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Neural networks and uncertainties

Neural networks
— nothing but numerically evaluated functions
regression x — f(x)
classification x — p(x) € [0, 1]
generation x — px(x) with sampled x ~ N

— constructed through minimization of loss function
— Error bars making us scientists x — f(x) £ Af(x)?
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Uncertainties

Kinds of uncertainties
— statistical uncertainties [Poisson, Gauss, vanishing for large stats]
— systematic uncertainties [nuisance parameter]

reference measurement elsewhere [Gauss, transferred statistical uncertainty]
detector efficiency [distribution from simulations]
unknown stuff [distribution unknown]

— theory: nuisance parameter

no frequentist interpretation
no transformation invariance, range (o — 1/0 — logol

— reduction of exclusive likelihood

Bayesian: integrate out nuisance parameter
likelihood/frequentist: profile over nuisance parameter




Uncertainties

Kinds of uncertainties
— statistical uncertainties [Poisson, Gauss, vanishing for large stats]
— systematic uncertainties [nuisance parameter]

reference measurement elsewhere [Gauss, transferred statistical uncertainty]
detector efficiency [distribution from simulations]
unknown stuff [distribution unknown]

— theory: nuisance parameter

no frequentist interpretation
no transformation invariance, range (o — 1/0 — logol

NN with uncertainties
— regression: pr of jet from constituents, error bar??
classification: probability of Higgs event, error bar??
generation: phase space density for large prij error bar??
— standard LHC approach
train black box on Monte Carlo
calibrate with reference data




A tale of four theses

David MacKay (1991) Bayesian Methods

- Bayesian methods  [posterior=likelihood*prior/evidence] for Adaptlve Models
P(DIM)P(M)
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— Bayesian networks for inference
data modelling through parameters w

David J.C. MacKay
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Occam factor for model evidence  [posterior/prior volume]
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Since the 1960’s, the Bayesian minority has been steadily growing, especially in the fields
of economics [89] and pattern processing [20]. At this time, the state of the art for the
problem of speech recognition is a Bayesian technique (Hidden Markov Models), and the best
image reconstruction algorithms are also based on Bayesian probability theory (Maximum
Entropy), but Bayesian methods are still viewed with mistrust by the orthodo: tistics
community; the framework for model comparison is especially poorly known, even to most
people who call themselves Bayesians. This thesis therefore takes some time to thoroughly
review the flavour of Bayesianism that I am using. To some, the word Bayesian denotes
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Chapter 3 (Submitted December 10, 1991)

A Practical Bayesian Framework
for Backpropagation Networks

Abstract

A quantitative and practical Bayesian framework is described for learning of map-
pings in feedforward networks. The framework makes possible: (1) objective compar-
isons between solutions using alternative network architectures; (2) objective stopping
rules for network pruning or growing procedures; (3) objective choice of magnitude

and type of weight decay terms or additive regularisers (for penalising large weights,
etc.); (4) a measure of the effective number of well-determined parameters in a model;
(5) quantified estimates of the error bars on network parameters and on network out-
put; (6) objective comparisons with alternative learning and interpolation models such
as splines and radial basis functions. The Bayesian ‘evidence’ automatically embod-
ies ‘Occam’s razor’, penalising over-flexible and over-complex models. The Bayesian
approach helps detect poor underlying assumptions in learning models. For learning
models well matched to a problem, a good correlation between generalisation ability
and the Bayesian evidence is obtained.




A tale of four theses

David MacKay (1991)
- Bayesian methods [posterior=likelihood*prior/evidence]
P(D|M)P(M)
P(D)
— Bayesian networks for inference ”
data modelling through parameters w
P(D|w, M)P(w|M) Radford M. Neal
P(DIM)
— technically: Gaussian weight distributions?

