New & Cool

Tilman Plehn

1. lot

2. Evente

3- Subtraction

4. 5. 1.

5- Unfolding

6- Magic

New and Cool LHC Stuff How to GAN

Tilman Plehn

Universität Heidelberg

PHENO 5/2020

Learning from art

GANGogh [Bonafilia, Jones Danyluk (2017)]

- old news: NNs turning pictures into art of a certain epoch but can they create new pieces of art?
- train on 80,000 pictures [organized by style and genre]
- map noise vector to images
- generate flowers

Learning from art

GANGogh [Bonafilia, Jones Danyluk (2017)]

- old news: NNs turning pictures into art of a certain epoch but can they create new pieces of art?
- train on 80,000 pictures [organized by style and genre]
- map noise vector to images
- generate portraits

Learning from art

GANGogh [Bonafilia, Jones Danyluk (2017)]

- old news: NNs turning pictures into art of a certain epoch but can they create new pieces of art?

- train on 80,000 pictures [organized by style and genre]

- map noise vector to images

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

- trained on 15,000 portraits

- sold for \$ 432.500

⇒ all about marketing and sales

GANning events

- training true events $\{x_T\}$ following $p_T(x)$ output generated events $\{r\} \to \{x_G\}$ following $p_G(x)$
- discriminator constructing D(x) [D(x) = 1, 0 truth/generated]

$$L_D = \left\langle -\log D(x) \right\rangle_{x \sim P_T} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_G} \to -2\log 0.5$$

generator producing good events [D needed]

$$L_G = \big\langle -\log D(x) \big\rangle_{x \sim P_G}$$

- stabilization: gradient penalty or WassersteinGAN
- ⇒ statistically independent copy of training events

Basics

2 Eve

2. Subtractio

3- Subtract

5- Unfoldin

Phase space networks

- MC integration [Bendavit (2017)]
- NNVegas [Klimek (2018), not really generative network]

Existing GAN studies

- Jet Images [de Oliveira (2017), Carazza (2019)]
- Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]
- Event generation [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]
- Unfolding [Datta (2018), Bellagente (2019)]
 - Templates for QCD factorization [Lin (2019)]
 - EFT models [Erbin (2018)]
 - Event subtraction [Butter (2019)]

Event generators

- generative invertable networks without generation or inversion
- neural importance sampling [Bothmann (2020)]
- i-flow in SHERPA [Gao (2020)]

1- Jets

1- Jet generation

GANGogh for jet images [de Oliveira, Paganini, Nachman]

- start with calorimeter images or jet images [$\eta \vee s \phi$] sparsity the technical challenge [cf top tagging comparison]
- 1- reproduce valid jet images from training data
- 2- organize them by QCD vs W-decay jets
- high-level observables m, τ_{21} reproduced
- ⇒ GANs can generate jets

1- Jets

1- Jet generation

GANGogh for jet images [de Oliveira, Paganini, Nachman]

- start with calorimeter images or jet images [η vs φ]
 sparsity the technical challenge [cf top tagging comparison]
- 1- reproduce valid jet images from training data
- 2- organize them by QCD vs W-decay jets
- high-level observables \textit{m}, τ_{21} reproduced
- ⇒ GANs can generate jets

Open questions to all GANs

- use cases?
- uncertainty? [Bayesian networks?]
- achievable precision?

2- How to GAN LHC Events

Idea: replace ME for hard process [Otten, Hashemi, Di Sipio...]

- medium-complex final state $t\bar{t} \to 6$ jets <code>[Butter, TP, Winterhalder]</code> t/\bar{t} and W^\pm on-shell with BW $6 \times 4 = 18$ dof on-shell external states $\to 12$ dof <code>[constants hard to learn]</code>

- flat observables flat [phase space coverage okay]
- constructed observables with tails [statistical error indicated]

2- How to GAN LHC Events

Idea: replace ME for hard process [Otten, Hashemi, Di Sipio...]

- medium-complex final state $t\bar{t} \to 6$ jets <code>[Butter, TP, Winterhalder] t/\bar{t}</code> and W^\pm on-shell with BW $6 \times 4 = 18$ dof on-shell external states $\to 12$ dof <code>[constants hard to learn]</code>

- constructed observables with tails [statistical error indicated]

- 2D correlations

New & Cool

2– How to GAN LHC Events

Tilman Plehn

1- Je

2. Evo

3- Subtract

. . . .

5- Unfoldir

Idea: replace ME for hard process [Otten, Hashemi, Di Sipio...]

