done

Experiments driving, for once... [Ben’s talk]

– 2014/15: first jet image papers

– 2017: first (working) ML top tagger

– ML4Jets 2017: What architecture works best?

– ML4Jets 2018: Lots of architectures work [1902.09914]

⇒ Jet classification understood and done
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And it is also done

Experiments driving, for once... [Ben’s talk]

– 2014/15: first jet image papers

– 2017: first (working) ML top tagger

– ML4Jets 2017: What architecture works best?

– ML4Jets 2018: Lots of architectures work [1902.09914]

⇒ Jet classification understood and done

What is new and cool and fun?
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What about error bars?

Jet-by-jet uncertainties [Walter: Bayesians have more fun]

– (60±??)% top,

– probability for test event p(c∗|C) [classifier output C, network ω]

p(c∗|C) =

∫
dω p(c∗|ω,C) p(ω|C) =

∫
dω p(c∗|ω,C) q(ω)

– loss: minimize KL-divergence + Bayes

KL[q(ω), p(ω|C)] =

∫
dω q(ω) log

q(ω)

p(ω|C)

=

∫
dω q(ω) log

q(ω)p(C)

p(C|ω)p(ω)

= KL[q(ω), p(ω)]︸ ︷︷ ︸
L2-regularization

+ log p(C)

∫
dω q(ω)︸ ︷︷ ︸

normalization of q, irrelevant

−
∫

dω q(ω) log p(C|ω)︸ ︷︷ ︸
likelihood, maximized

⇒ L = KL[q(ω), p(ω)]−
∫

dω q(ω) log p(C|ω)
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What about error bars?

Jet-by-jet uncertainties [Walter: Bayesians have more fun]

– (60±??)% top,

– probability for test event p(c∗|C) [classifier output C, network ω]

p(c∗|C) =

∫
dω p(c∗|ω,C) p(ω|C) =

∫
dω p(c∗|ω,C) q(ω)

– loss: minimize KL-divergence + Bayes

KL[q(ω), p(ω|C)] =

∫
dω q(ω) log

q(ω)

p(ω|C)

=

∫
dω q(ω) log

q(ω)p(C)

p(C|ω)p(ω)

= KL[q(ω), p(ω)]︸ ︷︷ ︸
L2-regularization

+ log p(C)

∫
dω q(ω)︸ ︷︷ ︸

normalization of q, irrelevant

−
∫

dω q(ω) log p(C|ω)︸ ︷︷ ︸
likelihood, maximized

⇒ L = KL[q(ω), p(ω)]−
∫

dω q(ω) log p(C|ω)

⇒ sample ω to extract (µpred, σpred)

check prior independence

check frequentist many-networks
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Statistics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased
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Statistics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

– Bayesian version of DeepTop and LoLa

– similar performance as deterministic network
training time somewhat increased

– correlation between µpred and σpred [toy network, 10k jets]

– increasing training statistics [parabola from closed interval output]
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Statistics and systematics

Regression: measure pT ,t [Kasieczka, Luchmann, Otterpohl, TP]

– effect of noisy and size-limited data separated

σpred: limited training sample

σstoch: statistical behavior of training data [Gaussian likelihood]

log p(C|ω)→ log p(C|µ, σstoch) =
(C − µ)2

2σ2
stoch

+
1
2

logσ2
stoch + const

σ2
tot = σ2

pred + σ2
stoch [all Gaussian]

⟨pT⟩ =
1
N

N

∑
i

⟨pT⟩ωi

σ2
pred =

1
N

N

∑
i

(⟨pT⟩ − ⟨pT⟩ωi
)2

BNN

sa
mp

lin
g

σ2
stoch =

1
N

N

∑
i

σ2
stoch, ωi

Output

output

( ⟨pT⟩ω1

σstoch, ω1
)
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Statistics and systematics

Regression: measure pT ,t [Kasieczka, Luchmann, Otterpohl, TP]

– effect of noisy and size-limited data separated

σpred: limited training sample

σstoch: statistical behavior of training data [Gaussian likelihood]

log p(C|ω)→ log p(C|µ, σstoch) =
(C − µ)2

2σ2
stoch

+
1
2

logσ2
stoch + const

σ2
tot = σ2

pred + σ2
stoch [all Gaussian]

– sample size dependence [statistics saturating]
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Statistics and systematics

Regression: measure pT ,t [Kasieczka, Luchmann, Otterpohl, TP]

– effect of noisy and size-limited data separated

σpred: limited training sample

σstoch: statistical behavior of training data [Gaussian likelihood]

log p(C|ω)→ log p(C|µ, σstoch) =
(C − µ)2

2σ2
stoch

+
1
2

logσ2
stoch + const

σ2
tot = σ2

pred + σ2
stoch [all Gaussian]

– sample size dependence [statistics saturating]

– dependence on ISR and top-ness

⇒ Reasonable error estimate
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Jet calibration

Calibration means error propagation

– training on smeared data??
better: training with smeared labels [pT measured elsewhere, with error]

– Gaussian noise over pT ,t label [e.g. 4%]

– distribution of extracted pT ,t
correlation extending to error bars
slice with expected non-Gaussian tail from QCD radiation
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Jet calibration

Calibration means error propagation

– training on smeared data??
better: training with smeared labels [pT measured elsewhere, with error]

– Gaussian noise over pT ,t label [e.g. 4%]

– distribution of extracted pT ,t
correlation extending to error bars
slice with expected non-Gaussian tail from QCD radiation

– trace label smearing to network output
making sense of σnoise

⇒ Works!
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2– Learning from art

GANGogh [Bonafilia, Jones Danyluk (2017)]

– old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?