BAYESIAN LEARNING FOR NEURAL NETWORKS

P(M|D) =

P(w|D, M) =

Radford Neal (1995)

— deep Bayesian networks [regression, classification]

— beyond Gaussian approximation

— hybrid Monte Carlo sampling
technically: avoid overtraining for large BNNs
= Deep BNNs for inference

A thesis submitted in conformity with the requirements

© Copyright 1995 by Radford M. Neal




A tale of four theses CAMBRIDGE

Yarin Gal (201 6) Uncertainty in Deep Learning

deep learning and uncertainties

active learning/reinforcement learning
technically: variational inference

technically: stochastic regularization (srr, dropout
= BNNs for uncertainty

Yarin Gal

Department of Enginecring
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Gonville and Caius College September 2016
Otbher situations that can lead to uncertainty include

« noisy data (our observed labels might be noisy, for example as a result of measure-
ment imprecision, leading to aleatoric uncertainty),

uncertainty in model parameters that best explain the observed data (a large
number of possible models might be able to explain a given dataset, in which case
we might be uncertain which model parameters to choose to predict with),

« and structure uncertainty (what model structure should we use? how do we specify
our model to extrapolate / interpolate well?).

The latter two uncertainties can be grouped under model uncertainty (also referred to
as epistemic uncertainty). Aleatoric uncertainty and epistemic uncertainty can then be
used to induce predictive uncertainty, the confidence we have in a prediction.
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Yarin Gal (201 6) Uncertainty in Deep Learning

deep learning and uncertainties

active learning/reinforcement learning
technically: variational inference

technically: stochastic regularization (srr, dropout
BNNs for uncertainty

Yarin Gal

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy
But fitting the posterior over the weights of a Bayesian NN with a unimodal
approximating distribution does not mean the predictive distribution would be
dal! imagine for simplicity that the i liate feature output from the first
Gonville and Caius College September 2016

layer is a unimodal distribution (a uniform for example) and let’s say, for the sake
of argument, that the layers following that are modelled with delta distributions (or
Gaussians with very small variances). Given enough follow-up layers we can capture

any function to arbitrary precision—including the inverse cumulative distribution
function (CDF) of any multimodal distribution. Passing our uniform output from
the first layer through the rest of the layers—in effect transforming the uniform
with this inverse CDF—would give a multimodal predictive distribution.



A tale of four theses

Yarin Gal (2016)
— deep learning and uncertainties
— active learning/reinforcement learning
— technically: variational inference
— technically: stochastic regularization (srr, dropout
= BNNs for uncertainty

INAUGURAL — DISSERTATION

2ur

Manuel HauBmann (2021) Erlangung der Doktorwiirde
— many proper derivations . o
— active learning, reinforcement learning der
— stochastic differential equations RUPRECHT-KARLS-UNIVERSITAT

HEIDELBERG

state of the art
technically: BNN variational inference

vorgelegt von

Manuel HauBmann, M.Sc.

‘geboren in Stuttgart, Deutschland




QCD jets

Data from ATLAS & CMS
— colliding protons on protons at E ~ 13000 x mp
— most interactions qq, g9 — qq, g9
— quarks/gluon visible as jets  opp_,j X £ & 108fb x 80/fb ~ 10 events
= Proper big data

SATLAS

EXPERIMENT




QCD jets

Data from ATLAS & CMS
— colliding protons on protons at E ~ 13000 x mp
— most interactions 99, g9 — qq, g9
— quarks/gluon visible as jets  opp,jj X £ & 108fb x 80/fb ~ 100 events
= Proper big data

Physics in jets
— first-principle quantum field theory predictions aco
— jets as decay products
67% W —jj 70%Z—j 60%H-—j 67%t—jj 60%T—j..
— new physics in ‘dark jets’ : ;
= Interesting for many reasons




QCD jets

Data from ATLAS & CMS
— colliding protons on protons at E ~ 13000 x mp
— most interactions qq, g9 — qq, g9
— quarks/gluon visible as jets  opp_,j X £ & 108fb x 80/fb ~ 10 events
= Proper big data

Physics in jets
— first-principle quantum field theory predictions [acoj
— jets as decay products
67% W —jj 70%Z—jj 60%H-—jj 67%t—jj 60%T—j..
— new physics in ‘dark jets’
= Interesting for many reasons

