Blabla

FCGA

INN

CINN

Beyond

Invertible Networks for Unfolding

Tilman Plehn

Universität Heidelberg

LHC-EW WG 2/2021

Tilman Plehn

Blabla

- FCGAN
- INN
- cINN
- Beyond

Machine Learning for HL-LHC

Searching for models \longrightarrow fundamental understanding of data

- precision theory
- precision simulations
- precision measurements

Blabla

- FCGA
- INN
- CINN
- Beyond

Machine Learning for HL-LHC

Searching for models \longrightarrow fundamental understanding of data

- precision theory
- precision simulations
- precision measurements

Precision event generation

- simulated event numbers \sim expected events $_{\rm [factor 25 \ for \ HL-LHC]}$
- general move to NLO/NNLO [1%-2% error]
- higher relevant multiplicities [jet recoil, extra jets, WBF, etc.]
- new low-rate high-multiplicity backgrounds
- cutting-edge predictions not through generators [N³LO in Pythia?]
- interpretation beyond specific models [jets+MET]

Blabla

- FCGAN
- INN
- cINN
- Bevond

Machine Learning for HL-LHC

Searching for models \longrightarrow fundamental understanding of data

- precision theory
- precision simulations
- precision measurements

Precision event generation

- simulated event numbers \sim expected events $_{\rm [factor 25 \ for \ HL-LHC]}$
- general move to NLO/NNLO [1%-2% error]
- higher relevant multiplicities [jet recoil, extra jets, WBF, etc.]
- new low-rate high-multiplicity backgrounds
- cutting-edge predictions not through generators [N³LO in Pythia?]
- interpretation beyond specific models [jets+MET]

Three ways to use ML

- improve current tools: iSherpa, ML-MadGraph, etc
- new ideas, like fast ML-generator-networks
- conceptual ideas in theory simulations

Tilman Plehn

Blabla

- FCGAN
- INN
- CININ
- 0.....
- Beyond

Unfolding benefits

Power of kinematics

- distributions crucial for global EFT analyses
- searches with many applications: jets+MET
- searches not always used for intended purpose: $pp \rightarrow VH$
- proper unfolding means phase space, not STXS

ColDect Divides				
SciPost Physics Submission	production	decay	ATLAS	CMS
The Gauge-Higgs Legacy of the LHC Run II Anke Bekötter ¹ , Tyler Corbett ² , and Tilman Plehn ¹ 1 Institut für Theoretische Physik, Universität Heidelberg, Germany 2 Niels Bohr International Academy and Discovery Centre, Niels Bohr Institute, University of Coprimagen, Dismuns		$ \begin{split} & h \rightarrow WW \\ & h \rightarrow ZZ \\ & h \rightarrow \gamma\gamma \\ & h \rightarrow \tau\tau \\ & h \rightarrow Z\gamma \end{split} $	$[120, 121] \\ [121, 125] \\ [128] \\ [121] \\ [131] \\ \end{tabular}$	$\begin{matrix} [122-124] \\ [123,124,126,127] \\ [129] \\ [123,124,130] \\ [132] \end{matrix}$
biekoetteratinpnys.uni-neadeiberg.de April 12, 2019	WBF WBF	$h \rightarrow inv$ $h \rightarrow \tau \tau$		[133] [130]
Abstract We present a global analysis of the Higgs and electroweak sector based on LHC Run II and electroweak precision observables. We show which measurements	Vh Vh Vh Vh	$\begin{array}{l} h ightarrow b ar{b} \\ h ightarrow au au \\ h ightarrow inv \\ h ightarrow b ar{b} (m_{Vh}) \end{array}$	[134] [137] [139]	[135] [136] [138]
provide out seaming constrained on range-based operators, and now the accuracy ICR precision makes it necessary to combine rate measurements with leaderbases. The Precision makes a transmission of the Print Research and the second se	$egin{array}{c} tar{t}h \ t\ t$	$ \begin{array}{l} h \rightarrow \gamma \gamma \\ h \rightarrow ZZ \rightarrow 4\ell \\ h \rightarrow WW, ZZ, \tau \tau \\ h \rightarrow b\bar{b} \end{array} $	[118] [118] [121] [140]	[129] [126, 127] [123, 124] [141]

