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Simulations for future LHC runs

Unique: fundamental understanding of lots of data

– precision theory predictions

– precision simulations

– precision measurements

⇒ What’s needed to keep the edge?
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Simulations for future LHC runs

Unique: fundamental understanding of lots of data

– precision theory predictions

– precision simulations

– precision measurements

⇒ What’s needed to keep the edge?

Event generation towards HL-LHC

– simulated event numbers scaling with the expected events [factor 25]

– general move to NLO/NNLO as standard [5% error]

– higher relevant final-state multiplicities [jet recoil, extra jets, WBF, etc.]

– additional low-rate high-multiplicity backgrounds

– specific precision predictions not available in standard generators [N3LO in MC?]

– interpretation of measurements with general signal hypothesis [jets+MET]
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Simulations for future LHC runs

Unique: fundamental understanding of lots of data

– precision theory predictions

– precision simulations

– precision measurements

⇒ What’s needed to keep the edge?

Event generation towards HL-LHC

– simulated event numbers scaling with the expected events [factor 25]

– general move to NLO/NNLO as standard [5% error]

– higher relevant final-state multiplicities [jet recoil, extra jets, WBF, etc.]

– additional low-rate high-multiplicity backgrounds

– specific precision predictions not available in standard generators [N3LO in MC?]

– interpretation of measurements with general signal hypothesis [jets+MET]

Three ways to use ML

– improve current tools: iSherpa, ML-MadGraph, etc

– new ideas, like fast ML-generator-networks

– conceptual ideas in theory simulations and analyses
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GAN algorithm

Generating events

– training: true events {xT }
output: generated events {r} → {xG}

– discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]

LD =
〈
− log D(x)

〉
xT

+
〈
− log(1− D(x))

〉
xG

– generator constructing r → xG by minimizing [D needed]

LG =
〈
− log D(x)

〉
xG

– equilibrium D = 0.5 ⇒ LD = LG = 1

⇒ statistically independent copy of training events
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GAN algorithm

Generating events

– training: true events {xT }
output: generated events {r} → {xG}

– discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]

– generator constructing r → xG by minimizing [D needed]

⇒ statistically independent copy of training events

Generative network studies [review 2008.08558]

– Jets [de Oliveira (2017), Carrazza-Dreyer (2019)]

– Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

– Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]

– Unfolding [Datta (2018), Omnifold (2019), Bellagente (2019), Bellagente (2020)]

– Templates for QCD factorization [Lin (2019)]

– EFT models [Erbin (2018)]

– Event subtraction [Butter (2019)]

– Sherpa [Bothmann (2020), Gao (2020)]

– Basics [GANplification (2020), DCTR (2020)]

– Unweighting [Verheyen (2020), Backes (2020)]

– Superresolution [DiBello (2020), Blecher (2020)]
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GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]
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– true function known
compare GAN vs sampling vs fit

– quantiles with χ2-values
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GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]
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GAN trained on 100 data points

truth
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GAN

– true function known
compare GAN vs sampling vs fit

– quantiles with χ2-values
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– fit like 500-1000 sampled points
GAN like 500 sampled points [amplifictation factor 5]

requiring 10,000 GANned events
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GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

8 6 4 2 0 2 4 6 8
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

p(
x)
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GAN trained on 100 data points

truth
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Sample
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– true function known
compare GAN vs sampling vs fit

– quantiles with χ2-values

– fit like 500-1000 sampled points
GAN like 500 sampled points [amplifictation factor 5]

requiring 10,000 GANned events

– 5-dimensional Gaussian shell
sparsely populated
amplification vs quantiles
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– fit-like additional information

– interpolation and resolution the key [NNPDF]

⇒ GANs enhance training data
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar

– improved resolution [1M training events]
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar

– improved resolution [10M generated events]
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

– flat observables flat [phase space coverage okay]

– direct observables with tails [statistical error indicated]

– constructed observables similar

– improved resolution [50M generated events]

– Proof of concept
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Chemistry of loss functions

GAN version of adaptive sampling

– generally 1D features
phase space boundaries
kinematic cuts
invariant masses [top, W ]

– batch-wise comparison of distributions, MMD loss with kernel k

MMD2 =
〈
k(x, x′)

〉
xT ,x′T

+
〈
k(y, y ′)

〉
yG,y′G

− 2
〈
k(x, y)

〉
xT ,yG

LG → LG + λG MMD2
,
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Chemistry of loss functions