Monte Carlo data
— theory simulation: Madgraph/Pythia, Sherpa
— fast detector simulation: Delphes
— data-to-data comparison: MC vs LHC
= First-principle simulations




QCD jet representation

Jet constituents
— historically

only hard parton 4-momentum interesting [p = (£, 7). (0 - p) = ]
parton content from ‘tagging’
QCD tests from theory observables




QCD jet representation

Jet constituents
— historically

only hard parton 4-momentum interesting [p = (£, 7). (0 - p) = ]

parton content from ‘tagging’
QCD tests from theory observables

— ML-excitement phase [since 2015/2016]

data-driven jet analyses

include as much data as possible
avoid intermediate high-level variables
calorimeter output as image [cnns]
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QCD jet representation

Jet constituents
— historically

only hard parton 4-momentum interesting [p = (£, 7). (0 - p) = ]
parton content from ‘tagging’
QCD tests from theory observables

— ML-excitement phase [since 2015/2016]

data-driven jet analyses

include as much data as possible
avoid intermediate high-level variables
calorimeter output as image [cnns]

— professional ML phase [since 2019]
represent as 20-100 constituent 4-vectors
combine calorimeter and tracker
graph networks
symmetry-aware networks
autoencoders

=- Deep learning = modern networks on low-level observables

™

.




Jet regression

Measure jet properties

— uncertainties mandatory

— train many networks
different architectures/hyperparameters
different trainings
different data sets

— histogram network output f(x), use f(x) + Af(x)
— remember NN function f,, (x) described by weights w
= Bayesian network  Af,,(x) from Aw;

Energy measurement for jet j
— expectation value from probability distribution

(E) = [ o€ E p(El)

— Bayesian network
sample weight distributions p(w|M) BN Por %\ o o
N A 5 g =ﬁzl‘i

pEN) = [ do p(Elw, ) pleltt) gmﬁ /% o\ ety
/ 2 Noise,i

N pmd NZ(I‘ wy

Ensemble of networks




Constructing the loss

Derivation for regression
— start from variational approximation iink g(w) as Gaussian with mean and widtn]
PLEL) = [ do p(Ew]) pleol) ~ [ dus p(Elw.) a(w)
- similarity thl’OUgh minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

KLlg(e). pIM)] = [ de g(e) tog (TI\)/I)

q)p(M)
= [ o ae vos 0T

= KLIq(w), p(w)] ~ [ du q(w) log (M) + log p(M) [ doo q()

= KLIq(w), p(w)] ~ [ dw q(w) log (M[w) + log p(M)
— evidence lower bound (ELBO)
log p(M) = KL[g(w), p(w|M)] — KL[g(w), p(w)] +/dw q(w) log p(M|w)
> [ dw a(w) log (M) ~ KLig(w). p(w)]
= loss with likelihood p(M|w) and prior p(w)

— [ dw q(w) log p(Mlw) + KLiq(e), )]




Link to standard networks

Dropout and regularization

— Monte-Carlo dropout

meant to reduce overfitting
remove random weights during training

loss with Bernoulli distribution  [weight xoy = 0, w
L= —/dx (1 =)' =] logp(Mixwo) ~ —p log p(Mlwo)

trivial version of variational training

~ Gaussian prior N (w) = —7— e~ (w—m)?/(20%)

—

KL[g(w), p(w)] = —

‘75 + (g — p)?
20,27

+ Iog 2
9q
deterministic network q(w) — 6(w — wp)

_ 2
)+ (ko :}o)

+ const
20

L = — log p(M|wo
P

standard network with L2-regularization, A = 1/(203)
= well-defined deterministic counterpart




Regression problem

Uncertainties
— expectation value using trained network g(w)

B) = [ doa@)B) with (E), = [ dE E p(Elw,))
full variance
T = ((E = (E))?)
= [ dwa) [(E). - 2(E)(E). + (V7]