Tilman Plehn

Blabla

FCGAN

INN

Beyond

Unfolding benefits

Power of kinematics

- distributions crucial for global EFT analyses
- searches with many applications: jets+MET
- searches not always used for intended purpose: $pp \rightarrow VH$
- proper unfolding means phase space, not STXS

ColDeast Dissolar	Colored and an					
SciPost Physics	Submission	production	decay	ATLAS	CMS	
The Gauge-Higgs Legacy of a Anke Biekötter ¹ , Tyler Corbett ² , an	the LHC Run II d Tilman Plehn ¹		$h \rightarrow WW$ $h \rightarrow ZZ$ $h \rightarrow corr$	$\begin{bmatrix} 120, 121 \\ 121, 125 \end{bmatrix}$	[122–124] [123, 124, 126, 127] [120]	
 Institut f ür Theoretische Physik, Universit Niels Bohr International Academy and Discovery Cen of Copenhagen, Denn 	tät Heidelberg, Germany ttre, Niels Bohr Institute, University		$h \rightarrow \tau \gamma$ $h \rightarrow \tau \tau$	120	[123, 124, 130] [132]	
biekoetter@thphys.uni-heid	Benchmarking simplifie	ed template	·	[133]		
April 12, 2019	WH production				[130]	
Abstract We present a global analysis of the Higgs and e Rum II and electroweak precision observables. Full Carcication makes in necessary to combine rate precision observables. The SPitter framework at tributions beyond pre-defined ATLAS and CMSs correlations, and avoid Gaussian assumptions i preted in terms of effective operators.	Johann Brehmer, ⁴ Sally Dawson, ⁴ S Piano ⁴ -Coster for Cosmology and Particle Pit ¹ Dgarmant of Physics, Brochwars, N. ⁴ Cogramment of Physics and Astronomy ⁴ Schar Nieman Geolemistra Laboringer ⁴ Dgarthense of Costensitive Laboringer ⁴ Subart Laboration Costensitive Laboration Amstructor: Simplified template era and dimensitivation of kinematic information (1) high-dimensional kinematic information learning techniques let us compared the laboration kinematic information (1).	Samuel Homiller, ^{b,c} ational Laboratory, Oceaner for Data dational Laboratory, O Digrico, Siong Brook I, Concerning Brook II, 1997, Samo Brook, Concerning restant Hill Read restant Heidelberg, Ge ses sections define a session of dimension-6. Second State S	Felix Kling, ^{d, e} and Tilman Science, New York Universit Josenson, Vira Vira, U1997, USA Joneenson, NY, 11997, USA A Jonesofta, NY, 11990, USA A formerowick for the measure assumements. We benchman over us to generative the second science of the second science of the second science of the second science of the second science of the second science of the of the optimal simplified ten	y, USA	$ \begin{array}{c} [135] \\ [136] \\ [136] \\ [136] \\$	$\overline{\begin{array}{c} C_{HD} \operatorname{Profiled} \\ L = 300 \ \mathrm{fb}^{-1} \\ \end{array}}_{1}$

Tilman Plehn

Blabla

- FCGA
- INN
- CINN
- Beyond

Unfolding benefits

Power of kinematics

- distributions crucial for global EFT analyses
- searches with many applications: jets+MET
- searches not always used for intended purpose: $pp \rightarrow VH$
- proper unfolding means phase space, not STXS