– train on 80,000 pictures [organized by style and genre]

– map noise vector to images

– generate flowers
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GANGogh [Bonafilia, Jones Danyluk (2017)]

– old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?

– train on 80,000 pictures [organized by style and genre]

– map noise vector to images

– generate portraits
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2– Learning from art

GANGogh [Bonafilia, Jones Danyluk (2017)]

– old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?

– train on 80,000 pictures [organized by style and genre]

– map noise vector to images

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

– trained on 15,000 portraits

– sold for $432.500

⇒ all about marketing and sales
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2– Learning from art

GANGogh [Bonafilia, Jones Danyluk (2017)]

– old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?

– train on 80,000 pictures [organized by style and genre]

– map noise vector to images

GANGogh for jet images [de Oliveira, Paganini, Nachman]

– start with calorimeter images or jet images
sparsity the technical challenge

1- reproduce valid jet images from training data

2- organize them by QCD vs W -decay jets

– high-level observables to check

– not sold for cash

⇒ all about understanding
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GANs at LHC

Phase space networks

– MC integration [Bendavit (2017)]

– NNVegas [Klimek (2018), not really generative network]

Existing GAN studies [Anja’s talk]

– Jet Images [de Oliveira (2017), Carazza (2019)]

– Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

– Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

– Unfolding [Datta (2018), Bellagente (2019)]

– Templates for QCD factorization [Lin (2019)]

– EFT models [Erbin (2018)]

– Event subtraction [Butter (2019)]

Event generators

– neural importance sampling [Bothmann (2020)]

– i-flow in SHERPA [Gao (2020)]
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GANs at LHC

Phase space networks

– MC integration [Bendavit (2017)]

– NNVegas [Klimek (2018), not really generative network]

Existing GAN studies [Anja’s talk]

– Jet Images [de Oliveira (2017), Carazza (2019)]

– Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

– Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

– Unfolding [Datta (2018), Bellagente (2019)]

– Templates for QCD factorization [Lin (2019)]

– EFT models [Erbin (2018)]

– Event subtraction [Butter (2019)]

Event generators

– neural importance sampling [Bothmann (2020)]

– i-flow in SHERPA [Gao (2020)]

What is new and cool and fun?
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Super-resolution (preview)?

Getting inspired [Blecher, Butter, Keilbach, TP + Irvine]

– take high-resolution calorimeter images
down-sample to 1/8th 1D resolution
GAN inversion

– start from low-resolution calorimeter images
GAN high-resolution images

– works because GANs learn structure [showers are QCD]

– energy of constituents no.1,10,30

⇒ GANs are (kind of) magic
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What about MC-inversion?

Unfolding as inversion [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Kruse, Rother, Köthe]

– building block: coupling layer

xd ∼ g(xp) with
∂g(xp)

∂xp
=

(
diag es2(xp,2) finite

0 diag es1(xd,1)

)
– padding by yet more random numbers(

xp
rp

) PYTHIA,DELPHES:g→
←−−−−−−−−−−−−−−−→

← unfolding:ḡ

(
xd
rd

)
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What about MC-inversion?

Unfolding as inversion [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Kruse, Rother, Köthe]

– building block: coupling layer

xd ∼ g(xp) with
∂g(xp)

∂xp
=

(
diag es2(xp,2) finite

0 diag es1(xd,1)

)
– padding by yet more random numbers(

xp
rp

) PYTHIA,DELPHES:g→
←−−−−−−−−−−−−−−−→

← unfolding:ḡ

(
xd
rd

)
⇒ proper sampling
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Conditional INN

Even more random sampling: conditional network

– same as Anja’s FCGAN [Omnifold]

– parton-level events from random numbers
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Conditional INN

Even more random sampling: conditional network

– same as Anja’s FCGAN [Omnifold]

– parton-level events from random numbers

– calibration for statistical unfolding
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Conditional INN

Even more random sampling: conditional network

– same as Anja’s FCGAN [Omnifold]

– parton-level events from random numbers

– calibration for statistical unfolding

Unfolding extra jets

– detector-level process pp → ZW+jets [variable number of objects]

– parton-level hard process chosen 2→ 2 [whatever you want]

– ME vs PS jets decided by network [including momentum conservation]
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⇒ proper statistical inversion!
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Outlook

Machine learning a great tool box

LHC physics really is big data

jet classification was a starting point

generative networks exciting for theory

physics questions: errors, precision, control, theory insight

What is new and cool and fun?
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