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LHC goals

Fundamental questions

particle nature of dark matter?
origin of the Higgs mechanism?
matter-antimatter asymmetry?
Standard Model all there is? — No!
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LHC simulations

Simulation-based inference {ikelihood-free inference]

start with Lagrangian
— calculate scattering in perturbative QF T

simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds
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LHC simulations

Simulation-based inference [ikelinood-free inference]

start with Lagrangian
— calculate scattering in perturbative QF T

simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

ATLAS Preliminary
2020 Computing Model -CPU: 2030: Aggressive R&D
2%  10%

HL-LHC: preparing for 25-fold data set o
simulated event numbers ~ expected events
statistics requiring 1%-2% uncertainty NnNLoN3LO]
flexible signal hypotheses (time-dependent]

low-rate high-multiplicity backgrounds

12%

= Data Proc
79 - MC-Full(Sim)
MC-Full(Rec)
- MC-Fast(Sim)
m— MC-Fast(Rec)
== EvGen
Heavy lons
== Data Deriv
= MC Deriv
Analysis




LHC simulations

Simulation-based inference [ikelinood-free inference]

— start with Lagrangian
— calculate scattering in perturbative QF T

simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

simulated event numbers ~ expected events
statistics requiring 1%-2% uncertainty NnNLoN3LO]
flexible signal hypotheses (time-dependent]

low-rate high-multiplicity backgrounds

Three ways to use ML
— improve current tools: iSherpa, ML-MadGraph...
— new tools: fast ML-generator-networks...
— conceptual progress: invertible simulations, inference...




LHC simulations

Simulation-based inference [likelihood-free inference]

=

start with Lagrangian

calculate scattering in perturbative QF T
simulate events  ftheory: Sherpa, Madgraph, Pythia]
simulate detectors [experiment: ATLAS, CMS, Delphes]
LHC events in virtual worlds

Generative network studies  [nyperiinked]

Basics [GANplification (2020), Diefenbacher (2020), Winterhalder (2021)]

Jets [de Oliveira (2017), Andreassen (2018), Carrazza-Dreyer (2019), Dohi (2020)]

Superresolution  [DiBello (2020), Baldi (2020)]

Phase Space [Bothmann (2020), Gao (2020), Klimek (2020), I-Kai Chen (2020), Carrazza (2020), Krause (2021)]
Detectors [Paganini (2017), Musella, Erdmann, Ghosh, Salamani (2018), Belayneh (2019) Buhmann (2020,2021)]
Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]
Event subtraction & unweighting [Butter (2019), Stienen (2020), Backes (2020)]

Unfolding [Datta (2018), Omnifold, Bellagente (2019), Bellagente, Vandegar, Howard (2020), Komiske (2021)]
QCD factorization [Lin (2019)]

EFT models [Erbin (2018)]

Inference [Brehmer (2020), Park (2020), Bieringer (2020)]

Parton densities  [Carrazza (2021)]

Uncertainties [Bellagente (2021)]
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NN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3d.o.f.
training from event samples  (optimal transport vs likelihoods]
energy-momentum conservation learned
no detector effects  [smoother structures]
— top-quark pairs tf — 6 jets
t/t and W= on-shell [Breitwigner r/m ~ ©(%)]
— n-jets/WZ+jets
variable number of particles
topology through jet-jet separation
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NN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3d.o.f.
training from event samples  [optimal transport vs likelihoods]
energy-momentum conservation learned
no detector effects  [smoother structures]

— top-quark pairs tf — 6 jets
t/t and W= on-shell [Breitwigner r/m ~ ©(%)]

— n-jets/WZ+jets
variable number of particles
topology through jet-jet separation

INN-generator [sutter, Heimel, TP.... (prelim)]

— normalizing flow to phase space
bijective, stable mapping
Jacobian known

— training on 2M n-jet events
— goal 1% precision
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NN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3d.o.f.
training from event samples  [optimal transport vs likelihoods]
energy-momentum conservation learned
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NN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3d.o.f.
training from event samples  [optimal transport vs likelihoods]
energy-momentum conservation learned
no detector effects  [smoother structures]
— top-quark pairs tf — 6 jets
t/tand W= on-shell sreitwignerr/m ~ o(%)]
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variable number of particles

topology through jet-jet separation

INN-generator [sutter, Heimel, TP.... (prelim)]

— normalizing flow to phase space
bijective, stable mapping
Jacobian known

normalized

— training on 2M n-jet events
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NN-generating LHC events

LHC scattering benchmarks

— n-particle phase space n x 3d.o.f.

training from event samples  [optimal transport vs likelihoods]

energy-momentum conservation learned

no detector effects  [smoother structures]
— top-quark pairs {t — 6 jets

t/tand W= on-shell sreitwignerr/m ~ o(%)]

— n-jets/WZ+jets
variable number of particles
topology through jet-jet separation

INN-generator [sutter, Heimel, TP.... (prelim)]

— normalizing flow to phase space
bijective, stable mapping
Jacobian known

— training on 2M n-jet events
— goal 1% precision
= challenges remaining...
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INNverting event generation

Inverting LHC simulations  (geliagente, Butter, Kasieczka... (2020)]

— unfolding QCD-shower to hard parton standard et aigorithim]
unfolding detector common
unfolding top-quark decays useful
matrix element method for hypothesis test

= systematic approach through generative network

forward
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INNverting event generation

Inverting LHC simulations  (Beliagente, Butter, Kasieczka... (2020)]

— unfolding QCD-shower to hard parton standard et aigorithm]
unfolding detector common
unfolding top-quark decays useful
matrix element method for hypothesis test

= systematic approach through generative network

Conditional INN
— standard INN/cINN setup: parton-level events from {r}
— maximum likelihood loss

L= = (log P(6]%, Xa)),
99(Xp, Xq)
(22

> — log p(8) + const.
Xp,Xg

=- <Iogp(g(Xp7 Xq)) + log

Condition

unfold [ {%} a0 1(wa) ‘—' @

St
{2} 9(zp, f(za))
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INNverting event simulations

Hard process qq — ZW — (¢£) (jj)
— stochastic inverse problem

model assumption like in forward direction

— invert detector effects

x10~2

x107!

