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LHC goals

Fundamental questions

particle nature of dark matter?

origin of the Higgs mechanism?  [nierarchy problem?]
— matter-antimatter asymmetry?  (cp-symmetry]
Standard Model all there is?

Impressive measurements 7 é —— é
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LHC goals

Fundamental questions

particle nature of dark matter?

origin of the Higgs mechanism?  [nierarchy problem?]
— matter-antimatter asymmetry?  (cp-symmetry]
Standard Model all there is?

Impressive measurements

many processes

vastly different rates
high precision
predicted by theory

but completely useless!
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LHC simulations

Simulation-based inference [ikelinood-free inference]

start with Lagrangian
calculate scattering in perturbative QF T
simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

scattering QCD shower i detectors
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LHC simulations

Simulation-based inference [likelihood-free inference]

start with Lagrangian
— calculate scattering in perturbative QF T

simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds
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HL-LHC: preparing for 25-fold data set

simulated event numbers ~ expected events
statistics requiring 1%-2% uncertainty nNLom3LO)
flexible signal hypotheses (iime-dependent

low-rate high-multiplicity backgrounds
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= Data Proc
79 W MC-Full(Sim)
MC-Full(Rec)
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= EvGen
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= MC Deriv
Analysis




LHC simulations

Simulation-based inference [ikelinood-free inference]

start with Lagrangian
calculate scattering in perturbative QF T
simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

simulated event numbers ~ expected events
statistics requiring 1%-2% uncertainty NNLON3LO]
flexible signal hypotheses (iime-dependent]

low-rate high-multiplicity backgrounds

Three ways to use ML

— improve current tools: iSherpa, ML-MadGraph...
— new ideas: fast ML-generator-networks...
— conceptual ideas for simulations and analyses




ML for LHC

USING NEURAL NETWORKS TO IDENTIFY JETS

. Leif LONNBLAD*, Carsten PETERSON ** and Thorsteinn ROGNVALDSSON ***
LHC and Ben Nachman  [eps prize 2021] Dcparimentof Thorta Py, Unceriy of L, Sitaston 144, 2236 L,

— 1991: NN-based quark-gluon tagger Received 29 June 1990
— 2005: TMVA in Root — analysis A neural network method for identifying the ancestor of a hadron jet s presented. The idea
klormdan:mdfnlmygiuhwsmuﬂlhwwkhmﬁ:lmﬂ’lt
— 2015: jet images — classification onctions vin g desem procedore. where o s e ok opesmed trough e
. . v\cm“ﬁlhlhkl‘u!hodwe  able riginatis ‘Monte
— 2017: CaloGAN — jet generation e e T approsch for olaingthe o et (he s 1o sy te s<ald sring
effect.

In addition, heavy quarks (b and ¢) in ¢*c ™ reactions can be identified on the S0% level by
just obscrving the hadrons. In particular we are able to separate b-quarks with an cffciency and
purity, which is comparable with what is cxpected from vertex detectors. We also speculate on

H i how the neural network method can be used to disentangle different hadronization schemes by

Heldelberg hlstory compressing the dimensionality of the state space of hadrons.

2017: top-jet tagger — classification

— 2018: jet autoencoder — unsupervised

— 2019: jet classification with uncertainties  w Manuel HauBmann]

2019: event GAN — generation  [How to GAN #1-5]

2020: conditional INN — unfolding  w’ ulii Kéthe, Lynton Ardizzone]

— 2020: BayesFlow — inference  wi ulii Kéthe, Stefan Radev]

2021: Bayesian INN — generation with uncertainties  w Manuel HauBmann]
— 2021: Dirichlet VAE — unsupervised

= unsupervised, uncertainties, generation




INN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3 d.o.f.
training from event samples [optimal transport vs likelihoods]
energy-momentum conservation learned
no detector effects [smoother structures]
— top-quark pairs {f — 6 jets
t/t and W:t on-shell [Breit-Wigner I'/m ~ O(%)]
— n-jets/WZ+jets
variable number of particles
topology through jet-jet separation