- medium-complex final state $t\bar{t} \to 6$ jets [Butter, TP, Winterhalder] t/\bar{t} and W^\pm on-shell with BW $6 \times 4 = 18$ dof on-shell external states $\to 12$ dof [constants hard to learn]

- flat observables flat [phase space coverage okay]
- constructed observables with tails [statistical error indicated]
- 2D correlations
- improved resolution [1M training events]

New & Cool Tilman Plehn

2- How to GAN LHC Events

Idea: replace ME for hard process [Otten, Hashemi, Di Sipio...]

- medium-complex final state $t\bar{t} \to 6$ jets <code>[Butter, TP, Winterhalder]</code> t/\bar{t} and W^\pm on-shell with BW $6 \times 4 = 18$ dof on-shell external states $\to 12$ dof <code>[constants hard to learn]</code>

- constructed observables with tails [statistical error indicated]

- 2D correlations

improved resolution [10M generated events]

New & Cool Tilman Plehn

2- How to GAN LHC Events

Idea: replace ME for hard process [Otten, Hashemi, Di Sipio...]

- medium-complex final state $t \bar{t} \to 6$ jets [Butter, TP, Winterhalder] t/\bar{t} and W^{\pm} on-shell with BW 6 × 4 = 18 dof on-shell external states → 12 dof [constants hard to learn]

- flat observables flat [phase space coverage okay]

- constructed observables with tails [statistical error indicated]

2D correlations

improved resolution [50M generated events]

- GAN generation working

Intermediate resonances

Narrow phase space structures

- MC: phase space mapping [BW → flat, multi-channel]
- generally 1D features
 cuts and phase space boundaries
 invariant masses [top, w]
- batch-wise comparison of distributions, MMD loss with kernel k

$$\begin{split} \mathsf{MMD}^2 &= \left\langle k(x,x') \right\rangle_{x,x'\sim P_T} + \left\langle k(y,y') \right\rangle_{y,y'\sim P_G} - 2 \left\langle k(x,y) \right\rangle_{x\sim P_T,y\sim P_G} \\ \mathcal{L}_G &\to \mathcal{L}_G + \lambda_G \, \mathsf{MMD}^2 \;, \end{split}$$

Tilman Plehn

Narrow phase space structures

- MC: phase space mapping [BW \rightarrow flat, multi-channel]

generally 1D features

cuts and phase space boundaries invariant masses [top, w]

batch-wise comparison of distributions, MMD loss with kernel k

$$\begin{split} \mathsf{MMD}^2 &= \left\langle k(x,x') \right\rangle_{x,x'\sim P_T} + \left\langle k(y,y') \right\rangle_{y,y'\sim P_G} - 2 \left\langle k(x,y) \right\rangle_{x\sim P_T,y\sim P_G} \\ \mathcal{L}_G &\to \mathcal{L}_G + \lambda_G \, \mathsf{MMD}^2 \;, \end{split}$$

Phase space resolution no show-stopper

3– How to GAN event subtraction

Idea: subtract event samples without bins [Butter, TP, Winterhalder]

statistical uncertainty

$$\Delta_{B-S} = \Delta_{n_B N_B - n_S N_S} = \sqrt{\Delta_{n_B N_B}^2 + \Delta_{n_S N_S}^2} = \sqrt{n_B^2 N_B + n_S^2 N_S} > \max(B, S)$$

many applications

soft-collinar subtraction, multi-jet merging on-shell subtraction

background subtraction [4-body decays]

3– How to GAN event subtraction

Idea: subtract event samples without bins [Butter, TP, Winterhalder]

statistical uncertainty

$$\Delta_{\mathcal{B}-\mathcal{S}} = \Delta_{n_{\mathcal{B}}N_{\mathcal{B}}-n_{\mathcal{S}}N_{\mathcal{S}}} = \sqrt{\Delta_{n_{\mathcal{B}}N_{\mathcal{B}}}^2 + \Delta_{n_{\mathcal{S}}N_{\mathcal{S}}}^2} = \sqrt{n_{\mathcal{B}}^2N_{\mathcal{B}} + n_{\mathcal{S}}^2N_{\mathcal{S}}} > \max(\mathcal{B},\mathcal{S})$$

GAN vs Truth

----- B - S

60 70 80

- many applications
 soft-collinar subtraction, multi-jet merging on-shell subtraction
 background subtraction [4-body decays]
- event-based background subtraction [weird notation, sorry]

$$pp
ightarrow e^+e^-$$
 (B) $pp
ightarrow \gamma
ightarrow e^+e^-$ (S)

Z-pole events generated

4- Detector

4- Detector simulation

Fast detector simulation [Paganini, Musella, Erdmann, Ghosh, Buhmann,...]