SciPost Phys	sics						Submissi	on	production	decay		ATLAS	CMS			
т	he Ga	uge-F	liggs Le	wacy of the	LHC	Bun	п			$h \rightarrow WW$		[120, 121]	[122-124]			
-		age -		Bue) of the						$h \rightarrow ZZ$		121 125	123 124	126 127		
	Anke	Biekött	ier ¹ , Tyler	Corbett ² , and Ti	lman Plei	hn ¹				$h \rightarrow \infty$		121,120	120,124,	100,101		
1 Tr	atitut für	Theore	tiosho Dhau	ule Unincesität B	Ioidolhona	. Com	nonu			$n \rightarrow \gamma \gamma$		120	102 104	190		
Niels Bohr Ir	ternation	al Acad	emy and D	iscovery Centre.	Niels Boh	ir Inst	itute. Univer	rsity		$h \rightarrow \tau \tau$		121	123, 124,	130		
			of Copenh	agen, Denn									[132]			
		bieko	oetter@thpl	hys.uni-heid 🛛 🛛	enchn	nark	cing sim	nplifie	ed template	cross sec	tions in		[133]			
			Apri	112 2019 M	ZH pr	odu	ction						130			
													[100]			
											EWPD	+ LHC Run I + II,	95% C.L.			
experiment v	\overline{S} (TeV)	\mathcal{L} (fb ⁻¹)) channel	observable & K	factor	#bins	R M D A									
$pp \rightarrow t\bar{t}$								-	3-		$BR_{inv} < 3$	5%)	Global Fit H	eggs + EWPD +	diboson [18	312.07587]
CMS [52]	8	19.7	$e\mu$	$\sigma_{t\bar{t}}$	53		44					-	GROMPH PH P	th sector (1310.00	ouoj	
ATLAS [54]	8	20.02	í,	$\sigma_{t\bar{t}}$	53		44									
CMS [55]	13	2.3	ij	σ_{el}	[53]		44	1	2.							
CMS [56]	13	3.2	u	$\sigma_{t\bar{t}}$	[53]		44									
ATLAS [57]	13	3.2	$e\mu$	$\sigma_{t\bar{t}}$	53		11		T							T
ATLAS [58]	8	20.3	ы	$\sigma^{-1}(d\sigma/dm_{eff})$	[59-61]	7	11	- 12	т			τ.			T	T
CMS [62]	8	19.7	li	$\sigma^{-1}(d\sigma/dm_{\ell})$	[59-61]	7		ê.				I I	+			
			ŭ	$\sigma^{-1}(d\sigma/dp_{T,1})$	(,	5		2		TT						
CMS [63]	8	19.7	eu	$\sigma^{-1}(d^2\sigma/dm_{\omega}d)$	<i>ur</i>) [64]	16		5	· 1					(
CMS [65]	8	19.7	i high p _T	$d\sigma/dp_{T,t}$		5				1 1 1 1						
CMS [66]	13	2.3	li	$\sigma^{-1}(d\sigma/dm_{ef})$		8										1
CMS [67]	13	35.8	ij	$\sigma^{-1}(d\sigma/dp_T(t_h))$) [59-61]	12						1				
CMS [68]	13	2.1	ü	$\sigma^{-1}(d\sigma/dp_{T,t})$	[59-61]	6							11.1			
CMS [69]	13	35.9	и	$\sigma^{-1}(d\sigma/d\Delta y_{t\bar{t}})$	[59-61]	8			2 1		1					
ATLAS [70]	13	36.1	aj high p_1	$\sigma^{-1}(d\sigma/dm_{t\bar{t}})$		8			Siller							
CMS [71]	8	19.7	lj	A_C	[72]				7775555		*****					
CMS [73]	8	19.7	и	A_C	[72]						² 10	22, 50002.	7 4 5 5 <u>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 </u>	445.53	1888	1000
ATLAS [74]	8	20.3	lj	A_C	[72]				2.0 22	5 5					-	
ATLAS [75]	8	20.3	и	A_C	[72]		🗸									
ATLAS [76]	13	139	li	Ac	[72]											

Tilman Plehn

Blabla

- FCGAN
- INN
- cINN
- Davian

GAN algorithm

Generating events

- training: true events $\{x_T\}$ output: generated events $\{r\} \rightarrow \{x_G\}$
- discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]

$$L_{D} = \left\langle -\log D(x) \right\rangle_{x_{T}} + \left\langle -\log(1 - D(x)) \right\rangle_{x_{C}}$$

- generator constructing $r \rightarrow x_G$ by minimizing [D needed]

$$L_G = \langle -\log D(x) \rangle_{x_G}$$

- equilibrium $D = 0.5 \Rightarrow L_D = 2L_G = -2 \log 0.5$
- \Rightarrow statistically independent copy of training events

Blabla

- FCGAN
- INN
- CININ
- CITATA
- Beyond

GAN algorithm

Generating events

- training: true events $\{x_T\}$ output: generated events $\{r\} \rightarrow \{x_G\}$
- discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]
- generator constructing $r \rightarrow x_G$ by minimizing [D needed]
- ⇒ statistically independent copy of training events

