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Learning from art

GANGogh  [Bonafiia, Jones Danyluk (2017)]

— can networks generate something new?
— map noise vector to images

train on 80,000 pictures [organized by style and genre]
— generate flowers
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Learning from art

GANGogh  [Bonafilia, Jones Danyluk (2017)]

— can networks generate something new?
— map noise vector to images
— train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

— trained on 15,000 portraits
— sold for $ 432.500
= all about marketing
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GAN basics (for LHC theory plumbers)

Simulations crucial for LHC physics [review: Butter & TP]

— goal: data-to-data with fundamental physics input
— Monte Carlo challenges

higher-order precision in bulk
coverage of tails
inversion to access fundamental QCD

— neural network benefits

training on MC and/or real events
lightning speed, once trained
best available interpolation
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GANNing data [Goodfellow etal (2014)]

— training true events {xr} following Pt
output  generated events {r} — {xG} following Pg
— discriminator constructing D(x) D(x) = 1, 0 true/generated]

Lp = ( — log D(x >X~PT (—log(1 — D(X))>x~P — —2log 0.5
— generator producing true-looking events (b needed]
Lo = (~l0gD(x)), 5.

= statistically independent copy of training events




1- Jet generation

GANGOgh for jet images [de Oliveira, Paganini, Nachman]

1-

)e]
h

start with calorimeter or jet images [nvs 41
sparsity the technical challenge [cf top tagging comparison]

reproduce valid jet images from training data
organize them by QCD vs W-decay jets
high-level observables m, o1 as check

GANSs generating jets

GAN questions

use cases?

control?

uncertainty?  [Bayesian networks?]
gain?

achievable precision?
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2— GANplification

Gain beyond training data  [sutter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known
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Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known
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2— GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

true function known

0.1

compare GAN vs sampling vs fit .16 10 auntes T
161 GAN trained on 100 data points. it
— x2-goodness in quantiles 014 o
— fit like 500-1000 sampled points 012
GAN like 500 sampled points [amplifictation factor 5] 2010
improvement up to 10,000 GANned events “oos

— 5-dimensional Gaussian shell
sparsely populated ! h
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— fit-like additional information

— interpolation and resolution the key nroF
= GANs enhance training data
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3— How to GAN LHC Events

Replace ME for hard scattering  [otten, Hashemi, bi Sipio..]

— realistic final state tf — 6 jets [Butter, TP, Winterhalder]
on-shell external states — 12D phase space
— top observables with tails

ystematic error indi ]
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— 2D correlations
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3— How to GAN LHC Events

Replace ME for hard scattering  [otten, Hashemi, bi Sipio..]

realistic final state tf — 6 jets [Buter, TP, Winterhalder]
on-shell external states — 12D phase space
top observables with tails
2D correlations

ystematic error indi

1D-invariant masses [top, w]
batch-wise discrimination, MMD loss with kernel k
2
MMD® = (k(x, X)), s py + (KW Y)) 1 py = 20K YD) g

2
Lg — Lg + A\g MMD %10~

— GANning 1.6M evts/sec on laptop

160 165 170 175 180 185
my [GeV]




4— How to GAN event subtraction

Idea: subtract event samples without binning  (sutter, TP, Winterhaider]

Ap_s = /A% + A% > max(AB, AS)
— possible applications

soft-collinar subtraction, multi-jet merging
on-shell subtraction
background subtraction  (4-body decays]

— statistical uncertainty



4— How to GAN event subtraction

Idea: subtract event samples without binning  (sutter, TP, Winterhaider]

Ap_s = /A% + A% > max(AB, AS)
possible applications

soft-collinar subtraction, multi-jet merging
on-shell subtraction
background subtraction  (4-body decays]

event-based background subtraction

statistical uncertainty

pp—e"e” (Base) pp— -~ — e'e  (Subtracted)

Z-pole events generated

x10

= Why did we ever bin?

GAN vs Truth

fpb/GeV]

do
aE,-

20 10 60 80 100
E.- [GeV]




5—- How to GAN away detector effects

Idea: invert Monte Carlos [Datta; Bellagente, Butter, Kasiczka, TP, Winterhalder]

— detector simulation — unfolding established use case
— inversion possible, in principle  (entangled convolutions]

— GAN task

DELPHES GAN
partons — — " detector = partons

= Full phase space unfolding




5—- How to GAN away detector effects

Idea: invert Monte Carlos [Datta; Bellagente, Butter, Kasiczka, TP, Winterhalder]

— detector simulation — unfolding established use case
— inversion possible, in principle  (entangled convolutions]

— GAN task

DELPHES GAN
partons ~ — " detector — partons

= Full phase space unfolding

Reconstructing parton-level pp — ZW — (¢¢) (jj)
— broad jj mass peak
narrow £¢ mass peak
modified 2 — 2 kinematics

Condition




Fully conditional GAN

Test data modified from training data

— full inversion no point in showing...
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Fully conditional GAN

Test data modified from training data

— full inversion no point in showing...

— test cuts [14%, 39% events]
prj, =30..50 GeV pr,=30..40 GeV p; ,_ =20..50 GeV (12)

pr,j; > 60 GeV (13)
= Phase space unfolding working %102
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Fully conditional GAN

Test data modified from training data

— full inversion no point in showing...

— test cuts [14%, 39% events]
pr,; =30...50 GeV pr;,=30...40 GeV p;,— =20...50 GeV (12)

pr.j, > 60 GeV (13)
= Phase space unfolding working

New phySiCS indata [model dependence]

— train: Standard Model events
test: 10% events with W’ in s-channel

— nightmare: unfold W’ onto Standard Model?

s
=- Model dependence under control 1
6.0 —— Truth (W)

—— FCGAN

—— Truth (SM)
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6— Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Ksthe]
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— same procedure as for GAN
— parton-level events from random numbers




6— Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kdthe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Kéthe]

Conditional INN
— same procedure as for GAN
— parton-level events from random numbers
— calibration for statistical unfolding

single detector event
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6— Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Ksthe]

Unfolding extra jets

— detector-level process pp — ZW+jets  (variable number of objects]
— parton-level hard process chosen 2 — 2  (whatever you want]
— ME vs PS jets decided by network [including momentum conservation]

— 2jet 10!

— 3jet
1 jet
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= Proper statistical inversion and of QCD



No conclusion...

LHC physics really is big data

— NN best interpolation  Butter (2020))
— training on MC and/or data
— latent space structured

GAN studies

— Jet Images (de Oliveira (2017), Carazza (2019)]

Detector simulations  [paganini (2017), Muselia (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

Events [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]

Unfolding [patia (2018), Bellagente (2019)]
Templates for QCD factorization (Lin 2019)]
EFT models [Emin (2018)]

Event subtraction [sutter (2019)]

Event generators

— Neural importance sampling  [Bothmann (2020)]
— i-flow in SHERPA  (Gao (2020)]
— Statistical unfolding (geliagente (2020)]
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