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Simulations for future LHC runs

Unique: fundamental understanding of lots of data

— precision theory predictions

— precision simulations

— precision measurements

= What’s needed to keep the edge?
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Simulations for future LHC runs

Unique: fundamental understanding of lots of data

— precision theory predictions

— precision simulations

— precision measurements

= What’s needed to keep the edge?

Event generation towards HL-LHC

simulated event numbers scaling with the expected events  fractor 25]

general move to NLO/NNLO as standard 5% error]

higher relevant final-state multiplicities (et recoil, extra jets, WBF, etc.]

additional low-rate high-multiplicity backgrounds

specific precision predictions not available in standard generators n3Loinmc?
interpretation of measurements with general signal hypothesis [ets+MeT]



Simulations for future LHC runs

Unique: fundamental understanding of lots of data

— precision theory predictions

— precision simulations

— precision measurements

= What's needed to keep the edge?

Event generation towards HL-LHC

— simulated event numbers scaling with the expected events  factor 25)

general move to NLO/NNLO as standard (5% error]

higher relevant final-state multiplicities et recoil, extra jets, WBF, etc.]

additional low-rate high-multiplicity backgrounds

specific precision predictions not available in standard generators n3Loinmc?
interpretation of measurements with general signal hypothesis [ets+MET]

Three ways to use ML

— improve current tools: iSherpa, ML-MadGraph, etc
— new ideas, like fast ML-generator-networks
— conceptual ideas in theory simulations and analyses



GAN algorithm

Generating events

— training:  true events {x7}
output: generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]

Lp=(—log D(X)>XT +( —log(1 — D(X))>XG
— generator constructing r — xg by minimizing (0 needed
Lg = ( —log D(x))xG
— equilbrium D =05 = Lp=Lg=1
= statistically independent copy of training events
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GAN algorithm

Generating events
— training:  true events {x7}
output: generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]
— generator constructing r — xg by minimizing (0 needed]
= statistically independent copy of training events

Generative network studies  [review 2008.08558]

Jets [de Oliveira (2017), Carrazza-Dreyer (2019)]

— Detector simulations  [paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]
— Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]
— Unfolding [patta (2018), Omnifold (2019), Bellagente (2019), Bellagente (2020)]

— Templates for QCD factorization (uin (2019)]

— EFT models (erin (2018)]

— Event subtraction [sutter (2019)]

— Sherpa  [Bothmann (2020), Gao (2020)]

— Basics [GANpiification (2020), DCTR (2020)]

— Unweighting  [verheyen (2020, Backes (2020)]

— Superresolution  [pigelio (2020), Blecher (2020)]




GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known

compare GAN vs sampling vs fit Z;
— quantiles with x2-values

10 quantiles === truth
GAN trained on 100 data points fit
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GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known
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GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

true function known

0.1

compare GAN vs sampling vs fit .16 10 auntes T
161 GAN trained on 100 data points. it
— quantiles with x2-values o o Samele
— fit like 500-1000 sampled points 012
GAN like 500 sampled points [amplifictation factor 5] 2010
requiring 10,000 GANned events Tots

— 5-dimensional Gaussian shell
sparsely populated ! h
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— fit-like additional information

— interpolation and resolution the key nroF
= GANs enhance training data
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How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {t — 6 jets

t/t and W* on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
direct observables with tails [statistical error indicated]
constructed observables similar
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How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]
. ' - , w
— medium-complex final state {t — 6 jets

t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

— flat observables flat [phase space coverage okay]
— direct observables with tails [statistical error indicated]
— constructed observables similar

1M true events x 10"
— improved resolution (1M training events]

[




How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {t — 6 jets

t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]

flat observables flat [phase space coverage okay]
direct observables with tails [statistical error indicated]
constructed observables similar

10M generated events x 102

improved resolution [10M generated events]
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How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder] w
. ) - . w
— medium-complex final state {t — 6 jets ;
t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
— flat observables flat [phase space coverage okay]
— direct observables with tails [statistical error indicated]
— constructed observables similar N
. . ; 50M generted events X 10 18
- |mproved resolution  [s5om generated events] 3 : ’
— Proof of concept 1.6
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Chemistry of loss functions

GAN version of adaptive sampling

— generally 1D features

phase space boundaries
kinematic cuts
invariant masses [op, W]

— batch-wise comparison of distributions, MMD loss with kernel k
MMD? = (k(x, XVt + KO YD)y e = 200G ))

Lg — Lg + A\g MMD? |
i e ) (i)
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Chemistry of loss functions

GAN version of adaptive sampling

— generally 1D features

phase space boundaries
kinematic cuts
invariant masses [op, W]

— batch-wise comparison of distributions, MMD loss with kernel k
MMD? = (k(x, X')>XT,X,T + (k(y, y/)>yG,Y<’; — 2(k(x, y))

Lg — Lg + A\g MMD? |
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Unweighting

Gaining beyond GANpliflication  [Butter, TR, Winterhalder; Clausius’ talk]

— phase space sampling: weighted events (ps weight x| A|2]

events: constant weights

— probabilistic unweighting weak spot of standard MC

— learn phase space patterns (density estimation]

generate unweighted events fthrough loss function]

