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Machine Learning for LHC

Fundamental understanding of LHC data

— LHC and dark matter data-driven, but never fundamental without theory
— just work with data and SM?

1. simulation from first principles  (pythia, Sherpal
2. interpretation frameworks [SMeFT, susy]
3. best use of the data [using 1, 2, our brains, and ML]

— 1991 visionaries: NN-based quark-gluon tagger
USING NEURAL NETWORKS TO IDENTIFY JETS
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A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e~ events with ~85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to study the so-called string
effect.

In addition, heavy quarks (b and ¢) in e*e ™ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.

= Not that new...




Simple classification done

The Machine Learning Landscape of Top Taggers
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Abstract.

Based on the established task of identifying boosted, hadronically decaying top

uarks, we compare a wide range of modern machine learning approaches. U
most established methods they rely on low-level input, for instance calorimeter
output. While their network architectures are vastly different, their performance
is comparatively similar. In general, we find that these new approaches are ex-
tremely powerful and great, fun.
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Beyond classification

Phase space networks

— MC integration [Bendavit (2017)]
— NNVegas (kiimek (2018), Carrazza (2020)]

Event generation

— parton densities  [NNPDF (since 2002)]

amplitudes  (Bishara (2019), Badger (2020)]

neural importance sampling  [Bothmann (2020)]
i-flow in SHERPA  [Gao (2020)]

Generative networks

Jet Images  (de Oliveira (2017), Carazza (2019)]

Detectors [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

Unfolding [patta (2018), Bellagente (2019)]
Templates for QCD factorization Lin (2019)]

Models  [Erin (2018), Otten (2018)]

Event subtraction [sutter (2019)]




Learning from art

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]
— old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?
— train on 80,000 pictures [organized by style and genre]
— map noise vector to images
— generate flowers
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Learning from art

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]
— old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?
— train on 80,000 pictures [organized by style and genre]
— map noise vector to images

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

— trained on 15,000 portraits
— sold for $ 432.500
= all about marketing and sales
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GAN basics

MC crucial for LHC physics

— goal: data-to-data with fundamental physics input only
— MC challenges

higher-order precision in bulk
coverage of tails
inversion/unfolding to access fundamental QCD

— neural network benefits

best available interpolation

structured latent space

lightning speed, once trained

inversion solved

training on MC and/or data, anything goes

— GANs the cool kid

generator trying to produce best events
discriminator trying to catch generator
— competing towards (Nash) equilibrium




GAN algorithm

Example: LHC events

— training: true events {xr} following pr(x)
output: generated events {r} — {xg} following pg(x)
— discriminator constructing D(X) [D(x) = 1, 0 true/generator]

Lp = { — log D(X)>X~PT + ( —log(1 — D(X))>x~PG — —2log0.5

generator giving events (D needed]
Lg=(—log D(X)>x~PG
loss function evaluated over batch

noise reduction/stabilization: gradient penalty (atternatively waAN]
= statistically independent copy of training events

p

Discriminator <«----- B




1— How to GAN LHC events

Idea: replace ME for hard process (sutter, TP, Winterhalder]

— medium-complex final state ff — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]

x107" x107!
30 — True 3.0 —— True
25 — GaN | 25 — GAN
2.0 2.0
_5%2 15] =——— _g_.é? 15|
—is e
1.0 1.0
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1— How to GAN LHC events

Idea: replace ME for hard process (sutter, TP, Winterhalder]

medium-complex final state {f — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
direct observables with tails [statistical error indicated]
constructed observables similar
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1— How to GAN LHC events

Idea: replace ME for hard process (sutter, TP, Winterhalder]

— medium-complex final state ff — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]
— direct observables with tails [statistical error indicated]
— constructed observables similar

1M true events x10"
— improved resolution (1M training events]
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1— How to GAN LHC events

Idea: replace ME for hard process (sutter, TP, Winterhalder]

— medium-complex final state ff — 6 jets

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
direct observables with tails [statistical error indicated]
constructed observables similar

improved resolution [10M generated events]

10M generated events x 102
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1— How to GAN LHC events

Idea: replace ME for hard process (sutter, TP, Winterhalder] w
. ) _ . w
— medium-complex final state {t — 6 jets ;
t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
— flat observables flat [phase space coverage okay]
— direct observables with tails [statistical error indicated]
— constructed observables similar . N
) i 50M generated events %10 18
- |mproved resolution  (50M generated events] S : :
— concept promising 1.6
1.4
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Intermediate resonances

GAN version of adaptive sampling

— generally 1D features

phase space boundaries

kinematic cuts
invariant masses [op, wj

— batch-wise comparison of distributions, MMD loss with kernel k
MMD? = <k(X’X/)>x,Xf~PT + <k(y’y’)>y,y/~PG _ 2<k(X’Y)>x~Pr,y~PG

Lg — Lg+ Ag

MMD? |

{r} Am} H Generator

{ Discriminator J< ______ N




Intermediate resonances

GAN version of adaptive sampling

— generally 1D features

phase space boundaries
kinematic cuts
invariant masses  [iop, w]

— batch-wise comparison of distributions, MMD loss with kernel k
2
MMD® = (k(x, X)), s py + (KW YD) 1 py = 20K YD)y
Lg — Lg + Ag MMD? |

x10~" x10~!