- weakest link in simulation chain fast simulation established problem [ATLfast, Delphes,...]
- training on GEANT4
- comparison of GAN, WGAN, new BIB-AE

4- Detector

4- Detector simulation

Fast detector simulation [Paganini, Musella, Erdmann, Ghosh, Buhmann,...]

- weakest link in simulation chain fast simulation established problem [ATLfast, Delphes,...]
- training on GEANT4
- comparison of GAN, WGAN, new BIB-AE

Recent ILD study using particle flow [Buhmann]

- 950k photon showers $E = 10 \dots 100 \text{ GeV}$
- challenge: get entire spectrum maintain correlations
- MMD post-processing, transfer learning
- ⇒ Not easy, but working

5- How to GAN away detector effects

Tilman Plehn

1- Jets

2- Events

3- Subtraction

5- Unfoldir

Open problem of publishing kinematic information [e.g. global SMEFT analyses]

- total rates losing information best STXS model-dependent unfolded distributions extremely convenient [tt̄ results]
- challenges in unfolding non-invertible detector simulation model dependence flexibility/reliability [training on some event set]
- benefits from unfolding data [Omnifold]
 access to hard matrix element/first-principles QCD matrix element method

General: how to invert Markov processes [Datta; Bellagente, Butter, Kasiczka, TP, Winterhalder]

- detector simulation typical Markov process
- inversion possible, in principle [entangled convolutions]
- GAN task partons $\stackrel{\text{DELPHES}}{\longrightarrow}$ detector $\stackrel{\text{GAN}}{\longrightarrow}$ partons
- ⇒ Full unfolded phase space

Fully conditional GAN

Reconstructing parton level $pp \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 ightarrow 2 kinematics
- GAN same as event generation [with MMD]
- problem: cuts in test data [88%, 38% events]

$$p_{T,j_1} = 30 \dots 100 \text{ GeV}$$

 $p_{T,j_1} = 30 \dots 60 \text{ GeV}$ and $p_{T,j_2} = 30 \dots 50 \text{ GeV}$

 $p_{T,ii}$ [GeV]

New & Cool

Tilman Plehn

1. 10

2 Event

3- Subtraction

5- Subtractio

5- Unfoldir

Fully conditional GAN

Reconstructing parton level $pp \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 ightarrow 2 kinematics

GAN same as event generation [with MMD]

Conditional GAN

New & Cool

Tilman Plehn

5- Unfolding

Fully conditional GAN

Reconstructing parton level $pp \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- broad *ij* mass peak narrow $\ell\ell$ mass peak modified 2 → 2 kinematics
- GAN same as event generation [with MMD]

Conditional GAN

- full inversion fine

Fully conditional GAN

Reconstructing parton level $pp \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 ightarrow 2 kinematics
- GAN same as event generation [with MMD]

(12)

Conditional GAN

- full inversion fine
- tougher cuts challenging m_{ii} [14%, 39% events, no interpolation, MMD not conditional]

 $p_{T,j_1} = 30 \dots 50 \text{ GeV}$ $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$

150 175 200

50

100 125

 p_{T,j_1} [GeV]

⇒ FCGAN unfolding works...

0.0

5- Unfolding

BSM Injection

Different training (MC) and actual data... [not in v1, thank you to Ben Nachman]

...or model dependence of unfolding

...or localization in latent space

- train: SM events

test: 10% events with W' in s-channel \Rightarrow Any guesses?

BSM Injection

Different training (MC) and actual data... [not in v1, thank you to Ben Nachman]

...or model dependence of unfolding

...or localization in latent space

train: SM events

test: 10% events with W' in s-channel \Rightarrow Any guesses?

6- Superresolution GANs (preview)

Tilman Plehn

1- Jets

- Jels - Evente

3- Subtractio

4- Detecto

5- Unfolding6- Magic

Getting inspired [Blecher, Butter, Keilbach, TP + Irvine]

- take high-resolution calorimeter images down-sample to 1/8th 1D resolution GAN inversion
- start from low-resolution calorimeter images GAN high-resolution images
- works because GANs learn structure [showers are QCD]
- energy of constituents no.1,10,30

⇒ GANs are (kind of) magic

New & Cool

Tilman Plehn

6- Magic

Outlook

LHC physics really is big data

jet classification largely established

advantages of generative networks [upcoming review: Butter & TP]

1: NN interpolation

2: latent space structures

3: training on MC and/or data

open questions

1: uncertainties

2: possible precision...

