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Learning from art

GANGoOgh  [Bonafilia, Jones Danyluk (2017)]
— old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?
— train on 80,000 pictures [organized by style and genre]
— map noise vector to images
— generate flowers
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Learning from art

GANGoOgh  [Bonafilia, Jones Danyluk (2017)]
— old news: NNs turning pictures into art of a certain epoch
but can they create new pieces of art?
— train on 80,000 pictures [organized by style and genre]
— map noise vector to images

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

— trained on 15,000 portraits
— sold for $ 432.500
= all about marketing and sales
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GAN algorithm

GANnNing events

— training true events {x7} following pr(x)
output  generated events {r} — {xg} following pg(x)
— discriminator constructing D(x) [p(x) = 1, 0 truth/generated]

Lp = ( —log D(X)>x~PT + ( —log(1 — D(X))>x~PG — —2log 0.5
— generator producing good events (D needed]
Lg = ( —log D(X)>x~PG

— stabilization: gradient penalty or WassersteinGAN
= statistically independent copy of training events

Discriminator <«----- 0




GANSs at LHC

Phase space networks

— MC integration [Bendavit (2017)]

- NNVegas [Klimek (2018), not really generative network]

Existing GAN studies

Jet Images  (de Oliveira (2017), Carazza (2019)]

Detector simulations  (Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

Unfolding [patta (2018), Bellagente (2019)]
Templates for QCD factorization (in 2019)]
EFT models [emwin (2018)]

Event subtraction [sutter (2019)]

Event generators

— generative invertable networks without generation or inversion
— neural importance sampling  [Bothmann (2020)]
— i-flow in SHERPA  [Gao (2020))




1— Jet generation

GANGogh for jet images [de Oliveira, Paganini, Nachman] o
— start with calorimeter images or jet images (nvs ¢] ”
sparsity the technical challenge  (cf top tagging comparison] ; 00 . .
1- reproduce valid jet images from training data E -
2- organize them by QCD vs W-decay jets — ’ e
— high-level observables m, 51 reproduced ‘ o %5
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= GANSs can generate jets
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1— Jet generation

GANGogh for jet images  [de Oliveira, Paganini, Nachman]
— start with calorimeter images or jet images (nvs ¢]
sparsity the technical challenge  (cf top tagging comparison]
1- reproduce valid jet images from training data
2- organize them by QCD vs W-decay jets
— high-level observables m, 51 reproduced

= GANSs can generate jets

Open questions to all GANs

— use cases?
— uncertainty?  [Bayesian networks?]
— achievable precision?
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2— How to GAN LHC Events

Idea: replace ME for hard process  [otten, Hashemi, Di Sipio...]

— medium-complex final state {t — 6 jets [Butter, TR, Winterhalder]

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]
— constructed observables with tails  (statistical error indicated]
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Idea: replace ME for hard process  [otten, Hashemi, Di Sipio...]

— medium-complex final state {t — 6 jets [Butter, TR, Winterhalder]

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
constructed observables with tails [statistical error indicated]
2D correlations
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2— How to GAN LHC Events

Idea: replace ME for hard process  [otten, Hashemi, Di Sipio...] w
. . — . w
— medium-complex final state tt — 6 jets [Butter, TR, Winterhalder] ;
t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
— flat observables flat [phase space coverage okay]
— constructed observables with tails [statistical error indicated]
— 2D correlations M true events x 10"

improved resolution  [1M training events]
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2— How to GAN LHC Events

Idea: replace ME for hard process  [otten, Hashemi, Di Sipio...]

— medium-complex final state {t — 6 jets [Butter, TR, Winterhalder]

t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
constructed observables with tails [statistical error indicated]
2D correlations

10M generated events x 102

improved resolution [10M generated events]
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2— How to GAN LHC Events

Idea: replace ME for hard process  [otten, Hashemi, Di Sipio...] w
. . _ . w
— medium-complex final state tt — 6 jets [Butter, TR, Winterhalder] ;
t/t and W= on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
— flat observables flat [phase space coverage okay]
— constructed observables with tails [statistical error indicated]
— 2D correlations : 3
) ) 50M generated events %10 18
- |mproved resolution [50M generated events] Y : :
— GAN generation working 1.6
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Intermediate resonances

Narrow phase space structures

— MC: phase space mapping [Bw — fiat, multi-channel]
— generally 1D features

cuts and phase space boundaries
invariant masses  [iop, w]

— batch-wise comparison of distributions, MMD loss with kernel k

MMD? = (k(x, X)), s o + k(YY) 1y = 2K YD) pr i

Lg — Lg + Ag MMD? |
{r}, {m} H Generator @ @
----------- -

[----- A




Intermediate resonances

Narrow phase space structures

— MC: phase space mapping [Bw — fat, multi-channel]
— generally 1D features

cuts and phase space boundaries
invariant masses fiop, wi

— batch-wise comparison of distributions, MMD loss with kernel k
MMD? = <k(x’xl)>x,x'~Pr + (k(y, /))MNPG _ 2<k(x’y)>X~PM~PG
Lg — Lg + Ag MMD? |
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= Phase space resolution no show-stopper




3— How to GAN event subtraction

Idea: subtract event samples without bins  (sutter, TP, winterhaider]
— statistical uncertainty
Ap_s = BngNg—nghg = /A5y, + Ais"’s = /mNg + MNs > max(B, S)