2 jet no ISR
— Parton Truth
Parton ¢INN
Detector Truth

= Parton Truth
—— Parton cINN

2 jet no ISR

Detector Truth
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INNverting event simulations

Hard process qq — ZW — (¢£) (jj)
— stochastic inverse problem
model assumption like in forward direction
— invert detector effects
— invert QCD jet radiation [matrix element vs parton shower]

x10~%
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

— stochastic inverse problem
model assumption like in forward direction

— invert detector effects
— invert QCD jet radiation [matrix element vs parton shower]
— precision estimate: momentum conservation
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

— stochastic inverse problem
model assumption like in forward direction

invert detector effects

invert QCD jet radiation [matrix element vs parton shower]

precision estimate: momentum conservation

Proper statistical inversion

— distribution
Single detector event single detector event
3200 unfoldings to partonic phase space 14 3200 unfoldings

FCGAN

G
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INNverting event simulations

Hard process qg — ZW — (£¢) (jj)

— stochastic inverse problem
model assumption like in forward direction

— invert detector effects
— invert QCD jet radiation [matrix element vs parton shower]
— precision estimate: momentum conservation

Proper statistical inversion

— distribution
single detector event

3200 unfoldings to partonic phase space

— calibration 08
1500 detector-parton event pairs
60 unfoldings per pair, in quantiles
truth within given quantile for fraction of pairs

= Probability distribution in parton phase space

fraction of events

00 02 04 06 08 10
quantile pr.,,




One number is not a prediction

Bayesian generative network  [gellagente, Luchmann, HauBmann, TP (2021)]
— generate events with error bars
i.e. learn density and uncertainty maps over phase space
— normalizing flow/INN  ksthe etal
— 2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Error estimate works...

14
_| — BINN 0.14 —— Fit: Azg = 0.04, Ay = 0.01 —— Fit: Azg = 0.04, Ay = 0.01
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...and we see how the network learns!




One number is not a prediction

Bayesian generative network  [gellagente, Luchmann, HauBmann, TP (2021)]

— generate events with error bars
i.e. learn density and uncertainty maps over phase space
— normalizing flow/INN  ksthe etal

— 2D toy models: wedge ramp, kicker ramp, Gaussian ring
= Error estimate works...
Simple LHC process

— 1D kinematic distributions with errors
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= Key step in NN-simulations




SUSY Conference — Symmetries in ML

Symmetries key concept in particle physics

— analyze symmetries  [Barenboim, Him, Sanz (2021)]
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SUSY Conference — Symmetries in ML

Symmetries key concept in particle physics
— analyze symmetries  [Barenboim, Him, Sanz (2021)]
— learn symmetries  [krippendorf (2020), Maiti (2021)]

— taggers: Lorentz symmetries (Butter (2018), Erdmann (2019), Bogatskiy (2020)]
permutation symmetries  [graphs (2020), Komiske (2018), Dolan (2020)]
attention/transformer networks  [Mikuni (2020), (2021) Shmakov (2021)]
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SUSY Conference — Symmetries in ML

Symmetries key concept in particle physics
- analyze Symmetries [Barenboim, Hirn, Sanz (2021)]
— learn symmetries  (krippendorf (2020), Maiti (2021)]

— taggers: Lorentz symmetries [gutter (2018), Erdmann (2019), Bogatskiy (2020)]
permutation symmetries  [graphs (2020), Komiske (2018), Dolan (2020)]
attention/transformer networks  [Mikuni (2020), (2021) Shmakov (2021)]

Particle-physics symmetries in latent space  (vetcLr (Dillon 2021)]

— for instance anomaly searches: analysis in latent space  (pilon (2021)]
means: equivalent jets/events in same latent-space point (s(z, z/) — 1]
— jet symmetries: rotation, translation, permutation
jet augmentations: collinear merging, soft noise
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SUSY Conference — Symmetries in ML

Symmetries key concept in particle physics
- analyze Symmetries [Barenboim, Hirn, Sanz (2021)]
— learn symmetries  (krippendorf (2020), Maiti (2021)]

— taggers: Lorentz symmetries [gutter (2018), Erdmann (2019), Bogatskiy (2020)]
permutation symmetries  [graphs (2020), Komiske (2018), Dolan (2020)]
attention/transformer networks  [Mikuni (2020), (2021) Shmakov (2021)]

Particle-physics symmetries in latent space  (vetcLr (Dillon 2021)]

— for instance anomaly searches: analysis in latent space  (pilon (2021)]
means: equivalent jets/events in same latent-space point (s(z, z/) — 1]

— jet symmetries: rotation, translation, permutation

jet augmentations: collinear merging, soft noise
— self-supervised learning  (implicit: images, explicit: EFPs]
— test: linear classifier in latent space
= Symmetries putting theory into ML-tools

JetCLR
AUC: 0.980

Top-tagging
Linear classifier test
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Machine learning for LHC theory

On the way to the numerics mainstream

— ML standard for classification/regression/generation
— neural network benefits

best available interpolation
training on MC and/or data, anything goes
lightning speed, once trained

— GANs the cool kid

generator trying to produce best events
discriminator trying to catch generator

— INNs my theory hope

flow networks for control
condition for inversion

— precision still an issue
reliability crucial
uncertainties from BayesianNNs

— symmetries the current challenge
— Progress needs new and fun ideas!
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