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LHC goals

Fundamental questions

particle nature of dark matter?
origin of the Higgs mechanism?
matter-antimatter asymmetry?
Standard Model all there is?

Rate measurements

many processes
vastly different rates
high precision
predicted by theory

[hierarchy problem?]

[CP-symmetry]
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LHC goals

Fundamental questions

particle nature of dark matter?

origin of the Higgs mechanism?  (nierarchy problem?]
matter-antimatter asymmetry?  [cp-symmetry]
Standard Model all there is?

Rate measurements

— many processes
vastly different rates
high precision
predicted by theory
but completely useless!
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— energy distributions dropping
— new physics heavy
= bumps, tails, kinematics instead
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LHC simulations

Simulation-based inference [ikeliood-free inference]
— start with Lagrangian
— calculate scattering in perturbative QF T
— simulate events [theory: Sherpa, Madgraph, Pythia]
— simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds
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scattering QCD shower
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LHC simulations

Simulation-based inference [ikelihood-free inference]

start with Lagrangian
— calculate scattering in perturbative QF T

simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set
simulated event numbers ~ expected events
statistics requiring 1%-2% uncertainty NNLON3LO]
flexible signal hypotheses (time-dependent] ATLAS Prefiminary
. Lo 2020 Computing Model -CPU: 2030: Aggressive R&D
low-rate high-multiplicity backgrounds R

8%

12%

= Data Proc
7% W MC-Full(Sim)
MC-Full(Rec)
- MC-Fast(Sim)
= MC-Fast(Rec)
- EvGen
6% Heavy lons
= Data Deriv
= MC Deriv
Analysis




LHC simulations

Simulation-based inference [ikeliood-free inference]
— start with Lagrangian
— calculate scattering in perturbative QF T
— simulate events [theory: Sherpa, Madgraph, Pythia]
— simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

simulated event numbers ~ expected events
statistics requiring 1%-2% uncertainty NNLON3LO]
flexible signal hypotheses (time-dependent]

low-rate high-multiplicity backgrounds

Three ways to use ML
— improve current tools: iSherpa, ML-MadGraph...
— new ideas: fast ML-generator-networks...
— conceptual ideas for simulations and analyses



Generative neural networks

GANGogh  (Bonailia, Jones, Danyluk (2017)]

— can networks create new pieces of art?
map random numbers to image pixels
— train on 80,000 pictures [organized by style and genre]

— generate portraits




Generative neural networks

GANGOgh [Bonafilia, Jones, Danyluk (2017)]

— can networks create new pieces of art?
map random numbers to image pixels

— train on 80,000 pictures [organized by style and genre]
— generate portraits

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales
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Generative neural networks

GANGogh  (Bonailia, Jones, Danyluk (2017)]

— can networks create new pieces of art?
map random numbers to image pixels

— train on 80,000 pictures [organized by style and genre]
— generate portraits

Edmond de Belamy [caselies-Dupre, Fautrel, Vernier (2018)]
— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales

Jet portraits  [de Oliveira, Paganini, Nachman (2017)]
— calorimeter or jet images
— reproduce valid jet images from training data
— organize them by QCD vs W-decay jets
= Generative networks also useful
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How to GAN

Adversarial training for LHC events

— training:  true events {x7}
output:  generated events {r} — {xg}
— discriminator  classifier function D(x) from minimizing (o) = 1M, o@)

Lp=(—log D(X)>XT + ( — log(1 — D(x)))XG
— generator mapping r — xg by minimizing (o needed]
Lg=(—log D(x))XG
— equilbrium D=0.5 = Lp/2=Lg= —1log0.5
= statistically independent copy of training events

Discriminator «----- 2




How to GAN

Adversarial training for LHC events
— training:  true events {x7}
output:  generated events {r} — {xg}
How to GAN LHC Events (sutter, TP, Winterhalder]
train a GAN on LHC events
How to GAN Away Detector Effects [Bellagente, Butter, Kasieczka, TP, Winterhalder]
use conditional GAN to unfold LHC events
How to GAN Event Subtraction [gutter, TR, Winterhalder]
train GAN on two samples and generate difference
How to GAN Event Unwelghtlng [Backes, Butter, TP, Winterhalder]
train GAN on weighted events, generate ‘unweighted’ events
— How to GAN nghel’ Jet Resolution  (Heidelberg-Irvine]
train GAN to improve jet image resolution

GANplIfyII"Ig Event samples [Butter, Diefenbacher, Kasieczka, Nachman, TP]
show how GAN beats training statistics



How to GAN

Adversarial training for LHC events
— training:  true events {x7}
output:  generated events {r} — {xg}

— How to GAN LHC Events [sutter, TP, Winterhalder]
train a GAN on LHC events

— How to GAN Away Detector Effects [Bellagente, Butter, Kasieczka, TP, Winterhalder]
use conditional GAN to unfold LHC events

— How to GAN Event Subtraction [gutter, TP, Winterhalder]
train GAN on two samples and generate difference

— How to GAN Event Unwelghtlng [Backes, Butter, TP, Winterhalder]
train GAN on weighted events, generate ‘unweighted’ events

— How to GAN nghel’ Jet Resolution  (Heidelberg-Irvine]
train GAN to improve jet image resolution

- GANplIfyII"Ig Event samples [Butter, Diefenbacher, Kasieczka, Nachman, TP]
show how GAN beats training statistics

= Two big LHC questions

How precise are GANned distributions?
What is their uncertainty?



