Generative Networks

Tilman Plehn

E.

Symmetries

Generative Networks for the LHC and Some News on Symmetries

Tilman Plehn

Universität Heidelberg

SUSY 8/2021

LHC goals

Fundamental questions

- particle nature of dark matter?
- origin of the Higgs mechanism?
- matter-antimatter asymmetry?
- Standard Model all there is? No!

Show-off measurements

- many processes
- vastly different rates
- high precision
- in agreement with theory

LHC goals

Fundamental questions

- particle nature of dark matter?
- origin of the Higgs mechanism?
- matter-antimatter asymmetry?
- Standard Model all there is? No!

Show-off measurements

- many processes
- vastly different rates
- high precision
- in agreement with theory
- but completely useless
- ⇒ Kinematics all we care about

LHC simulations

Simulation-based inference [likelihood-free inference]

- start with Lagrangian
- calculate scattering in perturbative QFT
- simulate events [theory: Sherpa, Madgraph, Pythia]
- simulate detectors [experiment: ATLAS, CMS, Delphes]
- ⇒ LHC events in virtual worlds

LHC simulations

Simulation-based inference [likelihood-free inference]

- start with Lagrangian
- calculate scattering in perturbative QFT
- simulate events [theory: Sherpa, Madgraph, Pythia]
- simulate detectors [experiment: ATLAS, CMS, Delphes]
- ⇒ LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

- simulated event numbers ~ expected events
- statistics requiring 1%-2% uncertainty [NNLO/N³LO]
- flexible signal hypotheses [time-dependent]
- low-rate high-multiplicity backgrounds

Generative Networks

Networks

Tilman Plehn

LHC Events

Uncertaint

LHC simulations

Simulation-based inference [likelihood-free inference]

- start with Lagrangian
- calculate scattering in perturbative QFT
- simulate events [theory: Sherpa, Madgraph, Pythia]
- simulate detectors [experiment: ATLAS, CMS, Delphes]
- ⇒ LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

- simulated event numbers ∼ expected events
- statistics requiring 1%-2% uncertainty [NNLO/N³LO]
- flexible signal hypotheses [time-dependent]
- low-rate high-multiplicity backgrounds

Three ways to use ML

- improve current tools: iSherpa, ML-MadGraph...
- new tools: fast ML-generator-networks...
- conceptual progress: invertible simulations, inference...

Generative Networks

Tilman Plehn

LHC

Simulation-based inference [likelihood-free inference]

- start with Lagrangian

LHC simulations

calculate scattering in perturbative QFT

simulate events [theory: Sherpa, Madgraph, Pythia]

simulate detectors [experiment: ATLAS, CMS, Delphes]

⇒ LHC events in virtual worlds

Generative network studies [hyperlinked]

Basics [GANplification (2020), Diefenbacher (2020), Winterhalder (2021)]

Jets [de Oliveira (2017), Andreassen (2018), Carrazza-Dreyer (2019), Dohi (2020)]

Superresolution [DiBello (2020), Baldi (2020)]

Phase space [Bothmann (2020), Gao (2020), Klimek (2020), I-Kai Chen (2020), Carrazza (2020), Krause (2021)]

- Detectors [Paganini (2017), Musella, Erdmann, Ghosh, Salamani (2018), Belayneh (2019) Buhmann (2020,2021)]

Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]

Event subtraction & unweighting [Butter (2019), Stienen (2020), Backes (2020)]

- Unfolding [Datta (2018), Omnifold, Bellagente (2019), Bellagente, Vandegar, Howard (2020), Komiske (2021)]

- QCD factorization [Lin (2019)]

- EFT models [Erbin (2018)]

- Inference [Brehmer (2020), Park (2020), Bieringer (2020)]

- Parton densities [Carrazza (2021)]

- Uncertainties [Bellagente (2021)]

LHC scattering benchmarks

n-particle phase space n × 3 d.o.f.
 training from event samples [optimal transport vs likelihoods]
 energy-momentum conservation learned
 no detector effects [smoother structures]

n-jets/WZ+jets
 variable number of particles
 topology through jet-jet separation

Event

Even

Uncerta

LHC scattering benchmarks

- n-particle phase space $n \times 3$ d.o.f. training from event samples [optimal transport vs likelihoods] energy-momentum conservation learned no detector effects [smoother structures]
- top-quark pairs t ar t o 6 jets t/ar t and W^\pm on-shell [Breit-Wigner $\Gamma/m \sim \mathcal{O}(\%)$]
- n-jets/WZ+jets

 variable number of particles
 topology through jet-jet separation

- normalizing flow to phase space bijective, stable mapping Jacobian known
- training on 2M *n*-jet events
- goal 1% precision