= / dw q@) [(E%)w = (EV%, + ((E)es = (E)?] = fioon + Ores

contribution vanishing for g(w) — 6(w — wp)
Oha = [ A q() (E)es — (EV?
contribution independent of the network weights
O = [ dw a(w) [(ED — (E)2]

supervised uncertainties

training statistics
stochastic training data
systematics from data/label augmentations



Jet measurements with error bars

Measure pr ; of hadroncially decaying top quark  [asieczka, Luchmann, Otterpohi, TP]

— data: top jets (o = 400 ... 1000 Gev]
pr of (fat) jet decent estimate for piruin

pr .t from 5-layer FCN better?
issues with Gaussian output uncertainty?
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Jet measurements with error bars

Measure pr ; of hadroncially decaying top quark  [asieczka, Luchmann, Otterpohi, TP]

— data: top jets (o = 400 ... 1000 Gev]
pr of (fat) jet decent estimate for piruin
pr .t from 5-layer FCN better?
issues with Gaussian output uncertainty?
— truth label distribution
depending on simulation details
symmetric in ISR-jet ‘heat bath’
training data without ISR jets 0.014

network task: correct for lost constituents " prj=600...620 GeV
0.012

0.010

without ISR

o
=3
=3
@

Normalized

0.006

0.004 with ISR

0.002
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Jet measurements with error bars

Measure pr ; of hadroncially decaying top quark  [kasieczka, Luchmann, Otterponl, TP]

— data: top jets [py = 400... 1000 Gev] 601 BNN pr.) = 600...620 GeV
pr of (fat) jet decent estimate for pt}‘,‘}h 5o =
pr .t from 5-layer FCN better?
issues with Gaussian output uncertainty? 40

— truth label distribution %30 -=- MSE

¥ Otot

depending on simulation details —— Ostocn

symmetric in ISR-jet ‘heat bath’ T Oprea
training data without ISR jets 10
network task: correct for lost constituents

ini i 10° 10°
— training sample size Training size
separate osioch > pred
statistic not the problem  [LHC theme] 60 pr,j = 600...620 GeV

noisy label inherent limitation

check with deterministic networks

Frequentist
40 Dropout

>

8 -—- MSE
=30

S —%— Otot

7 Ostoch

—>— Opred

10\—\,“_\‘

104 10°
Training size




Jet measurements with error bars

Measure pr ; of hadroncially decaying top quark  [asieczka, Luchmann, Otterpohi, TP]

— data: top jets (o = 400 ... 1000 Gev]

pr of (fat) jet decent estimate for piruin

pr .t from 5-layer FCN better?

issues with Gaussian output uncertainty?
— truth label distribution

depending on simulation details

symmetric in ISR-jet ‘heat bath’

training data without ISR jets

network task: correct for lost constituents
— training sample size

separate osioch > Opred

statistic not the problem  [LHC theme]

noisy label inherent limitation

check with deterministic networks
— non-Gaussian network output

remember pi“I" non-Gaussian

model p(M|w) as Gaussian mixture
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o
o
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o

Normalized
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4
o
=
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Normalized

0.005
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truth

————— predicted
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Data augmentation

Calibration means error propagation
— calibration means label measured elsewhere

— training on smeared data?
training with smeared labels!

— Gaussian noise over label
Temear = (4 ... 10)% x P’

added to the stochastic uncertainty

2

_ 2 2
Tiot = Tstoch + Upred

2 2 2
Tstoch,0 + Ocal + Upred

[with error]
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Data augmentation

Calibration means error propagation

— calibration means label measured elsewhere  with error]

— training on smeared data?
training with smeared labels!
— Gaussian noise over label

osmear = (4 ... 10)% % p‘7|'_l,llth
added to the stochastic uncertainty

2 2 2
Ttot = Tstoch + ‘Tpred

= Ustoch,o + Usal + Usred 120{ Pri= 600..620Gev 7
— extracted correctly? 100
= Jet regression bottom lines