GANplification

Gain beyond training data (Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known

10 quantiles - tru(h
compare sampling vs GAN vs fit Zii GAN reined on 100 data poins — :s;amme
— quantiles with x2-values oxz
— start with 100 sampled points e
fit like 700 sampled points 008
GAN like 500 sampled points ... 008 {
... but requiring 10,000 GANned events 004 ) )
— interpolation and resolution the key nnpoF) Z:OZ
= Generative networks beyond training data cetme sty
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INN-generator

Challenging ML-event generators

— training from event samples
no energy-momentum conservation
no detector effects [sharper structures]
1- top-quark pairs {f — 6 jets
resonance peaks for t/f and W+
2- Z,, +{1,2,3} jets
Z-peak, variable jet number, jet-jet topology

scattering QCD shower
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Challenging ML-event generators

— training from event samples
no energy-momentum conservation
no detector effects [sharper structures]
1- top-quark pairs {f — 6 jets
resonance peaks for t/f and W+
2- Z,, +{1,2,3} jets
Z-peak, variable jet number, jet-jet topology

INN-generator [Butter, Heimel, TP, many students (soon)]
Z + 1 jet exclusive

— map phase space <« latent space 102 .
bijective mapping, Jacobian known 3 o
sample from Gaussian latent space Z10°

— training on 5.4M Z+jets events ) -4
goal: 1% precision relative to truth . 0

ZZ1.00 L
=0.95 g 0
_10.0 FTRTI LI esde?
SRR TR eerse vt ?Qf?:' HACRMINEANAL
= o LY RITSSHI] IeIHEA] BT MTTIT A"

25 50 5 100 125 150
prj [GeV]




INN-generator

Challenging ML-event generators

— training from event samples
no energy-momentum conservation
no detector effects [sharper structures]
1- top-quark pairs {f — 6 jets
resonance peaks for t/f and W+
2- Z,, +{1,2,3} jets
Z-peak, variable jet number, jet-jet topology

INN-generator [Butter, Heimel, TP, many students (soon)]
Z + 1 jet exclusive

— map phase space <« latent space
bijective mapping, Jacobian known
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— INN
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INN-generator

Challenging ML-event generators

— training from event samples
no energy-momentum conservation
no detector effects [sharper structures]
1- top-quark pairs {f — 6 jets
resonance peaks for t/f and W+
2- Z,, +{1,2,3} jets
Z-peak, variable jet number, jet-jet topology

INN-generator [Butter, Heimel, TP, many students (soon)] 7 + 3 jot oxclusive

— map phase space <« latent space
bijective mapping, Jacobian known
sample from Gaussian latent space

— training on 5.4M Z+jets events
goal: 1% precision relative to truth

= Precision promising, not yet perfect

— True




Discriminator-generator network

GAN spirit — include discriminator

— discriminator:  training vs generated events

inpUt {pTﬂ% ?, M,U«I.L:AR}
output D = 0(generator), 1(truth)
separate networks for jet multiplicities

— decent generator training D =~ 0.5
— add’l event weight wp = D/(1 — D) 10

Z + 1 jet exclusive

— True
— INN

normalized

D(x)

Model

True.
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Discriminator-generator network

GAN spirit — include discriminator

— discriminator:  training vs generated events

inpUt {pTﬂ% ?, M,U«I.L:AR}
output D = 0(generator), 1(truth)
separate networks for jet multiplicities

— decent generator training D =~ 0.5
— add’l event weight wp = D/(1 — D)
= Precision possible

Z + 3 jet exclusive
—— True

—— INN
—— Reweighted
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Discriminator-generator network

GAN spirit — include discriminator

— discriminator:  training vs generated events

inpUt {pT77I7 ?, MuuvAR}
output D = 0(generator), 1(truth)
separate networks for jet multiplicities

— decent generator training D =~ 0.5
— add’l event weight wp = D/(1 — D)
= Precision possible

Joint training

— combine discriminator-generator training
all information in generator
unweighted events

— GAN-like training unstable
Nash equilibrium hard for INN-generator
— coupling through weights
move ‘truth’ to emphasize disagreement
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Discriminator-generator network