Generative network studies

- Jets [de Oliveira (2017), Carrazza-Dreyer (2019)]
- Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]
- Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]
- Unfolding [Datta (2018), Omnifold (2019), Bellagente (2019), Bellagente (2020), Howard (2020)]
- Templates for QCD factorization [Lin (2019)]
- EFT models [Erbin (2018)]
- Event subtraction [Butter (2019)]
- Sherpa [Bothmann (2020), Gao (2020)]
- Basics [GANplification (2020), DCTR (2020)]
- Unweighting [Verheyen (2020), Backes (2020)]
- Superresolution [DiBello (2020), Baldi (2020)]

Blabla

FCGAN

INN

cINN

Beyond

How to GAN away detector effects

Goal: invert standard simulation [Bellagente, Butter, Kasiczka, TP, Winterhalder]

- detector simulation typical Monte Carlo, random-number-driven
- inversion possible, in principle [MEM, but entangled convolutions]
- GAN task

partons $\overset{\text{DELPHES}}{\longrightarrow}$ detector $\overset{\text{GAN}}{\longrightarrow}$ partons

⇒ Full phase space unfolded

Conditional GAN

 random numbers to parton level hadron level as condition matched event pairs

Tilman Plehn

Blabla

FCGAN

INN

CININ

Bevond

Detector unfolding

Reference process $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$

- broad *jj* mass peak narrow $\ell\ell$ mass peak modified 2 \rightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]

Model (in)dependence

Tilman Plehn

Blabla

FCGAN

INN

CINN

Bevond

Detector unfolding

Reference process $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$

- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 \rightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]

Model (in)dependence

- detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

 $p_{T,j_1} = 30 \dots 50 \text{ GeV}$ $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$ (12) $p_{T,j_1} > 60 \text{ GeV}$ (13)

Z

W

Tilman Plehn

Blabla

FCGAN

INN

CINN

Bevond

Detector unfolding

Reference process $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$

- broad jj mass peak narrow $\ell\ell$ mass peak modified 2 \rightarrow 2 kinematics fun phase space boundaries
- GAN same as event generation [with MMD]

Model (in)dependence

- detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

$$p_{T,j_1} = 30 \dots 50 \text{ GeV}$$
 $p_{T,j_2} = 30 \dots 40 \text{ GeV}$ $p_{T,\ell^-} = 20 \dots 50 \text{ GeV}$ (12)
 $p_{T,j_1} > 60 \text{ GeV}$ (13)

- model dependence [Thank you to Ben]

- train: SM events test: 10% events with W' in s-channel
- \Rightarrow Working fine, but ill-defined

Z

Invertible Networks

Standard invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- network as bijective transformation normalizing flow Jacobian tractable [specifically: coupling layer] evaluation in both directions - INN [Ardizzone, Rother, Köthe]
- mapping parton and detector phase spaces _ padding with random numbers [eINN, dimensionality, sampling for poor]

$$\begin{pmatrix} x_{p} \\ r_{p} \end{pmatrix} \xleftarrow{\mathsf{PYTHIA}, \mathsf{DELPHES}: g \to} \begin{pmatrix} x_{d} \\ r_{d} \end{pmatrix}$$

training on event pairs (MSE) or samples (MMD)

Tilman Plehn

Blabla

FCGAN

INN

cINN

Beyond

Standard invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- network as bijective transformation normalizing flow Jacobian tractable [specifically: coupling layer] evaluation in both directions — INN [Ardizzone, Rother, Köthe]
- mapping parton and detector phase spaces padding with random numbers [eINN, dimensionality, sampling for poor]

$$\begin{pmatrix} \textbf{X}_{p} \\ \textbf{I}_{p} \end{pmatrix} \xleftarrow{\text{PYTHIA, DELPHES}: g \rightarrow} \begin{pmatrix} \textbf{X}_{d} \\ \textbf{I}_{d} \end{pmatrix} \xleftarrow{\text{PYTHIA, DELPHES}: g \rightarrow} \begin{pmatrix} \textbf{X}_{d} \\ \textbf{I}_{d} \end{pmatrix}$$

- training on event pairs (MSE) or samples (MMD)
- same task as FCGAN, similar performance

