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Executive ML-summary

Neural network just a numerical function

— regression fjust function]
classification [probability]
generation  [sampled pdf]

rules [reinforcement learning]
— bijective, invertible mappings possible
— learned from high-dimensional data
— no theory pre-processing
— best interpolation on the market {it for grown-ups]
— extremely fast to evaluate

Particle physics defined by
— fundamental questions
lot of data
first-principles predictions
precision analysis
= Many examples for applications




Cool experimental ML-applications

Top tagging  [supervised classiication]
— different NN-architectures = |
— tagger comparison

= Just do it right...

Backoround efection

100

06 01 02 03 04 05 0 07 08 69 10
Signa fficency




Cool experimental ML-applications

TOp tagging [supervised classification]

— different NN-architectures

— tagger comparison o
= Just do it right... § ‘
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Particle flow [super-resolution generative nets]

8X8 Layer Total 88 Layer Truth

.
— mother of jet tools
J 43
— combined detector channels
)
= Showing off :) T
[also Erdmann etal, Kasieczka etal, Wolf etal...]
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that the shower originating from a 1 — 7y i resolved by a 32 x 32 granularty layer.




Jets, QCD, symmetries

Lund plane representation [input preprocessing]
— QCD-inspired input with cutting-edge networks
— angular separation vs transverse momentum

QCD rejection v. Top tagging efficiency

= Understanding data helps w s

slgnat pp . backgrounds pp -+
10000 (e, R =1 jes, > 500 GeV.
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Jet tagging in the Lund plane with graph networks

— PartcieNet (G 19)
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Jets, QCD, symmetries

Lund plane representation [input preprocessing]

— QCD-inspired input with cutting-edge networks

— angular separation vs transverse momentum
= Understanding data helps I

pyinia 8.223 simutation
ot pp = 1, background: pp i
10000 T Lantike R=1 et > 500 Gev

Jet tagging in the Lund plane with graph networks

SeIf-supervised training [contrastive learning, transformer network]

— rotations, translations, permutations, soft splittings, collinear splittings
— learn symmetries/augmentations

= Symmetry-aware latent space

Abstract




Non-QCD and parton densities

Anomaly searches  [unsupervised training]
— look for non-QCD jets, non-SM events

— idea of BSM searches, trigger
= Latent density? === ==

Better Latent Spaces fo Batter Autoencoders




Non-QCD and parton densities

Anomaly searches [unsupervised training]
— look for non-QCD jets, non-SM events

— idea of BSM searches, trigger
= Latent density? ===

NNPDF — N3PDF fiull blast]
— starting point: pdfs without functional ansatz
— moving on: cutting-edge ML everywhere
= Leaders in ML-theory NGrof g----——

A data-based




Events and amplitudes

Speeding up Sherpa  (normalizing flows] ) ey
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— precision simulations limiting factor for Runs 3&4
— unweighting critical
= Phase space sampling
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Events and amplitudes

Speeding up Sherpa [normalizing flows]

— precision simulations limiting factor for Runs 3&4
— unweighting critical
= Phase space sampling

de/dm[pb GV

o ko

Speeding up amplitudes [regression]

— loop-amplitudes expensive m— ’”
— interpolation standard 5= | Optimising simulatons for diphoton production at
102 — W hadron colliders using amplitude neural networks

= Network amplitudes
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Invertible event generation and errors

Unfolding and inversion (conditional normalizing flows]
— shower/hadronization unfolded by jet algorithm
— detector/decays unfolded e.g. in tops
— calibrated inverse sampling
= Backwards generation

Invertible Networks or Partons to
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X102

Invertible event generation and errors

2 jot incl
Parton Truth
—— Parton eINN
Detector Truth

Um‘olding and inversion [conditional normalizing flows]

— shower/hadronization unfolded by jet algorithm
— detector/decays unfolded e.g. in tops
— calibrated inverse sampling G

= Backwards generation » - T
ot

Generative networks with uncertainties

[Bayesian discriminator-flows]

— control through discriminator  (Gan-ike] e e

o[ [ i
— uncertainties through Bayesian networks
= Precision & control

Train

normalized
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String landscape and learned formulas

Navigating string landscape  [reinforcement learning]

— searching for viable vacua

— high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
= Phase Space SamDIan Genetic Algorithms and Reinforcement Learning

} * ]\ \ i i e

Fgure 15 Lef: Clusterstucurs indimensioaly edued ux smples o RL and 25 GA runs (°CA
andRL).

(input vl (Vo and Ns respecively i relaton o principl componentsfor a PCA ft of the
individual output of GA and RL.




String landscape and learned formulas

Navigating string Iandscape [reinforcement learning]

— searching for viable vacua

— high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
= Phase Space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstract
Figure 1: Lefi: Cluster s for RL and 25 G: PC; . bieto
on all samples of GA and RL). The colors indicate individual GA runs. Right: Dependence on flux

(input) values (N and N respectively) in relation to principal components for a PCA fit of the

individual output of GA and RL. e e s s o o i Dt

Learning formulas [genetic algorithm, symbolic regression]

— approximate numerical function through formula
— example: score/optimal observables

= Useful approximate formulas Emg=m E=;

Back to the Formula — LHC Edition

‘compl dof function MSE =
51
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Making ML-progress

ML has arrived in particle theory
— neural networks = modern numerics
— applications all over the place [+ Lattice + Cosmology + Astrophysics]
— remember how we worked before MCMC?

not a fashion about to vanish
— black box only if we do not look

— gaining visibility in Al research
— educational aspect crucial
— links to greater Al projects obvious
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