BNN regression working
statistical uncertainty controlled
stochastic uncertainty sizeable

80

60

Ocal [GeV]

40

non-Gaussian output working 2
training-data augmentation K
calibration straighforward 0 20 40 60 80 100 120

Osmear [GeV]




Classification problem

Post. Physics

The Machine Learning Landscape of Top Taggers
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Abstract

Based on the established task of identifying boosted, ha(lrum:ally decaying top
quarks, we compare a wide range of modern machine learning approaches. Unlike
Tont. establiched methods they rely an low-lovel input, for fmstance calorimetor
output. While their network architectures are vastly different, their performance
is comparatively similar. In general, we find that these new approaches are ex-
tremely powerful and great fun.

‘Hello world’ of LHC-ML
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Classification problem

TOp tagging with uncertainties  [Boliweg, HausBmann, Kasiecka, Luchmann, TP, Thompson]

— (60£77)% top vs gluon probability
— Bayesian classification network  (variational inference]

pleli) = [ d plelw.s) plel)
~ [ dw ploli, ) a(e)

— advantage: parton content not stochastic
complication: output in closed interval [0, 1]

Sigmoid(x) = % < Sigmoid~'(x) = Iog
— Gaussian to classification output

poea = [ o Sigmoid(w) Gy ()

1 X X
:/0 o iy G <Iog1ix) € [0,1]

= correlation opreq VS Hpred

~ 1 Gauss
Opred ~ Mpred ( - Mpred) Tpred

Normalized

U=0 u=1 u=2

1 2
Network output

@

Normalized
IS

N

Hpred
Opred

0.0

0.2 0.4 0.6 0.8 1.0
Network output



Jet classification with error bars

Determine top content of jets

— data: QCD and top jets (o7 = 550 ... 600 GeV]
jetimage [peepTop/cNN]
ordered constituents [LoLa)

— performance BNN vs deterministic

10
—— B-CNN
—— ONN
10* —— B-lola
— LloLa
- 10°
8
S
S
N
~ 102
10!
10°
0.0 0.2 0.4 0.6 08 1.0

€t



Jet classification with error bars

Determine top content of jets

— data: QCD and top jets (o7 = 550 ... 600 GeV]
jetimage [peepTop/cNN]
ordered constituents [LoLa)

— performance BNN vs deterministic
- prior independence [LHC means frequentist]

-2 —1
Fprior | 10 10 1 10 100 1000
AUC 05 0.9561 0.9658 0.9668 0.9669 0.9670
error — +0.0002  £0.0002  £0.0002  £0.0002  0.0002




Jet classification with error bars

Determine top content of jets

— data: QCD and top jets (o7 = 550 ... 600 GeV]
jetimage [peepTop/cNN]
ordered constituents [LoLa)

— performance BNN vs deterministic
- prior independence [LHC means frequentist]

-2 —1
Fprior | 10 10 1 10 100 1000
AUC 05 0.9561 0.9658 0.9668 0.9669 0.9670
error — +0.0002  £0.0002  £0.0002  £0.0002  0.0002

— p — o parabola correlation
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Jet classification with error bars

Determine top content of jets

— data: QCD and top jets (o7 = 550 ... 600 GeV]
jetimage [peepTop/cNN]
ordered constituents [LoLa)

— performance BNN vs deterministic
- prior independence [LHC means frequentist]

Tprior | 1072 101 1 10 100 1000

AUC
error

0.5 0.9561 0.9658 0.9668 0.9669 0.9670
— +0.0002 40.0002 +0.0002 40.0002 +0.0002

— p — o parabola correlation

— training statistics Hored ©10-45.0.55]
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Jet classification with error bars

Determine top content of jets

— data: QCD and top jets (o = 550 ... 600 GeV]
jetimage [peepTop/CNN]
ordered constituents [LoLa)

performance BNN vs deterministic
prior independence  [LHC means frequentist]