Y

scattering QCD shower i detectors
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INN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3 d.o.f.
training from event samples [optimal transport vs likelihoods]
energy-momentum conservation learned
no detector effects [smoother structures]

— top-quark pairs {f — 6 jets

t/t and W:t on-shell [Breit-Wigner I'/m ~ O(%)]
— n-jets/WZ+jets

variable number of particles

topology through jet-jet separation

INN—generator [Butter, Heimel, TP.... (prelim)]

— normalizing flow to phase space
bijective, stable mapping
Jacobian known

— training on 2M n-jet events
— goal 1% precision
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INN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3 d.o.f.
training from event samples [optimal transport vs likelihoods]
energy-momentum conservation learned
no detector effects [smoother structures]
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INN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3 d.o.f.

training from event samples [optimal transport vs likelihoods]

energy-momentum conservation learned

no detector effects [smoother structures]

— top-quark pairs {f — 6 jets
t/t and W:t on-shell [Breit-Wigner I /m ~

— n-jets/WZ+jets
variable number of particles
topology through jet-jet separation

INN—generator [Butter, Heimel, TP.... (prelim)]

— normalizing flow to phase space
bijective, stable mapping
Jacobian known

— training on 2M n-jet events
— goal 1% precision
= challenges remaining...
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INNverting event simulations

Inverting LHC simulations

— unfolding QCD-shower to hard parton standard et aigorithm]
unfolding detector common
unfolding top-quark decays useful
matrix element method for hypothesis test

= systematic approach through generative network

forward

scattering QCD shower i detectors
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INNverting event simulations

Inverting LHC simulations

— unfolding QCD-shower to hard parton standard et aigorithim]
unfolding detector common
unfolding top-quark decays useful
matrix element method for hypothesis test

= systematic approach through generative network

Conditional INN

— standard INN/CINN setup: parton-level events from {r}

— maximum likelihood loss
L= —(log p(01xp: Xa)) », x,

Bg(xp,xd)

> — log p(9) + const.

<Iog P(9(Xps X)) + Iog‘
Xp,Xd

Condition

: @

Bt
. 9(@p, f(za)) .

unfold {Zp} g(r, f(za))




INNverting event simulations

Hard process qq — ZW — (¢¢) (jj)
— stochastic inverse problem
model assumption like in forward direction
— invert detector effects
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6.0 i 2 jet no ISR 3.0
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—— Parton ¢INN —— Parton ¢INN
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INNverting event simulations

Hard process qq — ZW — (¢£) (jj)
— stochastic inverse problem
model assumption like in forward direction
— invert detector effects
— invert QCD jet radiation [matrix element vs parton shower]
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

stochastic inverse problem
model assumption like in forward direction

invert detector effects
invert QCD jet radiation [matrix element vs parton shower]

precision from momentum conservation
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INNverting event simulations

Hard process qgq — ZW — (¢¢) (jj)

stochastic inverse problem
model assumption like in forward direction

invert detector effects
invert QCD jet radiation [matrix element vs parton shower]

precision from momentum conservation

Proper statistical inversion

— distribution
Single detector event single detector event
3200 unfoldings to partonic phase space 14 peca| | 200 moldings
1.2 ?
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

stochastic inverse problem
model assumption like in forward direction

invert detector effects

invert QCD jet radiation [matrix element vs parton shower]
precision from momentum conservation

Proper statistical inversion

— distribution
single detector event

3200 unfoldings to partonic phase space

— calibration
1500 detector-parton event pairs
60 unfoldings per pair, in quantiles
truth within given quantile for fraction of pairs

=- Probability distribution in parton phase space!
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One number not a prediction

Bayesian INN
— generate events with error bars
learn density and uncertainty maps over phase space
— 2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Uncertainty estimate works...
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...and we see how the network learns!




One number not a prediction

Bayesian INN

— generate events with error bars
learn density and uncertainty maps over phase space

— 2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Uncertainty estimate works...

LHC toy process: pp — et e~

— kinematic distributions with errors
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= Crucial step for LHC-simulations



Machine learning for LHC in Heidelberg
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