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Machine Learning for LHC

Fundamental understanding of LHC data

– LHC and dark matter data-driven, but never fundamental without theory

– just work with data and SM?
1. simulation from first principles [Pythia, Sherpa]

2. interpretation frameworks [SMEFT, SUSY]

3. best use of the data [using 1, 2, our brains, and ML]

– 1991 visionaries: NN-based quark-gluon tagger

⇒ Not that new...
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Simple classification done
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Beyond classification

Phase space networks

– MC integration [Bendavit (2017)]

– NNVegas [Klimek (2018), Carrazza (2020)]

Event generation

– parton densities [NNPDF (since 2002)]

– amplitudes [Bishara (2019), Badger (2020)]

– neural importance sampling [Bothmann (2020)]

– i-flow in SHERPA [Gao (2020)]

Generative networks

– Jet Images [de Oliveira (2017), Carazza (2019)]

– Detectors [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

– Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

– Unfolding [Datta (2018), Bellagente (2019)]

– Templates for QCD factorization [Lin (2019)]

– Models [Erbin (2018), Otten (2018)]

– Event subtraction [Butter (2019)]
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Learning from art

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?

– train on 80,000 pictures [organized by style and genre]

– map noise vector to images

– generate flowers
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Learning from art

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?

– train on 80,000 pictures [organized by style and genre]

– map noise vector to images

– generate portraits
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Learning from art

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?

– train on 80,000 pictures [organized by style and genre]

– map noise vector to images

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

– trained on 15,000 portraits

– sold for $ 432.500

⇒ all about marketing and sales
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GAN basics

MC crucial for LHC physics

– goal: data-to-data with fundamental physics input only

– MC challenges
higher-order precision in bulk
coverage of tails
inversion/unfolding to access fundamental QCD

– neural network benefits
best available interpolation
structured latent space
lightning speed, once trained
inversion solved
training on MC and/or data, anything goes

– GANs the cool kid
generator trying to produce best events
discriminator trying to catch generator
−→ competing towards (Nash) equilibrium
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GAN algorithm

Example: LHC events

– training: true events {xT } following pT (x)
output: generated events {r} → {xG} following pG(x)

– discriminator constructing D(x) [D(x) = 1, 0 true/generator]

LD =
〈
− log D(x)

〉
x∼PT

+
〈
− log(1− D(x))

〉
x∼PG

→ −2 log 0.5

– generator giving events [D needed]

LG =
〈
− log D(x)

〉
x∼PG

– loss function evaluated over batch

– noise reduction/stabilization: gradient penalty [alternatively WGAN]

⇒ statistically independent copy of training events
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1– How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]
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1– How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar
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1– How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar

– improved resolution [1M training events]
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1– How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar

– improved resolution [10M generated events]
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1– How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar

– improved resolution [50M generated events]

– concept promising
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Intermediate resonances

GAN version of adaptive sampling

– generally 1D features
phase space boundaries
kinematic cuts
invariant masses [top, W ]

– batch-wise comparison of distributions, MMD loss with kernel k

MMD2 =
〈
k(x, x′)

〉
x,x′∼PT

+
〈
k(y, y ′)

〉
y,y′∼PG

− 2
〈
k(x, y)

〉
x∼PT ,y∼PG

LG → LG + λG MMD2
,
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Intermediate resonances

GAN version of adaptive sampling

– generally 1D features
phase space boundaries
kinematic cuts
invariant masses [top, W ]

– batch-wise comparison of distributions, MMD loss with kernel k

MMD2 =
〈
k(x, x′)

〉
x,x′∼PT

+
〈
k(y, y ′)

〉
y,y′∼PG

− 2
〈
k(x, y)

〉
x∼PT ,y∼PG

LG → LG + λG MMD2
,
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⇒ minor impact of kernel function and width
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2– How to GAN event subtraction

Idea: subtract event samples without bins [Butter, TP, Winterhalder]

– statistical uncertainty
∆B−S = ∆nB NB−nS NS

=
√

∆2
nB NB

+ ∆2
nS NS

=
√

n2
BNB + n2

SNS > max(B,S)

– applications in LHC physics
soft-collinar subtraction, multi-jet merging
on-shell subtraction
background/signal subtraction

– GAN setup
1. differential, steep class label
2. sample normalization
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Subtracted events

How to beat statistics by subtracting

1– 1D toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– statistical fluctuations reduced (sic!)
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Subtracted events

How to beat statistics by subtracting

1– 1D toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– statistical fluctuations reduced (sic!)

2– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)
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Subtracted events

How to beat statistics by subtracting

1– 1D toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– statistical fluctuations reduced (sic!)

2– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)

3– collinear subtraction [assumed non-local]

pp → Zg (B: matrix element, S: collinear approximation)
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⇒ applications in theory and analysis
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3– How to GAN away detector effects

Bottom line from SFitter etc [e.g. global SMEFT analyses]

– total rates without necessary information
STXS model-dependent
unfolded distributions extremely convenient [t t̄ results]

– benefits
access to hard matrix element/first-principles QCD
matrix element method

– challenges
non-invertible detector simulation
model dependence

General: invert Markov processes [Bellagente, Butter, Kasiczka, TP, Winterhalder]

– detector simulation typical Markov process

– inversion possible, in principle [entangled convolutions]

– GAN task

partons DELPHES−→ detector GAN−→ partons

⇒ full phase space unfolded
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Standard GAN

Reconstructing the parton level

– pp → ZW → (``) (jj)

