How to GAN Tilman Plehn

- 1 lote
- GANnlification
- 3- Ever
- 4- Subtraction
- 5- Unfolding
- 6- Inverting

How to GAN for LHC

Tilman Plehn

Universität Heidelberg

Taipei, 10/2020

Learning from art

Tillian Tillian

4 1-

GANplification

3- Ever

4- Subtraction

5- Unfolding

GANGogh [Bonafilia, Jones Danyluk (2017)]

- can networks generate something new?
- map noise vector to images
- train on 80,000 pictures [organized by style and genre]
- generate flowers

How to GAN Tilman Plehn

Learning from art

- generate portraits

GANGogh [Bonafilia, Jones Danyluk (2017)]

- can networks generate something new?

- map noise vector to images
- train on 80,000 pictures [organized by style and genre]

Learning from art

GANGogh [Bonafilia, Jones Danyluk (2017)]

- can networks generate something new?
- map noise vector to images
- train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier]

- trained on 15,000 portraits
- sold for \$ 432.500
- ⇒ all about marketing

GAN basics (for LHC theory plumbers)

Simulations crucial for LHC physics [review: Butter & TP]

goal: data-to-data with fundamental physics input

Tilman Plehn

Basics

- Monte Carlo challenges higher-order precision in bulk

coverage of tails

inversion to access fundamental QCD

neural network benefits.

training on MC and/or real events lightning speed, once trained best available interpolation

Basics

GAN basics (for LHC theory plumbers)

Simulations crucial for LHC physics [review: Butter & TP]

- goal: data-to-data with fundamental physics input
- Monte Carlo challenges
 higher-order precision in bulk
 coverage of tails
 inversion to access fundamental QCD
- neural network benefits
 training on MC and/or real events
 lightning speed, once trained
 best available interpolation

GANning data [Goodfellow etal (2014)]

- training true events $\{x_T\}$ following P_T output generated events $\{r\} \to \{x_G\}$ following P_G
- discriminator constructing D(x) [D(x) = 1, 0 true/generated]

$$L_D = \left\langle -\log D(x) \right\rangle_{x \sim P_T} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_C} \to -2\log 0.5$$

- generator producing true-looking events [D needed] $L_G = \langle -\log D(x) \rangle_{x \sim P_G}$
- ⇒ statistically independent copy of training events

1- Jet generation

Tilman Plehn

1- Jets

- GANplification
- 3- Events
- E. Unfolding

GANGogh for jet images [de Oliveira, Paganini, Nachman]

- start with calorimeter or jet images [η vs φ]
 sparsity the technical challenge [ct top tagging comparison]
- 1- reproduce valid jet images from training data
- 2- organize them by QCD vs W-decay jets
- high-level observables m, τ_{21} as check
- ⇒ GANs generating jets

GAN questions

- use cases?
- control?
- uncertainty? [Bayesian networks?]
- gain?
- achievable precision?

Tilman Plehn

1- Jets

2- GANplification

3- Eve

4- Subtractio

5- Unfolding

Himan Plenn

2– GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

- true function known compare GAN vs sampling vs fit
- $-\chi^2$ -goodness in quantiles

Tilman Plehn

1-0015

2- GANplificati

0 200.110

4- Subtraction

5- Unfolding

6- Invertin

2- GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

- true function known compare GAN vs sampling vs fit
- $-\chi^2$ -goodness in quantiles
- fit like 500-1000 sampled points
 GAN like 500 sampled points [amplification factor 5]
 improvement up to 10,000 GANned events

Tileses Diebe

1- Je

0.0441.00

. .

4 Cubtractio

5- Unfoldin

6- Inverti

2– GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

- true function known compare GAN vs sampling vs fit
- $-\chi^2$ -goodness in quantiles
- fit like 500-1000 sampled points
 GAN like 500 sampled points [amplifictation factor 5]
 improvement up to 10,000 GANned events
- 5-dimensional Gaussian shell sparsely populated amplification vs quantiles
- fit-like additional information
- interpolation and resolution the key [NNPDF]
- ⇒ GANs enhance training data

3- How to GAN LHC Events

Tilman Plehn

3- Events

Replace ME for hard scattering [Otten, Hashemi, Di Sipio...]

- realistic final state t ar t o 6 jets <code>[Butter, TP, Winterhalder]</code> on-shell external states \rightarrow 12D phase space
- top observables with tails [statistical/systematic error indicated]

True

GAN

 $\times 10^{-3}$

6.0

3- How to GAN LHC Events

Tilman Plehn

Replace ME for hard scattering [Otten, Hashemi, Di Sipio...]

- realistic final state $t \bar{t} \to 6$ jets [Butter, TP, Winterhalder] on-shell external states \rightarrow 12D phase space
- top observables with tails [statistical/systematic error indicated]
- 2D correlations

3- How to GAN LHC Events

Tilman Plehn

Replace ME for hard scattering [Otten, Hashemi, Di Sipio...]