Tprior | 1072 101 1 10 100 1000
AUC 0.5 0.9561 0.9658 0.9668 0.9669 0.9670
error — +0.0002 +0.0002 +0.0002 +0.0002 +0.0002
— p — o parabola correlation 10
- . —— BNN MAP
— training statistics —f Deterministic
. . . 08 —}— BNN MAP calibrated
— automatic calibration g | ew
'E
4
o
=
]
E

"0.0 0.2 0.4 0.6 0.8
Mean predicted score




Data augmentation

Shifted energy scale

— teston augmented data [specific systematics]

shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

=
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© Mpred | Opred

=
[N}

Network output
=
o

0.8
Top jet
0.6
—0.10 —0.05 0.00 0.05 0.10
Shift
0981 Hpred | Opred } \
. {
3
3 ’
H 0.96
X
2
£ 0.94
z

0.92 Top jet

—0.10 —0.05 0.00 0.05 0.10
Shift




Data augmentation

Shifted energy scale

— teston augmented data [specific systematics]

shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

. Top jets
— test on noisy data

01s=0.2
mean = 0.0110(6)

N
w

20-40% noise on constituents
minor effect before sigmoid

4
n = 0.0459(4)
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Normalized
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Data augmentation

Shifted energy scale

— teston augmented data [specific systematics]

shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

— test on noisy data

20-40% noise on constituents
minor effect before sigmoid

g
o

— train on augmented data { pprrritt

10% noise on constituents
augmented training softening adversarial attack

o
©
——
——
——t

Network output
o o
~ ©

—

o
o

+ Lola, trained on JES
}  B-LolLa trained on JES
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Data augmentation

Shifted energy scale

— test on augmented data  (specific systematics]

shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

— test on noisy data

20-40% noise on constituents
minor effect before sigmoid

— train on augmented data

10% noise on constituents
augmented training softening adversarial attack

— add noise events [pile-up]

increased error for constituent architecture
instability for image architecture




Data augmentation

Shifted energy scale

— teston augmented data [specific systematics]
shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

0.225

— test on noisy data 0.200
20-40% noise on constituents Zi:
minor effect before sigmoid 50125

— train on augmented data ° e ¢
10% noise on constituents 0.050

augmented training softening adversarial attack 0025
— add noise events pie-up] %

increased error for constituent architecture
instability for image architecture

= Jet classification bottom lines

BNN classification working

statistical uncertainy controlled
sigmoid output leading pattern
training- and test-data augmentation 0




Generation problem

Unsupervised Bayesian networks [geliagente, HauBmann, Luchmann,

— data: event sample [points in 2D space]
learn phase space density
normalizing flow mapping to latent space nn
standard distribution in latent space (Gaussian]
mapping bijective
sample from latent space
— Bayesian version
allow weight distributions
learn uncertainty map
— 2D wedge ramp
1- g(xr%ax - Xv%in)

Xmax — Xmin

ax+b=ax+

(x — %)2 (Aa)?

+ (1 + 2)2 (Dxmax)? + (1 - 2)2 (A Xin)?

p(x) =

(8p)® =

explaining minimum in opreq(x)

TP]

Normalized

BINN
Truth

0.07

0.06

0.05

0.04

Absolute Uncertainty

0.03

0.02

Tpred
+00pred

Fit: Aa = 0.09, Az = 0.01

0.2 0.4 0.6



Generation problem

Unsupervised Bayesian networks [geliagente, HauBmann, Luchmann,

— data: event sample [points in 2D space]
learn phase space density
normalizing flow mapping to latent space nn
standard distribution in latent space (Gaussian]
mapping bijective
sample from latent space
— Bayesian version
allow weight distributions
learn uncertainty map
— 2D wedge ramp
— kicker ramp
— Gaussianring [u=4,w=1]

2
(Ap)? +

(r—p? 1

G(r) p—r
Ap:’% e —| (aw)?

w2

explaining dip in opreq(X)

TP]

0.03

Normalized

B

0.01

Absolute Uncertainty

3.0

S
&

o

x107%

—— Fit: Ap=0.04

— Opred

B tioy




Generation problem

Unsupervised Bayesian networks  [geliagente, HauBmann, Luchmann, TP]