—— True
—— Breit-Wigner

— Gauss
—— No MMD

160 165 170 175 180 185 160 165 170 175 180 185
my [GeV] my [GeV]

= minor impact of kernel function and width




2— How to GAN event subtraction

Idea: subtract event samples without bins  (suteer, TP, winterhaider]

— statistical uncertainty
b5 = Angng nghis = /B2 + A2y = \/mNe + iENs > max(B, S)
— applications in LHC physics
soft-collinar subtraction, multi-jet merging

on-shell subtraction
background/signal subtraction

— GAN setup
1. differential, steep class label

2. sample normalization
(=)
Dp Lp,

3
CGCB_SUCS/ l el

"""""_")=
o

g
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Subtracted events

How to beat statistics by subtracting

1— 1D toy example
1 1
Pg(x) = PR Ps(x) = il Pg_s=0.1

— statistical fluctuations reduced (sic!)
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Subtracted events

How to beat statistics by subtracting
1— 1D toy example
1 1
PB(X): ; + 0.1 Ps(X): ; = Pg_s=0.1
— statistical fluctuations reduced (sic!)
2— event-based background subtraction  weird notation, sorry]
opp—ee” B pp—oy—oee” (S => p—oZ-—ee (BS)

x10} x10!
GAN vs Truth 8.0 I GAN vs Truth
2.0 70
— = 60
Z 15 <
g (% 5.0
= 10 =
Sy gs
< 05 S 20
1.0
0.0 0.0
20 40 60 80 100 100 20 30 40 50 60 70 80

E, [GeV] Pre- [GeV]



Subtracted events

How to beat statistics by subtracting
1— 1D toy example
1 1
Pg(x) = PR Ps(x) = il Pg_s=0.1
— statistical fluctuations reduced (sic!)
2— event-based background subtraction  weird notation, sorry]
pp—ee” (B pp—oy—ee” (S
3— collinear subtraction
pp — 29

= p—>Z—ee (BS)

[assumed non-local]

(B: matrix element, S: collinear approximation)

10

[pb/GeV]
[pb/GeV]
S

do
dE,

ol =
=5

0 200 400 600 800 1000 0 0 40 6 S 100
B, [GeV]

pry [GeV]
= applications in theory and analysis




3— How to GAN away detector effects

Bottom line from SFitter etC [e.g. global SMEFT analyses]

— total rates without necessary information
STXS model-dependent
unfolded distributions extremely convenient (i resuits]

— benefits

access to hard matrix element/first-principles QCD
matrix element method

— challenges

non-invertible detector simulation
model dependence

General: invert Markov processes  [Bellagente, Butter, Kasiczka, TP, Winterhalder]

— detector simulation typical Markov process
— inversion possible, in principle  (entangled convolutions]

— GAN task

DELPHES GAN
partons = — " detector — partons

= full phase space unfolded




Standard GAN

Reconstructing the parton level

= pp — ZW — (£0) (jf)

— broad jj mass peak
narrow ¢¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MMD]

detector

parton {ap} [ MMD } L




Standard GAN -

) z
Reconstructing the parton level o
- pp — ZW — (££) (jj) w !
— broad jj mass peak j
narrow ¢¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries
— GAN same as event generation  fwith MMD]
— full inversion fine
x10~2 x10~!
6.0 Truth 0 Truth
5.0 — GAN - — GAN
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Standard GAN -

. zZ
Reconstructing the parton level o
- pp — ZW — (£0) (jj) w !
— broad jj mass peak J
narrow ¢¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries
— GAN same as event generation  with MmD]
— full inversion fine
— problem: kinematics cuts in test data (ssx, 38% events]
pr,j, =30 ... 100 GeV (7)
pr,j;, = 30...60 GeV and prj, =30... 50 GeV (8)
x10~2
"""" Truth
4.0 — GAN
3.0
::5: 2.0
1.0
0.0

0 25 50 75 100 125 150 175 200
7 [GeV]

=




Fully conditional GAN

Proper sampling

— map random numbers to parton level
hadron level as condition  [matched event pairs]

detector

——
T
J
~
S|
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parton @ MMD i—' Lg




Fully conditional GAN

Proper sampling
— map random numbers to parton level
hadron level as condition  [matched event pairs]

— full inversion fine (again]
x10~2 %10~
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Fully conditional GAN

Proper sampling

— map random numbers to parton level
hadron level as condition  [matched event pairs]

— full inversion fine (again]

- tOUgher cuts Challenging mj/‘ [14%, 39% events, no interpolation, MMD not conditional]
prj = 30 ... 50 GeV PTjp= 30...40 GeV Pre— = 20...50 GeV (12)

prj, > 60 GeV -
102 -
] 40 x10
Wl - Truth .
» e 35
5.0 b .
" Eq.(13) 2.5
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=I5 30
BN
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Fully conditional GAN
Proper sampling