LHC scattering benchmarks

- n-particle phase space $n \times 3$ d.o.f. training from event samples [optimal transport vs likelihoods] energy-momentum conservation learned no detector effects [smoother structures]

- top-quark pairs $t \bar t \to 6$ jets $t/\bar t$ and W^\pm on-shell [Breit-Wigner $\Gamma/m \sim \mathcal{O}(\%)$]
- n-jets/WZ+jets
 variable number of particles topology through jet-jet separation

- normalizing flow to phase space bijective, stable mapping Jacobian known
- training on 2M *n*-jet events
- goal 1% precision

Events

NN-generating LHC events

LHC scattering benchmarks

- n-particle phase space $n \times 3$ d.o.f. training from event samples [optimal transport vs likelihoods] energy-momentum conservation learned no detector effects [smoother structures]

- top-quark pairs $t \bar t \to 6$ jets $t/\bar t$ and W^\pm on-shell [Breit-Wigner $\Gamma/m \sim \mathcal{O}(\%)$]
- n-jets/WZ+jets
 variable number of particles
 topology through jet-jet separation

- normalizing flow to phase space bijective, stable mapping Jacobian known
- training on 2M *n*-jet events
- goal 1% precision

LHC scattering benchmarks

- n-particle phase space $n \times 3$ d.o.f. training from event samples [optimal transport vs likelihoods] energy-momentum conservation learned no detector effects [smoother structures]

- top-quark pairs $t \overline{t} \to 6$ jets t/\overline{t} and W^\pm on-shell [Breit-Wigner $\Gamma/m \sim \mathcal{O}(\%)$]
- n-jets/WZ+jets
 variable number of particles
 topology through jet-jet separation

- normalizing flow to phase space bijective, stable mapping Jacobian known
- training on 2M *n*-jet events
- goal 1% precision
- ⇒ challenges remaining...

LHC scattering benchmarks

- n-particle phase space $n \times 3$ d.o.f. training from event samples [optimal transport vs likelihoods] energy-momentum conservation learned no detector effects [smoother structures]

- top-quark pairs $t \bar{t} \to 6$ jets t/\bar{t} and W^\pm on-shell [Breit-Wigner $\Gamma/m \sim \mathcal{O}(\%)$]
- n-jets/WZ+jets variable number of particles topology through jet-jet separation

- normalizing flow to phase space bijective, stable mapping Jacobian known
- training on 2M *n*-jet events
- goal 1% precision
- ⇒ challenges remaining...

Inverting

INNverting event generation

Inverting LHC simulations [Bellagente, Butter, Kasieczka... (2020)]

- unfolding QCD-shower to hard parton standard [jet algorithm] unfolding detector common unfolding top-quark decays useful matrix element method for hypothesis test
- ⇒ systematic approach through generative network

Timarrion

Events

Uncerta

Inverting LHC simulations [Bellagente, Butter, Kasieczka... (2020)]

- unfolding QCD-shower to hard parton standard [jet algorithm] unfolding detector common unfolding top-quark decays useful matrix element method for hypothesis test
- \Rightarrow systematic approach through generative network

L

Conditional INN

parton

- standard INN/cINN setup: parton-level events from {r}
- maximum likelihood loss

$$L = -\langle \log p(\theta|x_p, x_d) \rangle_{x_p, x_d}$$

$$= -\left\langle \log p(g(x_p, x_d)) + \log \left| \frac{\partial g(x_p, x_d)}{\partial x_p} \right| \right\rangle_{x_p, x_d} - \log p(\theta) + \text{const.}$$

$$(\{r\})$$
Unfold
$$(\{\bar{x}_p\})$$

$$g(r, f(x_d))$$
subnet
$$(\{x_d\})$$
detector

cINN

 $g(x_p, f(x_d))$

Tilman Plehn

Hard process $q\bar{q} \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- stochastic inverse problem model assumption like in forward direction

invert detector effects

Tilman Plehn

Hard process $q\bar{q} \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- stochastic inverse problem model assumption like in forward direction

- invert detector effects

- invert QCD jet radiation [matrix element vs parton shower]

Tilman Plehn

Hard process $q\bar{q} \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- stochastic inverse problem

model assumption like in forward direction

10

-2.0 -1.5 -1.0 -0.5 0.0 0.5 $\sum_{p_{\tau}} / \sum_{|p_{\tau}|}$

×10⁻⁴

 $\frac{1}{\sigma} \frac{d\sigma}{d\sum_{p_e}/\sum_{|p_e|}} \left[\text{GeV}^{-1} \right]$

- precision estimate: momentum conservation

- invert QCD jet radiation [matrix element vs parton shower]

- invert detector effects

Hard process $q\bar{q} \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- stochastic inverse problem model assumption like in forward direction
- invert detector effects
- invert QCD jet radiation [matrix element vs parton shower]
- precision estimate: momentum conservation