— data: event sample [points in 2D space]

learn phase space density

normalizing flow mapping to latent space nn
standard distribution in latent space (Gaussian]
mapping bijective 001
sample from latent space

— Bayesian version

allow weight distributions y
learn uncertainty map !

x107%

0.03

B

Normalized

- 2D wedge ramp G Ap=004  — opu
i 30 B tdop
— kicker ramp .
— Gaussianring [u=4,w=1 B0 %
2 H
G(r) p—rl? 2 |(r=pP? 1 2 fw ~
Ap = | =2 Ap) + | —5— — Aw 2
Vol ’ ’ w2 ( /"‘) w3 ( ) <10

explaining dip in opreq(X)

= INNs just (non-parametric) fits




LHC events with error bars

Realistic process Z — pu plus jets

— data: LHC scattering events
BINN just as described before

7 + 1 jet exclusive

Z + 1 jet exclusive

True
—— BINN
Train

— True
—— BINN
Train

normalized

25 50 75 100 125
prjy [GeV]

107! Z + 2 jet exclusive
0.200
E T
S 10 Towe |2 0.175
El Z 0175
£ BINN | 2
E] Train ]
= 0.150
104
1.25
oo 051k
=5 0951 ©
. 10! . 10!
£ =100
0 =0

prj, [GeV]

= Welcome to current research!




rferenee

Conditional INNs for inference  [sieringer, Heimel...]

— condition jets with QCD parameters
train

model parameters — Gaussian latent space
test

Gaussian sampling —» QCD parameter measurement
— splittings beyond color factors C4 vs Cr

Dl 2+ Capt - )

1—z(1—y)

) 2(1—y) (=20 -y

Pgg = 2C4 [Dgg (1 T + 1—(1—20— y)) + Fggz(1 — 2) + Cggyz(1 — z)]
Pgg = Tg [qu (22 +(1 - 2)2)  Cgayz(t Z)]

Training

Pqq = C¢ [qu

Inference

{=}
Summary LHC Summary
net Jets net
b b

z
QCD Gaussian
G @easurement ALY sampling

g(m;h) P(z)

{zm}

QCD

model

P(ml{z}) 9(z:h) 2~ P(2)




rferenee

Conditional INNs for inference

[Bieringer, Heimel,...]
— condition jets with QCD parameters

train model parameters —» Gaussian latent space

test Gaussian sampling — QCD parameter measurement
— splittings beyond color factors C4 vs Cg

Pag = Cr |Dag—22=Y)_ | Foe Caayz(1
99 = CF qqur qq(1 — 2) + Cqqyz(1 — 2)

_ z(1—y) (1-2(0-y)
Pgg = 2Cp [Dgg <1 T + T y)) + Fggz(1 — 2) + Cggyz(1 — z)]
Pgg = Tr {qu (Zz +(1 = 2)2) + Cgqyz(1 — Z)]
— idealized shower

= Posterior
— Gaussian fit

[Sherpa]

== Absolute error of 2.5

[0-08 o =5.6

-10 0 10 -10 0



rferenee

Conditional INNs for inference [sieringer, Heimel...]

— condition jets with QCD parameters
train model parameters —» Gaussian latent space
test Gaussian sampling — QCD parameter measurement

— splittings beyond color factors C4 vs Cg
2z(1—y)
1—2z(1-y)
R A e e i R

Pgq = Tr [Faq (£ + (1 = 2°) + Caqyz(1 — 2)]
— idealized shower (sherpal
— talking about priors...

Pgq = CF [qu + Fgq(1 — 2) + Cqqyz(1 — z)]

— Posterior
—— Gaussian fit

*+ Relative error of 2%
== Absolute error of 2.5

0.1




Bayesian networks

Initially developed for inference they work for...
...regression with error bars
...classification with error bars
...generation with error bars
...but not competitive with conditional flow inference
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