GAN spirit — include discriminator

— discriminator:  training vs generated events

inpUt {pT77I7 ¢7 MﬂuvAR}
output D = 0(generator), 1(truth)
separate networks for jet multiplicities

— decent generator training D =~ 0.5
— add’l event weight wp = D/(1 — D)
= Precision possible

Joint training
— combine discriminator-generator training
all information in generator 025
unweighted events

— GAN-like training unstable
Nash equilibrium hard for INN-generator
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— coupling through weights
move ‘truth’ to emphasize disagreement

= DiscFlow getting there
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One number not a prediction

Bayesian INN [Bellagente, HauBmann, Luchmann, TP]

learn network weight distributions
sample for network output with error bar
possible for regression, classification, density estimate

generate events with error bars
learn density and uncertainty maps over phase space

2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Side remark: see how INN learns

0.14 —— Fit: Ay = 0.04, Azpyue = 0.01
0.12
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One number not a prediction

Bayesian INN [Bellagente, HauBmann, Luchmann, TP]

— learn network weight distributions
sample for network output with error bar
possible for regression, classification, density estimate

— generate events with error bars
learn density and uncertainty maps over phase space

— 2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Side remark: see how INN learns

Back to Z+jets

— kinematic distributions with error bars
— limitation: training statistics
— error estimate conservative

Z + 1 jet exclusive

— True
—— BINN
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One number not a prediction

Bayesian INN [Bellagente, HauBmann, Luchmann, TP]

— learn network weight distributions
sample for network output with error bar
possible for regression, classification, density estimate

— generate events with error bars
learn density and uncertainty maps over phase space

— 2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Side remark: see how INN learns

Back to Z+jets

— kinematic distributions with error bars 10-1
— limitation: training statistics -
— error estimate conservative Z107?

7 + 2 jet exclusive

— True
—— BINN
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One number not a prediction

Bayesian INN [Bellagente, HauBmann, Luchmann, TP]

— learn network weight distributions
sample for network output with error bar
possible for regression, classification, density estimate

— generate events with error bars
learn density and uncertainty maps over phase space

— 2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Side remark: see how INN learns

Back to Z+jets

— kinematic distributions with error bars

Z + 3 jet exclusive

— limitation: training statistics

— error estimate conservative

= Precision and error bars, check!!
=- For systematic uncertainties, ask...

— True
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INNverting event simulations

Inverting LHC simulations

— unfolding QCD-shower to hard parton standard et algorithm]

unfolding detector common
unfolding top-quark decays useful
matrix element method complete unfolding

= systematic approach through generative network

forward

scattering QCb shower

He =

B

Y

inverse



INNverting event simulations

Inverting LHC simulations

— unfolding QCD-shower to hard parton standard (et aigorithm]
unfolding detector common
unfolding top-quark decays useful
matrix element method complete unfolding

= systematic approach through generative network

Conditional INN
— standard INN/cINN setup: parton-level events from {r}
— maximum likelihood loss

L = — (log p(0]%p, X))

Xp,Xg
99(Xp, X,
- _ <|ogp(g(xp, X4)) + log % > — log p(6) + const.
Xp Xp,Xg
e ok @]
JINN :

9(@p, f(wa))




INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

— stochastic inverse problem
model assumption like in forward direction

— invert detector effects

%10~ x107!
6.0 2 jet no ISR 3.0 2 jet no ISR
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

— stochastic inverse problem
model assumption like in forward direction

— invert detector effects
— invert QCD j81 radiation [matrix element vs parton shower]

%1072
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

— stochastic inverse problem
model assumption like in forward direction

— invert detector effects
— invert QCD j81 radiation [matrix element vs parton shower]

Proper statistical inversion

— distribution
single detector event
3200 unfoldings to partonic phase space “inglc dotector overt
14 3200 unfoldings
N FCGAN -
1.2 =
210 o
§ 0.8 =
% 0.6
% 0.4
0.2
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

— stochastic inverse problem
model assumption like in forward direction

— invert detector effects
— invert QCD j81 radiation [matrix element vs parton shower]

Proper statistical inversion
— distribution

single detector event
3200 unfoldings to partonic phase space
— calibration
1500 detector-parton event pairs
60 unfoldings per pair, in quantiles
truth within given quantile for fraction of pairs

= Probability distribution in parton phase space!

00 02 04 06 08 10
quantile pr.,,




Machine learning for LHC theory

Machine learning for the LHC

— Classification/regression standard

uncertainties?
symmetries?
experimental realities?
— GANSs the cool kid
generator producing best events
discriminator checking generator
limited in precision and uncertainty control
— INNs my theory hope
flow networks for control and precision
Bayesian for error bars
condition for inversion

— Progress means young people playing with ideas
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