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Big data for LHC

LHC: fundamental understanding of lots of data

— what do we really do?
1. theory framework [smEFT, susy]
2. precision predictions first-principles QFT]
3. compare simulated and measured events
USING NEURAL NETWORKS TO IDENTIFY JETS
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A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e” events with ~85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to study the so-called string
effect.

In addition, heavy quarks (b and c) in e*e ™ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.

= What can we learn from Google and Facebook?




Generative networks

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]

— neural network: learned function f(X) [regression, classification]

— can networks create new pieces of art?
map random numbers to image pixels?

— train on 80,000 pictures [organized by style and genre]
— generate flowers
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Generative networks

GANGOgh [Bonafilia, Jones, Danyluk (2017)]

— neural network: learned function f(X) [regression, classification]

— can networks create new pieces of art?
map random numbers to image pixels?

— train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales
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GAN algorithm

Generating events

— training:  true events {x7}
output: generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]

Lp=(—log D(X)>XT +( —log(1 — D(X))>XG
— generator constructing r — xg by minimizing (0 needed
Lg = ( —log D(x))xG
— equilbrium D =05 = Lp=Lg=1
= statistically independent copy of training events
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GAN algorithm

Generating events

— training:  true events {x7}
output: generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]

Lp=(—log D(x)}XT +( —log(1 — D(X))>XG
— generator constructing r — xg by minimizing (0 needed
Lg = ( —log D(x))xG

= statistically independent copy of training events

Generative network studies

— Jet Images  (de Oiveira (2017), Carrazza-Dreyer (2019)]

— Detector simulations  [paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

Events [otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020)]

Unfolding [patta (2018), Omnifold (1911), Bellagente (2019), Bellagente (2020)]
Templates for QCD factorization (Lin 2019)]

EFT models [emin (2018)]

Event subtraction (suteer (2019)]

Sherpa  [Bothmann (2020), Gao (2020)]

Basics  [GANpiification (2020), DCTR (2020)]



1- Jet generation

GANGOgh for jet images [de Oliveira, Paganini, Nachman]

— start with calorimeter or jet images [nvs ¢]
sparsity the technical challenge (o top tagging comparison]

1- reproduce valid jet images from training data
2- organize them by QCD vs W-decay jets —
— high-level observables as check ; . i
= Generating jets [carrazza & Dreyer] g " 1 10
; ) : I: " !
GAN questions o ML
— use cases? ST
— control? ) i i

| HEPjet2D (bkg)
006

uncertainty? [Bayesian networks?]
— gain?
achievable precision?
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2— GANplification

Gain beyond training data  [sutter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known
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compare GAN vs sampling vs fit 10 quantiles - truth
0.161 GAN trained on 100 data points — fit
H Ja— |
— x2-sum of quantiles o e
0.12
_o0.10
S
0.08
0.06 1
0.04 |
0.02 \ L
00 =76 4 2 o0 2 4 6 &
x
10-1 10 quantiles.
100 data points
w
%)
=
I GAN
2 saxple
S }
3
d 200 ..
fit
300

101 102 10° 10 10° 10
number GANed




2— GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known
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2— GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

true function known

0.1

compare GAN vs sampling vs fit 016 e s on 100 data poinis —
— x2-sum of quantiles 014 o
— fit like 500-1000 sampled points 012

GAN like 500 sampled points [amplifictation factor 5] %010

requiring 10,000 GANned events 008

— 5-dimensional Gaussian shell
sparsely populated ! h

0.02 \ \

amplification vs quantiles \
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— fit-like additional information

— interpolation and resolution the key nroF
= GANs enhance training data
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3— How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {t — 6 jets

t/t and W* on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
direct observables with tails [statistical error indicated]
constructed observables similar
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3— How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]
. ' - , w
— medium-complex final state {t — 6 jets

t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]
— direct observables with tails [statistical error indicated]
— constructed observables similar

1M true events x 10"
— improved resolution (1M training events]
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Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {t — 6 jets

t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]

direct observables with tails [statistical error indicated]
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improved resolution [10M generated events]




3— How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder] w
. ) - . w
— medium-complex final state {t — 6 jets ;
t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
— flat observables flat [phase space coverage okay]
— direct observables with tails [statistical error indicated]
— constructed observables similar N
. . ; 50M generted events X 10 18
- |mproved resolution  [s5om generated events] 3 : ’
— Proof of concept 1.6
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Chemistry of loss functions

GAN version of adaptive sampling

— generally 1D features

phase space boundaries
kinematic cuts
invariant masses [op, W]

— batch-wise comparison of distributions, MMD loss with kernel k
MMD? = (k(x, XVt + KO YD)y e = 200G ))

Lg — Lg + A\g MMD? |
i e ) (i)
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Chemistry of loss functions

GAN version of adaptive sampling

— generally 1D features

phase space boundaries
kinematic cuts
invariant masses [op, W]

— batch-wise comparison of distributions, MMD loss with kernel k
MMD? = (k(x, X')>XT,X,T + (k(y, y/)>yG,Y<’; — 2(k(x, y))

Lg — Lg + A\g MMD? |
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Unfolding

Gaining beyond GANpliflication  [sutter, TR, Winterhalder]
— phase space sampling: weighted events (ps weight x| A|2]
events: unweighted events [justevents]
— probabilistic unweighting weak spot of standard MC

— learn phase space from weighted events
generate unweighted events  [@imost)

— give us a few weeks...