Invertible Networks Tilman Plehn

Blabla

FCGAN

INN

CINN

Beyond

- network as bijective transformation normalizing flow Jacobian tractable [specifically: coupling layer] evaluation in both directions — INN [Ardizzone, Rother, Köthe]
- mapping parton and detector phase spaces padding with random numbers [eINN, dimensionality, sampling for poor]

$$\begin{pmatrix} x_{p} \\ r_{p} \end{pmatrix} \xleftarrow{\mathsf{PYTHIA}, \mathsf{DELPHES}: g \to} \begin{pmatrix} x_{d} \\ r_{d} \end{pmatrix}$$

- training on event pairs (MSE) or samples (MMD)
- same task as FCGAN, similar performance
- \Rightarrow Working okay, still ill-defined

Blabla

FCGA

INN

cINN

Beyond

Proper inverting with cINN

Statistical inversion [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- task: construct parton-level pdf for (single) detector-level event
- 1- conditional INN: parton-level events from $\{r\}$
- 2- maximum likelihood loss

$$\begin{split} L &= -\left\langle \log p(\theta | x_{p}, x_{d}) \right\rangle_{x_{p}, x_{d}} \\ &\approx -\left\langle \log p(g(x_{p}, x_{d})) + \log \left| \frac{\partial g(x_{p}, x_{d})}{\partial x_{p}} \right| \right\rangle_{x_{p}, x_{d}} - \log p(\theta) \\ &= -\left\langle -\frac{||g(x_{p}, x_{d}))||_{2}^{2}}{2} + \log \left| \frac{\partial g(x_{p}, x_{d})}{\partial x_{p}} \right| \right\rangle_{x_{p}, x_{d}} - \log p(\theta) \end{split}$$

Blabla

FCG/

INN

cINN

Beyond

Proper inverting with cINN

Statistical inversion [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- task: construct parton-level pdf for (single) detector-level event
- 1- conditional INN: parton-level events from $\{r\}$
- 2- maximum likelihood loss

Again $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$

- performance like FCGAN
- distribution: single pair (x_p, x_d) , unfolded many times [FCGAN is out]

Blabla

FCGA

INN

cINN

Beyond

Proper inverting with cINN

Statistical inversion [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- task: construct parton-level pdf for (single) detector-level event
- 1- conditional INN: parton-level events from $\{r\}$
- 2- maximum likelihood loss

Again $pp \rightarrow ZW \rightarrow (\ell \ell) (jj)$

- performance like FCGAN
- distribution: single pair (x_{ρ}, x_{d}) , unfolded many times [FCGAN is out]
- calibration: 1500 pairs (x_p, x_d) , each unfolded 60 times, check for truth
- \Rightarrow cINN well-defined!

Blabla

FCGA

INN

cINN

Beyond

Inverting to hard process

What theorists want: unfolding ISR

- detector-level process $pp \rightarrow ZW$ +jets [variable number of objects]
- ME vs PS jets decided by network
- training jet-inclusively or jet-exclusively parton-level hard process extracted as 2 \rightarrow 2

Blabla

FCGA

INN

cINN

Beyond

Inverting to hard process

What theorists want: unfolding ISR

- detector-level process $pp \rightarrow ZW$ +jets [variable number of objects]
- ME vs PS jets decided by network
- training jet-inclusively or jet-exclusively parton-level hard process extracted as 2 \rightarrow 2

Towards systematic inversion

- detector unfolding on way
- QCD parton from jet algorithm standard
- jet radiation possible
- \Rightarrow Hard matrix element a proper goal?

Blabla

FCGA

INN

cINN

Beyond

Machine learning for LHC theory

- big data for fundamental physics
- GANs the cool kid
- INNs the theory hope
- Full inversion in reach

ML4Jets hybrid July 6-8 2021

https://indico.cern.ch/event/980214

INSTITUTE FOR THEORETICAL PHYSICS

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Local Organizers Anja Butter Barry Dillon Ullrich Köthe Tilman Plehn Hans-Christian Schultz-Coulon

International Organization Committee Kyle Cranmer (NYU) Ben Nachman (LBNL) Maurizio Pierini (CERN) Tilman Piehn (Heidelberg) Jesse Thaler (MIT)