— map random numbers to parton level
hadron level as condition

[matched event pairs]
— full inversion fine

[again]
- tougher cuts challenging mjj [14%, 39% events, no interpolation, MMD not conditional]

prj, =30...50 GeV pr;,=30...40 GeV p;,— =20...50 GeV

(12)
pr.j; > 60 GeV 13)
— pretty pictures in 2D
x10~2
slice at prge =50 GeV EEEZN

pru [GeV]

50 75

100 125 150 175 200 T 0 25 50 75
Ej [GeV]

Ej, [GeV]
= 1.FCGAN unfolding works!

100 125 150 175 200



BSM injection

Different training (MC) and actual data... [notin v1, thank you to Ben Nachman]

...or model dependence of unfolding
...or localization in latent space

— train: SM events
test: 10% events with W’ in s-channel = any guesses?



BSM injection

Different training (MC) and actual data... notin v1, thank you to Ben Nachman]

...or model dependence of unfolding
...or localization in latent space

— train: SM events
test: 10% events with W’ in s-channel = any guesses?
x107% x107%
—— Truth (W) 25 —— Truth (W)
—— FCGAN —— FCGAN
—— Truth (SM)

20

—— Truth (SM)
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00 00
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4— Unfolding as inverting

Invertible networks? [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder (soon)]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Kruse, Rother, Kéthe]

— building block: coupling layer

with  29%0) _ (diag 6%20%p,2) finite >

Xa ~ g(xp) Xp 0 diag &51(xa,1)

— dimensions padded by random numbers

Xp PYTHIA,DELPHES:g— Xg
Ip <— unfolding:g rq

e




4— Unfolding as inverting

Invertible networks? [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder (soon)]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Kruse, Rother, Kéthe]

— building block: coupling layer

i S2(Xp 2) -
Xd ~ g(Xp) with 99(%) — (dlag e2p.2 finite >

Xy 0 diag €™ (*q,1)

— dimensions padded by random numbers

Xp PYTHIA,DELPHES:g— Xg
n <— unfolding:g 2]

= statistically promising

single detector event
3200 unfoldings Lo
14 e
FCGAN
b
12 g 0.8
= g
2 n
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Conditional INN

Further improvement: conditional network

— same procedure as for GAN
— sampling parton level events from random numbers




Conditional INN

Further improvement: conditional network

— same procedure as for GAN
— sampling parton level events from random numbers
— calibration for statistical unfolding

single detector event 1.0
3200 unfoldings .

14 FCGAN

-
X}
®

events normalized
o =
© o
TR
e
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fraction of events
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Conditional INN

Further improvement: conditional network

— same procedure as for GAN

— sampling parton level events from random numbers
— calibration for statistical unfolding

Unfolding extra jets

— detector-level process pp — ZW+jets  |variable number of objects]
— parton-level hard process chosen 2 — 2 whatever you want]
— ME vs PS jets decided by network [including momentum conservation]

— 2jet "
— 3jet 10
102 — djet | —
7
— =
T CR
= O 10
53 H
3 )
#5107 1
ha 3 )2
" w0
10-+ L L 10! - ~
20 40 60 80 100 120 140 20 -15 -10 05 00 05 10 15 20
prg [GeV] 3201 2, (GeV] X107t

= proper inversion, all working!




Outlook

Machine learning a great tool box

LHC physics really is big data
imagine classification was a starting point
jet classification largely established

generative networks exciting for theory
advantage 1: NN interpolation
advantage 2: latent space structures
advantage 3: training on MC and/or data

Any ideas?




Dynamic MMD

Technical side-remark: dynamic MMD

— minimal input

functional form of correlation my;
kernel shape (irrelevant) and resolution

— Adaptive resolution?

x10~!

Single BW

—— Truth
—— FCGAN

B P Rl Pl = n
-
. X . . X 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.(
Technical side-remark: dynamic MMD implementation mj; [GeV]
— multiple fixed-width kernels
— multiple kernels for conditional input
- Cooling kernel [from SD of generator m;;]
= Technical implementation still open...
x10~" x10~" x10~"
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Superresolution GANs (preview)

Getting inspired  [Blecher, Butter, Keilbach, TP + Irvine]

— take high-resolution calorimeter images
down-sample to 1/8th 1D resolution
GAN inversion

— works because the GAN learn structure [showers are QCD]

— start from low-resolution calorimeter images
GAN high-resolution images

— energy of constituents no.1,10,30

20000
— madelprediction 000 — madelprediction —
12000 el predict = e predict

-+ ground truth 1 =~ ground truth
—~ low resolution nput 7000 i —~ low resolution nput

— model prediction
- ground truth
—~ low resolution nput

50
1500
w0

£ 10000

7500 L
o

2500

= GANs are kind of magic
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