Proper statistical inversion

 distribution single detector event 3200 unfoldings to partonic phase space

Hard process $q\bar{q} \rightarrow ZW \rightarrow (\ell\ell)$ (jj)

- stochastic inverse problem model assumption like in forward direction
- invert detector effects
- invert QCD jet radiation [matrix element vs parton shower]
- precision estimate: momentum conservation

Proper statistical inversion

- distribution
 single detector event
 3200 unfoldings to partonic phase space
- calibration
 1500 detector-parton event pairs
 60 unfoldings per pair, in quantiles
 truth within given quantile for fraction of pairs
- ⇒ Probability distribution in parton phase space

One number is not a prediction

hn

Tilman Plehn

Events

Invertin

Uncertainti

Symmetri

Bayesian generative network [Bellagente, Luchmann, Haußmann, TP (2021)]

- generate events with error bars
 i.e. learn density and uncertainty maps over phase space
- normalizing flow/INN [Köthe etal]
- 2D toy models: wedge ramp, kicker ramp, Gaussian ring
- ⇒ Error estimate works...

...and we see how the network learns!

One number is not a prediction

Tilman Plehn

LHC

Invertin

Uncertaintie

Uncortaintia

Bayesian generative network [Bellagente, Luchmann, Haußmann, TP (2021)]

- generate events with error bars
 i.e. learn density and uncertainty maps over phase space
- normalizing flow/INN [Köthe etal]
- 2D toy models: wedge ramp, kicker ramp, Gaussian ring
- ⇒ Error estimate works...

Simple LHC process

- 1D kinematic distributions with errors

⇒ Key step in NN-simulations

SUSY Conference — Symmetries in ML

Symmetries key concept in particle physics

analyze symmetries

[Barenboim, Hirn, Sanz (2021)]

SUSY Conference — Symmetries in ML

Tilman Plehn

Symmetries key concept in particle physics

- analyze symmetries [Barenboim, Hirn, Sanz (2021)]

- learn symmetries [Krippendorf (2020), Maiti (2021)]

- taggers: Lorentz symmetries [Butter (2018), Erdmann (2019), Bogatskiy (2020)] permutation symmetries [graphs (2020), Komiske (2018), Dolan (2020)] attention/transformer networks [Mikuni (2020), (2021) Shmakov (2021)]

SUSY Conference — Symmetries in ML

Tilman Plehn

....

LVCIII

Uncertainti

Cymmic

Symmetries key concept in particle physics

- analyze symmetries [Barenboim, Hirn, Sanz (2021)]
- learn symmetries [Krippendorf (2020), Maiti (2021)]
- taggers: Lorentz symmetries [Butter (2018), Erdmann (2019), Bogatskiy (2020)]
 permutation symmetries [graphs (2020), Komiske (2018), Dolan (2020)]
 attention/transformer networks [Mikuni (2020), (2021) Shmakov (2021)]

Particle-physics symmetries in latent space [JetCLR (Dillon 2021)]

- for instance anomaly searches: analysis in latent space [Dillion (2021)] means: equivalent jets/events in same latent-space point $[s(z,z') \rightarrow 1]$
- jet symmetries: rotation, translation, permutation jet augmentations: collinear merging, soft noise

Networks

SUSY Conference — Symmetries in ML

Symmetries key concept in particle physics

analyze symmetries [Barenboim, Hirn, Sanz (2021)]

learn symmetries [Krippendorf (2020), Maiti (2021)]

- taggers: Lorentz symmetries [Butter (2018), Erdmann (2019), Bogatskiy (2020)] permutation symmetries [graphs (2020), Komiske (2018), Dolan (2020)] attention/transformer networks [Mikuni (2020), (2021) Shmakov (2021)]

Particle-physics symmetries in latent space [JetCLR (Dillon 2021)]

- for instance anomaly searches: analysis in latent space [Dillon (2021)] means: equivalent jets/events in same latent-space point $[s(z, z') \rightarrow 1]$

- iet symmetries: rotation, translation, permutation jet augmentations: collinear merging, soft noise

self-supervised learning [implicit: images, explicit: EFPs]

test: linear classifier in latent space

⇒ Symmetries putting theory into ML-tools

Machine learning for LHC theory

On the way to the numerics mainstream

- ML standard for classification/regression/generation
- neural network benefits
 best available interpolation
 training on MC and/or data, anything goes
 lightning speed, once trained
- GANs the cool kid generator trying to produce best events discriminator trying to catch generator
- INNs my theory hope flow networks for control condition for inversion
- precision still an issue reliability crucial uncertainties from BayesianNNs
- symmetries the current challenge
- Progress needs new and fun ideas!