– broad jj mass peak
narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]
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Standard GAN

Reconstructing the parton level

– pp → ZW → (``) (jj)

– broad jj mass peak
narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

– full inversion fine
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Standard GAN

Reconstructing the parton level

– pp → ZW → (``) (jj)

– broad jj mass peak
narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

– full inversion fine

– problem: kinematics cuts in test data [88%, 38% events]

pT ,j1 = 30 ... 100 GeV (7)

pT ,j1 = 30 ... 60 GeV and pT ,j2 = 30 ... 50 GeV (8)
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Fully conditional GAN

Proper sampling

– map random numbers to parton level
hadron level as condition [matched event pairs]
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Fully conditional GAN

Proper sampling

– map random numbers to parton level
hadron level as condition [matched event pairs]

– full inversion fine [again]

0.0

0.5

1.0

1.5

2.0

2.5
1 �

d
�

d
p T

,j
1

[G
eV
�

1
]

⇥10�2

Truth

FCGAN

Delphes

0 25 50 75 100 125 150 175 200
pT,j1

[GeV]

0.8
1.0
1.2

F
C

G
A

N
T
ru

th

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 �
d
�

d
m

jj
[G

eV
�

1
]

⇥10�1

Truth

FCGAN

Delphes

70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0
mjj [GeV]

0.8
1.0
1.2

F
C

G
A

N
T
ru

th



How to GAN

Tilman Plehn

Basics

Events

Subtraction

Unfolding

Inverting

Fully conditional GAN

Proper sampling

– map random numbers to parton level
hadron level as condition [matched event pairs]

– full inversion fine [again]

– tougher cuts challenging mjj [14%, 39% events, no interpolation, MMD not conditional]

pT ,j1 = 30 ... 50 GeV pT ,j2 = 30 ... 40 GeV pT ,`− = 20 ... 50 GeV (12)

pT ,j1 > 60 GeV (13)
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Fully conditional GAN

Proper sampling

– map random numbers to parton level
hadron level as condition [matched event pairs]

– full inversion fine [again]

– tougher cuts challenging mjj [14%, 39% events, no interpolation, MMD not conditional]

pT ,j1 = 30 ... 50 GeV pT ,j2 = 30 ... 40 GeV pT ,`− = 20 ... 50 GeV (12)

pT ,j1 > 60 GeV (13)

– pretty pictures in 2D
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⇒ 1.FCGAN unfolding works!
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BSM injection

Different training (MC) and actual data... [not in v1, thank you to Ben Nachman]

...or model dependence of unfolding

...or localization in latent space

– train: SM events
test: 10% events with W ′ in s-channel⇒ any guesses?
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BSM injection

Different training (MC) and actual data... [not in v1, thank you to Ben Nachman]

...or model dependence of unfolding

...or localization in latent space

– train: SM events
test: 10% events with W ′ in s-channel⇒ any guesses?
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4– Unfolding as inverting

Invertible networks? [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder (soon)]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Kruse, Rother, Köthe]

– building block: coupling layer

xd ∼ g(xp) with
∂g(xp)

∂xp
=

(
diag es2(xp,2) finite

0 diag es1(xd,1)

)
– dimensions padded by random numbers(

xp
rp

) PYTHIA,DELPHES:g→
←−−−−−−−−−−−−−−−→

← unfolding:ḡ

(
xd
rd

)
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4– Unfolding as inverting

Invertible networks? [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder (soon)]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Kruse, Rother, Köthe]

– building block: coupling layer

xd ∼ g(xp) with
∂g(xp)

∂xp
=

(
diag es2(xp,2) finite

0 diag es1(xd,1)

)
– dimensions padded by random numbers(

xp
rp

) PYTHIA,DELPHES:g→
←−−−−−−−−−−−−−−−→

← unfolding:ḡ

(
xd
rd

)
⇒ statistically promising
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Conditional INN

Further improvement: conditional network

– same procedure as for GAN

– sampling parton level events from random numbers
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Conditional INN

Further improvement: conditional network

– same procedure as for GAN

– sampling parton level events from random numbers

– calibration for statistical unfolding
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Conditional INN

Further improvement: conditional network

– same procedure as for GAN

– sampling parton level events from random numbers

– calibration for statistical unfolding

Unfolding extra jets

– detector-level process pp → ZW+jets [variable number of objects]

– parton-level hard process chosen 2→ 2 [whatever you want]

– ME vs PS jets decided by network [including momentum conservation]
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⇒ proper inversion, all working!
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Outlook

Machine learning a great tool box

LHC physics really is big data

imagine classification was a starting point

jet classification largely established

generative networks exciting for theory

advantage 1: NN interpolation

advantage 2: latent space structures

advantage 3: training on MC and/or data

Any ideas?
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Dynamic MMD

Technical side-remark: dynamic MMD

– minimal input
functional form of correlation mij
kernel shape (irrelevant) and resolution

– Adaptive resolution?
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Technical side-remark: dynamic MMD implementation

– multiple fixed-width kernels

– multiple kernels for conditional input

– cooling kernel [from SD of generator mij ]

⇒ Technical implementation still open...
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Superresolution GANs (preview)

Getting inspired [Blecher, Butter, Keilbach, TP + Irvine]

– take high-resolution calorimeter images
down-sample to 1/8th 1D resolution
GAN inversion

– works because the GAN learn structure [showers are QCD]

– start from low-resolution calorimeter images
GAN high-resolution images

– energy of constituents no.1,10,30

⇒ GANs are kind of magic
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