- realistic final state $t \bar{t} \to 6$ jets [Butter, TP, Winterhalder] on-shell external states → 12D phase space

- top observables with tails [statistical/systematic error indicated]

2D correlations

- 1D-invariant masses [top, W]

batch-wise discrimination, MMD loss with kernel k

$$\mathsf{MMD}^2 = \left\langle k(x,x') \right\rangle_{x,x' \sim P_T} + \left\langle k(y,y') \right\rangle_{y,y' \sim P_G} - 2 \left\langle k(x,y) \right\rangle_{x \sim P_T,y \sim P_G}$$

$$L_G \to L_G + \lambda_G \, \text{MMD}^2$$

- GANning 1.6M evts/sec on laptop

4- How to GAN event subtraction

Tilman Plehn

4- Subtraction

Idea: subtract event samples without binning [Butter, TP, Winterhalder]

statistical uncertainty

$$\Delta_{B-S} = \sqrt{\Delta_B^2 + \Delta_S^2} > \max(\Delta B, \Delta S)$$

- possible applications soft-collinar subtraction, multi-jet merging on-shell subtraction background subtraction [4-body decays]

Tilman Plehn

Basic

O CANISSISSI

2- GANDIITICAT

3- Even

4- Subtraction

5- Unfoldin

6- Invertii

4- How to GAN event subtraction

Idea: subtract event samples without binning [Butter, TP, Winterhalder]

statistical uncertainty

$$\Delta_{\mathcal{B}-\mathcal{S}} = \sqrt{\Delta_{\mathcal{B}}^2 + \Delta_{\mathcal{S}}^2} > \max(\Delta \mathcal{B}, \Delta \mathcal{S})$$

- possible applications
 soft-collinar subtraction, multi-jet merging on-shell subtraction
 background subtraction [4-body decays]
- event-based background subtraction

$$pp
ightarrow e^+e^-$$
 (Base) $pp
ightarrow \gamma
ightarrow e^+e^-$ (Subtracted)

- Z-pole events generated
- ⇒ Why did we ever bin?

5- Unfolding

5- How to GAN away detector effects

Idea: invert Monte Carlos [Datta; Bellagente, Butter, Kasiczka, TP, Winterhalder]

- detector simulation unfolding established use case
- inversion possible, in principle [entangled convolutions]
- GAN task partons $\xrightarrow{\text{DELPHES}}$ detector $\xrightarrow{\text{GAN}}$ partons
- ⇒ Full phase space unfolding

5- How to GAN away detector effects

Idea: invert Monte Carlos [Datta; Bellagente, Butter, Kasiczka, TP, Winterhalder]

- detector simulation unfolding established use case
- inversion possible, in principle [entangled convolutions]
- GAN task partons $\xrightarrow{\text{DELPHES}}$ detector $\xrightarrow{\text{GAN}}$ partons
- ⇒ Full phase space unfolding

Reconstructing parton-level $pp \to ZW \to (\ell\ell)$ (jj)

- broad jj mass peak narrow ℓℓ mass peak modified 2 → 2 kinematics
- (conditional) GAN like for event generation

Fully conditional GAN

Tilman Plehn

5- Unfolding

Test data modified from training data

- full inversion no point in showing...

Fully conditional GAN

Tilman Plehn

Test data modified from training data

full inversion no point in showing...

- test cuts [14%, 39% events]

$$p_{T,j_1} = 30 \dots 50 \text{ GeV}$$
 $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$ (12)

$$p_{T,j_1} > 60 \text{ GeV}$$
 (13)

⇒ Phase space unfolding working

Fully conditional GAN

Tilman Plehn

Test data modified from training data

full inversion no point in showing...

test cuts [14%, 39% events]

$$p_{T,j_1} = 30 \dots 50 \text{ GeV}$$
 $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$ (12)

$$p_{T,j_1} > 60 \text{ GeV}$$
 (13)

⇒ Phase space unfolding working

New physics in data [model dependence]

 train: Standard Model events test: 10% events with W' in s-channel

– nightmare: unfold W' onto Standard Model?

⇒ Model dependence under control

6- Unfolding as inverting

Tilman Plehn

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

 network as bijective transformation — normalizing flow Jacobian tractable — normalizing flow evaluation in both directions — INN [Ardizzone, Rother, Köthel]

6- Inverting

How to GAN
Tilman Plehn

6- Unfolding as inverting

Invertible networks (Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthel

 network as bijective transformation — normalizing flow Jacobian tractable — normalizing flow evaluation in both directions — INN [Ardizzone, Rother, Köthe]

Conditional INN

- same procedure as for GAN
- parton-level events from random numbers

Tilman Plehn

1...16

GANIplificati

. . .

3- Ever

4- Subtraction

5- Unfoldir

6- Invertil

6- Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

 network as bijective transformation — normalizing flow Jacobian tractable — normalizing flow evaluation in both directions — INN [Ardizzone, Rother, Köthe]

Conditional INN

- same procedure as for GAN
- parton-level events from random numbers
- calibration for statistical unfolding

6- Unfolding as inverting

Tilman Plehn

1- Jets

GANplification

0 210110

5- Unfoldin

6- Inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

 network as bijective transformation — normalizing flow Jacobian tractable — normalizing flow evaluation in both directions — INN [Ardizzone, Rother, Köthe]

Unfolding extra jets

- detector-level process pp o ZW+jets [variable number of objects]
- parton-level hard process chosen 2 → 2 [whatever you want]
- ME vs PS jets decided by network [including momentum conservation]

⇒ Proper statistical inversion and of QCD

Tilman Plehn

Dasi

2 CANplificati

2 Evente

J- Everits

5- Unfolding

6- Inverting

No conclusion...

LHC physics really is big data

- NN best interpolation [Butter (2020)]
- training on MC and/or data
- latent space structured

GAN studies

- Jet Images [de Oliveira (2017), Carazza (2019)]
- Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]
- Events [Otten(2019), Hashemi (2019), Di Sipio (2019), Butter (2019), Martinez (2019), Alanazi (2020)]
- Unfolding [Datta (2018), Bellagente (2019)]
- Templates for QCD factorization [Lin (2019)]
- EFT models [Erbin (2018)]
- Event subtraction [Butter (2019)]

Event generators

- Neural importance sampling [Bothmann (2020)]
- i-flow in SHERPA [Gao (2020)]
- Statistical unfolding [Bellagente (2020)]