— compare training, GAN, classic unweighting

107!
1072
St 10 3
BT
107

10°%

—— Train
—— Unweighted
uwGAN

o,

2.0

15
~

A hlan

5
1.0
0.5

H

i

0 1000 2000

E,-

3000
[GeV]

4000 5000 6000



How to GAN away detector effects

Goal: invert Markov Processes [Bellagente, Butter, Kasiczka, TP, Winterhalder]

— detector simulation typical Markov process
— inversion possible, in principle (entangled convolutions]

— GAN task

DELPHES
partons — — detector—>partons

= Full phase space unfolded

Conditional GAN

— map random numbers to parton level
hadron Ievel as condition  [matched event pairs]
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Detector unfolding

-
Reference process pp — ZW — (¢£) (jj) z "
— broad jj mass peak W 7

narrow ¢¢ mass peak j
modified 2 — 2 kinematics '
fun phase space boundaries

— GAN same as event generation  with MMD]

Simple application

x10~2 x107*
2.5 Truth Truth
—— FCGAN — FCGAN
—— Delphes —— Delphes
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Detector unfolding -

Reference process pp — ZW — (££) (jj) z o
— broad jj mass peak W i
narrow £¢ mass peak p

modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MmD]

Simple application
— detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]
prj, = 30 ...50 GeV PTj= 30 ... 40 GeV Pre— = 20 ...50 GeV (12)

Py > 60 GeV (13)
—2 —1
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Detector unfolding

Reference process pp — ZW — (££) (jj) > "

— broad jj mass peak
narrow £¢ mass peak ;
modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MmD]

Simple application
— detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

pr.j, =30...50 GeV pr.j,=30...40 GeV Pr - = 20 ...50 GeV (12)
Py > 60 GeV

(13)
— model dependence of unfolding x107
— train: SM events 6.0 _ :C(‘}‘A;“)
test: 10% events with W’ in s-channel |

—— Truth (SM)

= Working fine, but ill-defined
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Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Kothe]

— building block: coupling layer
— conditional: parton-level events from {r}




Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Ksthe]

— building block: coupling layer
— conditional: parton-level events from {r}

Properly defined unfolding  (againpp — zw — (¢2) (i)

— performance on distributions like FCGAN
— parton-level probability distribution for single detector event
=- Proper statistical unfolding

single detector event
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Unfolding as inverting

Invertible networks

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow

evaluation in both directions — INN

— building block: coupling layer
— conditional: parton-level events from {r}

Unfolding initial-state radiation

[Ardizzone, Rother, Kéthe]

[Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kdthe]

— detector-level process pp — ZW+jets  (variable number of objects]

— parton-level hard process chosen 2 — 2 whatever you want]

— ME vs PS jets decided by network

1072

[including momentum conservation]

— 2jet
— 3jet
1 jet
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Unfolding as inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kothe]

— network as bijective transformation — normalizing flow
Jacobian tractable — normalizing flow
evaluation in both directions — INN  [Ardizzone, Rother, Kéthe]

— building block: coupling layer
— conditional: parton-level events from {r}

Unfolding initial-state radiation

— detector-level process pp — ZW+jets  (variable number of objects]
— parton-level hard process chosen 2 — 2 (whatever you want]

— ME vs PS jets decided by network fincluding momentum conservation]
= How systematically can we invert?

forward

scattering QCD shower
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Outlook

Machine learning for LHC theory

— goal: data-to-data with fundamental physics input
— MC challenges

higher-order precision in bulk
coverage of tails
unfolding to access fundamental QCD

— neural network benefits

best available interpolation
training on MC and/or data, anything goes
lightning speed, once trained

— GANSs the cool kid

generator trying to produce best events
discriminator trying to catch generator,

— INNs the theory hope

flow networks to control spaces
invertible network the new tool

Any ideas?




Backup: How to GAN event subtraction

Idea: subtract samples without binning  [Butter, TR, Winterhalder]

Ap_s = /A% + A% > max(AB, AS)

— applications in LHC physics

soft-collinar subtraction, multi-jet merging
on-shell subtraction
background/signal subtraction

— GAN setup

1. differential, steep class label
2. sample normalization

— statistical uncertainty
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Subtracted events

How to beat statistics by subtracting

1- 1D toy example
1 1
Pg(x) = % To1 Ps(x) = x = Pg_s=0.1

— statistical fluctuations reduced (sic!)

10° 0.13
GAN vs Truth — (B-S)eax
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Subtracted events

How to beat statistics by subtracting
1- 1D toy example
1 1
PB(X): ;-’»0.1 Ps(X): ; = Pg_s=0.1

— statistical fluctuations reduced (sic!)
2— event-based background subtraction  fweird notation, sorry]

pp—ee” B pp—oy—eeT (S => p—o>Z—ee (BS)

x10

GAN vs Truth
2.0
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do
b,

20 40 60 S0 100
E, [GeV]




Subtracted events

How to beat statistics by subtracting

1- 1D toy example
PB(X): %-’»0.1 Ps(X): % = Pg,s:O.‘l
— statistical fluctuations reduced (sic!)
2— event-based background subtraction  fweird notation, sorry]
pp—ee” B pp—oy—eeT (S => p—o>Z—ee (BS)
3— collinear subtraction [assumed non-local]
pp — Zg (B: matrix element, S: collinear approximation)

0 20 40 60 80 100
pry [GeV]

= Applications in theory and analysis
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