GAN version of adaptive sampling

– generally 1D features
phase space boundaries
kinematic cuts
invariant masses [top, W ]

– batch-wise comparison of distributions, MMD loss with kernel k

MMD2 =
〈
k(x, x′)

〉
xT ,x′T

+
〈
k(y, y ′)

〉
yG,y′G

− 2
〈
k(x, y)

〉
xT ,yG

LG → LG + λG MMD2
,
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Unweighting

Gaining beyond GANpliflication [Butter, TP, Winterhalder; Clausius’ talk]

– phase space sampling: weighted events [PS weight×|M|2]

events: constant weights

– probabilistic unweighting weak spot of standard MC

– learn phase space patterns [density estimation]

generate unweighted events [through loss function]

– compare training, GAN, classic unweighting
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How to GAN away detector effects

Goal: invert Markov processes [Bellagente, Butter, Kasiczka, TP, Winterhalder]

– detector simulation typical Markov process

– inversion possible, in principle [entangled convolutions]

– GAN task

partons DELPHES−→ detector GAN−→ partons

⇒ Full phase space unfolded

Conditional GAN

– map random numbers to parton level
hadron level as condition [matched event pairs]
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Detector unfolding

Reference process pp → ZW → (``) (jj)

– broad jj mass peak
narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

Simple application
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Detector unfolding

Reference process pp → ZW → (``) (jj)

– broad jj mass peak
narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

Simple application

– detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

pT ,j1 = 30 ... 50 GeV pT ,j2 = 30 ... 40 GeV pT ,`− = 20 ... 50 GeV (12)

pT ,j1 > 60 GeV (13)
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Detector unfolding

Reference process pp → ZW → (``) (jj)

– broad jj mass peak
narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

Simple application

– detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

pT ,j1 = 30 ... 50 GeV pT ,j2 = 30 ... 40 GeV pT ,`− = 20 ... 50 GeV (12)

pT ,j1 > 60 GeV (13)

– model dependence of unfolding

– train: SM events
test: 10% events with W ′ in s-channel

⇒ Working fine, but ill-defined
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Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Rother, Köthe]

– building block: coupling layer

– conditional: parton-level events from {r}
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Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Rother, Köthe]

– building block: coupling layer

– conditional: parton-level events from {r}

Properly defined unfolding [again pp → ZW → (``) (jj)]

– performance on distributions like FCGAN

– parton-level probability distribution for single detector event

⇒ Proper statistical unfolding
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Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Rother, Köthe]

– building block: coupling layer

– conditional: parton-level events from {r}

Unfolding initial-state radiation

– detector-level process pp → ZW+jets [variable number of objects]

– parton-level hard process chosen 2→ 2 [whatever you want]

– ME vs PS jets decided by network [including momentum conservation]
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Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

– network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN [Ardizzone, Rother, Köthe]

– building block: coupling layer

– conditional: parton-level events from {r}

Unfolding initial-state radiation

– detector-level process pp → ZW+jets [variable number of objects]

– parton-level hard process chosen 2→ 2 [whatever you want]

– ME vs PS jets decided by network [including momentum conservation]

⇒ How systematically can we invert?
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Outlook

Machine learning for LHC theory

– goal: data-to-data with fundamental physics input

– MC challenges
higher-order precision in bulk
coverage of tails
unfolding to access fundamental QCD

– neural network benefits
best available interpolation
training on MC and/or data, anything goes
lightning speed, once trained

– GANs the cool kid
generator trying to produce best events
discriminator trying to catch generator,

– INNs the theory hope
flow networks to control spaces
invertible network the new tool

Any ideas?
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Backup: How to GAN event subtraction

Idea: subtract samples without binning [Butter, TP, Winterhalder]

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– applications in LHC physics
soft-collinar subtraction, multi-jet merging
on-shell subtraction
background/signal subtraction

– GAN setup
1. differential, steep class label
2. sample normalization
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Subtracted events

How to beat statistics by subtracting

1– 1D toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– statistical fluctuations reduced (sic!)
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Subtracted events

How to beat statistics by subtracting

1– 1D toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– statistical fluctuations reduced (sic!)

2– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)
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Subtracted events

How to beat statistics by subtracting

1– 1D toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– statistical fluctuations reduced (sic!)

2– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)

3– collinear subtraction [assumed non-local]

pp → Zg (B: matrix element, S: collinear approximation)
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⇒ Applications in theory and analysis
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