— many applications

soft-collinar subtraction, multi-jet merging
on-shell subtraction
background subtraction  [4-body decays]
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3— How to GAN event subtraction

Idea: subtract event samples without bins  (suteer, TP, winterhaider]
— statistical uncertainty
b5 = Angng nghis = /B2 + A2y = \/mNe + iENs > max(B, S)
— many applications

soft-collinar subtraction, multi-jet merging
on-shell subtraction
background subtraction  4-body decays]

— event-based background subtraction [weird notation, sorry]
pp—ee” (B pp—oy—ee” (S
— Z-pole events generated

x10" x10!
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4— Detector simulation

Fast detector simulation [Paganini, Musella, Erdmann, Ghosh, Buhmann,...]

— weakest link in simulation chain
fast simulation established problem (AtLfast, Delphes,...]

— training on GEANT4
— comparison of GAN, WGAN, new BIB-AE
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4— Detector simulation

Fast detector simulation [Paganini, Musella, Erdmann, Ghosh, Buhmann,...]
— weakest link in simulation chain
fast simulation established problem  (atLast, Delphes,..]
— training on GEANT4
— comparison of GAN, WGAN, new BIB-AE

Recent ILD study using particle flow  [guhmann]

— 950k photon showers E = 10 ... 100 GeV . O,I’iS‘bIe fg(l,l energi'o[fmsl 12
-1
— challenge: 10
get entire spectrum
maintain correlations

full spectrum

— MMD post-processing, transfer learning
= Not easy, but working 5102
]

— BIB-AE PP

103
102 10! 10° 10!
visible cell energy [MeV]




5— How to GAN away detector effects

Open problem of publishing kinematic information [e.g. giobal SMEFT analyses]

— total rates losing information
best STXS model-dependent
unfolded distributions extremely convenient i resutts]

— challenges in unfolding

non-invertible detector simulation
model dependence
erX|b|I|ty/reI|ab|I|ty [training on some event set]

— benefits from unfolding data  (omnifold]

access to hard matrix element/first-principles QCD
matrix element method

General: how to invert Markov processes  [patta; Bellagente, Butter, Kasiczka, TP, Winterhalder]

— detector simulation typical Markov process
— inversion possible, in principle  (entangled convolutions]

— GAN task

DELPHES GAN
partons — — ~ detector == partons

= Full unfolded phase space




Fully conditional GAN -

) y z
Reconstructing parton level pp — ZW — (¢¢) (jj) o
— broad jj mass peak w i
narrow ¢¢ mass peak j
modified 2 — 2 kinematics
— GAN same as event generation  with MMD]
— problem: cuts in test data (s, 38% events]
prj, =30...100 GeV 7
prj, =30...60 GeV and prj, =30...50 GeV (8)
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Fully conditional GAN

Reconstructing parton level pp — ZW — (¢¢) (jj)

— broad jj mass peak
narrow ¢¢ mass peak
modified 2 — 2 kinematics

— GAN same as event generation  with MMD]

Conditional GAN
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Fully conditional GAN

) y z
Reconstructing parton level pp — ZW — (¢¢) (jj)

— broad jj mass peak W J
narrow ¢¢ mass peak i
modified 2 — 2 kinematics

— GAN same as event generation  with MMD]

Conditional GAN
— full inversion fine
x10~2 x10~!
25 Truth Truth
— FCGAN —— FCGAN
T2 —— Delphes —— Delphes
]
S 1.5
510
e
0.5
0.0
g 12 A - A P T |
Al | o - g
0 25 50 75 100 125 150 175 200 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0

prj [GeV] my; [GeV]




Fully conditional GAN

Reconstructing parton level pp — ZW — (££) (jf)

— broad jj mass peak
narrow ¢¢ mass peak
modified 2 — 2 kinematics

— GAN same as event generation  with MMD]

Conditional GAN
— full inversion fine

-

Z n

w J
J

— tougher cuts challenging Mjj  [14%, 39% events, no interpolation, MMD not conditional]

pr,j, =30...50 GeV pr;,=30...40 GeV p;,— =20...50 GeV
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= FCGAN unfolding works...



BSM Injection

Different training (MC) and actual data... [notin v1, thank you to Ben Nachman]

...or model dependence of unfolding
...or localization in latent space

— train: SM events
test: 10% events with W’ in s-channel =- Any guesses?



BSM Injection

Different training (MC) and actual data... notin v1, thank you to Ben Nachman]

...or model dependence of unfolding
...or localization in latent space

— train: SM events
test: 10% events with W’ in s-channel = Any guesses?
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6— Superresolution GANs (preview)

Getting inspired  [Blecher, Butter, Keilbach, TP + Irvine]

— take high-resolution calorimeter images
down-sample to 1/8th 1D resolution
GAN inversion

— start from low-resolution calorimeter images
GAN high-resolution images

— works because GANs learn structure [showers are QCD)
— energy of constituents no.1,10,30
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= GANs are (kind of) magic




Outlook

LHC physics really is big data
jet classification largely established

advantages of generative networks  [upcoming review: Butter & TP]
1: NN interpolation

2: latent space structures

3: training on MC and/or data

open questions
1: uncertainties
2: possible precision...
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