—— Weighted
----- Unweighted
— WwGAN

b

0 20 10 60 80 100 120 140
pr(GeV]




4— How to GAN event subtraction

Idea: subtract samples without binning  [Butter, TR, Winterhalder]

Ap_s = /A% + A% > max(AB, AS)

— applications in LHC physics

soft-collinar subtraction, multi-jet merging
on-shell subtraction
background/signal subtraction

— GAN setup

1. differential, steep class label
2. sample normalization

— statistical uncertainty

@
Dp Lpy
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Subtracted events

How to beat statistics by subtracting

1- 1D toy example
1 1
Pg(x) = % To1 Ps(x) = x = Pg_s=0.1

— statistical fluctuations reduced (sic!)

10° 0.13
GAN vs Truth — (B-S)eax
L . 0.12 == (B-S)runtlo
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Subtracted events

How to beat statistics by subtracting
1- 1D toy example
1 1
PB(X): ;-’»0.1 Ps(X): ; = Pg_s=0.1

— statistical fluctuations reduced (sic!)
2— event-based background subtraction  fweird notation, sorry]

pp—ee” B pp—oy—eeT (S => p—o>Z—ee (BS)

x10

GAN vs Truth
2.0

[ph/GeV]

do
b,
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Subtracted events

How to beat statistics by subtracting

1- 1D toy example
PB(X): %-’»0.1 Ps(X): % = Pg,s:O.‘l
— statistical fluctuations reduced (sic!)
2— event-based background subtraction  fweird notation, sorry]
pp—ee” B pp—oy—eeT (S => p—o>Z—ee (BS)
3— collinear subtraction [assumed non-local]
pp — Zg (B: matrix element, S: collinear approximation)

0 20 40 60 80 100
pry [GeV]

= Applications in theory and analysis




5—- How to GAN away detector effects

Goal: invert Markov processes  [Beliagente, Butter, Kasiczka, TP, Winterhalder]

— detector simulation typical Markov process
— inversion possible, in principle (entangled convolutions]

— GAN task

DELPHES GAN
partons — — ~ detector = partons

=- Full phase space unfolded

Reference process pp — ZW — (££) (jj)

— broad jj mass peak
narrow £¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MmD]
= Perfect if training and test the same



Fully conditional GAN

Getting random sampling logic right

— map random numbers to parton level
hadron level as condition  [matched event pairs]

detector
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Fully conditional GAN

Getting random sampling logic right
— map random numbers to parton level
hadron level as condition  [matched event pairs]

— full inversion fine
x10~2 x10~!
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Fully conditional GAN

Getting random sampling logic right
— map random numbers to parton level
hadron level as condition  [matched event pairs]

— full inversion fine
— detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

prj, =30...50 GeV pr;,=30..40 GeV p;, =20..50 GeV (12)

pr.j; > 60 GeV (13)
102 !
x10 40 x10
6.0
35
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10 05
0.0 0.0
0 25 50 75 100 125 150 175 200 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0

prjy [GeV] my; [GeV)




Fully conditional GAN

Getting random sampling logic right

map random numbers to parton level
hadron level as condition  [matched event pairs]

full inversion fine
detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]
prj, =30...50 GeV pr;=30...40 GeV p;,— =20...50 GeV (12)

o
pr.j, > 60 GeV (13)
— pretty pictures in 2D
20 x10~2
181  slice at pry =50 GeV Eglcﬂ;\
15
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= 1.FCGAN unfolding at work




BSM injection

Different training (MC) and actual data... [notin v1, thank you to Ben Nachman]

...or model dependence of unfolding
...or localization in latent space

— train: SM events
test: 10% events with W’ in s-channel = any guesses?



BSM injection

Different training (MC) and actual data... [notin v1, thank you to Ben Nachman]

...or model dependence of unfolding
...or localization in latent space

— train: SM events
test: 10% events with W’ in s-channel = any guesses?
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6— Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Kothe]

— building block: coupling layer
— conditional: parton-level events from {r}




6— Unfolding as inverting

Invertible networks

[Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kdthe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow

evaluation in both directions — INN

— building block: coupling layer
— conditional: parton-level events from {r}

Again pp — ZW — (££) (jj)

— performance on distributions like FCGAN

[Ardizzone, Rother, Kéthe]

— parton-level probability distribution for single detector event

=- Proper statistical unfolding

single detector event
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6— Unfolding as inverting

Invertible networks

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow

evaluation in both directions — INN

— building block: coupling layer
— conditional: parton-level events from {r}

Unfolding extra jets

[Ardizzone, Rother, Kéthe]

[Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kdthe]

— detector-level process pp — ZW+jets  (variable number of objects]

— parton-level hard process chosen 2 — 2 whatever you want]

— ME vs PS jets decided by network

1072

[including momentum conservation]

— 2jet
— 3jet
1 jet
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6— Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kothe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Kéthe]

— building block: coupling layer
— conditional: parton-level events from {r}

Unfolding extra jets

— detector-level process pp — ZW+jets  (variable number of objects]
— parton-level hard process chosen 2 — 2 (whatever you want]

— ME vs PS jets decided by network fincluding momentum conservation]
= How systematically can we invert?

forward

scattering QCD shower

o | {1 o8] O

Y

=
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inverse




Outlook

Machine learning for LHC theory

— goal: data-to-data with fundamental physics input
— MC challenges

higher-order precision in bulk
coverage of tails
unfolding to access fundamental QCD

— neural network benefits

best available interpolation
training on MC and/or data, anything goes
lightning speed, once trained

— GANSs the cool kid

generator trying to produce best events
discriminator trying to catch generator,

— INNs the theory hope

flow networks to control spaces
invertible network the new tool

Any ideas?
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