BSM Physics Tilman Plehn A2a A2b A3a B1x

BSM Physics since 2020 Workshop

Tilman Plehn

Universität Heidelberg

Transregio Meeting 5/2021

A2a A2b A3a B1x B3a

SMEFT vs models

SMEFT representing UV-Model [Aachen-Heidelberg-Siegen]

- SMEFT questions: combining sectors, flavor assumptions, uncertainties specifically: error from truncating at D6?
- problem: no good scale separation
- ⇒ SMEFT as placeholder for UV-models [vector triplet]

$$\begin{split} \mathcal{L}_{\text{HVT}} &= \mathcal{L}_{\text{SM}} - \frac{1}{4} \widetilde{V}^{\mu\nuA} \widetilde{V}^{A}_{\mu\nu} + \frac{\widetilde{m}^{2}_{V}}{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} - \frac{\widetilde{g}_{M}}{2} \widetilde{V}^{\mu\nu A} \widetilde{W}^{A}_{\mu\nu} \\ &+ \widetilde{g}_{H} \widetilde{V}^{\mu A} J^{A}_{H\mu} + \widetilde{g}_{l} \widetilde{V}^{\mu A} J^{A}_{l\mu} + \widetilde{g}_{q} \widetilde{V}^{\mu A} J^{A}_{q\mu} + \frac{\widetilde{g}_{VH}}{2} |H|^{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} \end{split}$$

Matching

- 17 Wilson coefficients \leftrightarrow 6 model parameters
- SFitter limits in terms of model parameters

A2a A2b A3a B1x B3a

SMEFT vs models

SMEFT representing UV-Model [Aachen-Heidelberg-Siegen]

- SMEFT questions: combining sectors, flavor assumptions, uncertainties specifically: error from truncating at D6?
- problem: no good scale separation
- ⇒ SMEFT as placeholder for UV-models [vector triplet]

$$\begin{split} \mathcal{L}_{\text{HVT}} &= \mathcal{L}_{\text{SM}} - \frac{1}{4} \widetilde{V}^{\mu\nu A} \widetilde{V}^{A}_{\mu\nu} + \frac{\widetilde{m}^{2}_{V}}{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} - \frac{\widetilde{g}_{M}}{2} \widetilde{V}^{\mu\nu A} \widetilde{W}^{A}_{\mu\nu} \\ &+ \widetilde{g}_{H} \widetilde{V}^{\mu A} J^{A}_{H\mu} + \widetilde{g}_{l} \widetilde{V}^{\mu A} J^{A}_{l\mu} + \widetilde{g}_{q} \widetilde{V}^{\mu A} J^{A}_{q\mu} + \frac{\widetilde{g}_{VH}}{2} |H|^{2} \widetilde{V}^{\mu A} \widetilde{V}^{A}_{\mu} \end{split}$$

Matching at one loop [Dawson, Giardino, Homiller]

- 17 Wilson coefficients \leftrightarrow 6 model parameters plus matching scale
- remember renormalizing α_s with heavy states
- cancellations in Wilson coefficients $f(\tilde{g}, Q_{match})$

Anomalies in EFTs

Physical S-matrix elements satisfy Ward identities [Cata, Kilian, Kreher]

- In the SM, they do only if (hyper)charge sum rule is satisfied
- SMEFT: extra dim-6 sum rules for mixed U(1) anomalies
- specifically, Wilson coefficients proportional to hypercharge

 $k_{\mu}(\gamma) M^{\mu \dots}(k, \dots) \neq 0.$

Puzzle (in progress): some anomaly-free BSM models violate requirements?

- extend SMEFT to correctly represent low-energy approximation
- map operator space of SMEFT anomalies

Tilman Plehn

A2b

SMEFT for VBS

2103.16517: origin and size of EFT operators with field strength tensors

Massive BSM matter fields in isospin J_P multiplets induce EFT operators like

$$O_{WWW} = \operatorname{Tr} \left(\hat{W}^{\mu}_{\ \nu} \hat{W}^{\nu}_{\ \rho} \hat{W}^{\rho}_{\ \mu} \right) ,$$
$$O_{DW} = \operatorname{Tr} \left([\hat{D}_{\alpha}, \hat{W}^{\mu\nu}] [\hat{D}^{\alpha}, \hat{W}_{\mu\nu}] \right)$$

and also anomalous quartic gauge couplings (aQGC), which are searched for in vector boson scattering (VBS), e.g.

$$O_{T_1} = \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\alpha\beta} \right) \operatorname{Tr} \left(\hat{W}^{\alpha\beta} \hat{W}_{\mu\nu} \right)$$
$$O_{T_2} = \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\nu\alpha} \right) \operatorname{Tr} \left(\hat{W}^{\alpha\beta} \hat{W}_{\beta\mu} \right)$$

- Loop suppressed, but (J_R)³ enhanced for trilinear couplings, (J_R)⁵ for aQGC
- Unitarity/perturbativity limit reached at J_F=4 for fermion loops, J_S=6 for scalars
- Any loop-induced EFT operators require massive scalars or fermions →generic model
- Find Wilson coefficients, e.g.

$$\frac{f_{WWW}}{\Lambda^2} = \sum_F n_F \frac{13T_F}{360\pi^2 M_F^2} + \sum_S n_S \frac{T_S}{360\pi^2 M_S^2} \qquad \qquad \frac{f_{T_1}}{\Lambda^4} = \sum_F n_F \frac{(-28C_{2,F} + 13) T_F}{10080\pi^2 M_F^4} + \sum_S n_S \frac{(14C_{2,S} - 5) T_S}{40320\pi^2 M_S^4} = \sum_{F_1} n_F \frac{(-28C_{2,F} + 13) T_F}{10080\pi^2 M_F^4} + \sum_{F_2} n_F \frac{(14C_{2,F} - 5) T_S}{40320\pi^2 M_S^4} = \sum_{F_1} n_F \frac{(-28C_{2,F} + 13) T_F}{10080\pi^2 M_F^4} + \sum_{F_2} n_F \frac{(14C_{2,F} - 5) T_S}{40320\pi^2 M_S^4} = \sum_{F_2} n_F \frac{(-28C_{2,F} + 13) T_F}{10080\pi^2 M_F^4} + \sum_{F_2} n_F \frac{(14C_{2,F} - 5) T_S}{40320\pi^2 M_S^4} = \sum_{F_2} n_F \frac{(-28C_{2,F} + 13) T_F}{10080\pi^2 M_F^4} + \sum_{F_2} n_F \frac{(-28C_{2,F} + 13) T$$

Tilman Plehn

SMEFT for VBS

Problem: Validity range of EFT restricted to <1.5 M_R

 $\leftarrow Cross$ section for on-shell WW scattering below threshold (taken as 2M_F=1200 GeV)

EFT effects below 10% within EFT validity range, even for SU(2) nonents

←Full VBFNLO simulation: Large effects of extra multiplets are possible above threshold where

- EFT does not describe new physics
- Unitarization does only slightly better, but reduces huge to merely sizable overestimate of cross section

BSM Phy Tilman Pl A2a A2b

SMEFT for VBS

Comments:

- Extra SU(2) scalar or fermion multiplets can generate sizable loop effects in VBS, requiring high multiplicity, however
- Model is generic: any loop effects require additional SU(2) multiplets
- Added complexity does not change basic result, e.g.
- perturbative coupling of two multiplets to Higgs doublet field generates modest multiplet splitting (suppressed by $(v/M_{\rm R})^2$)
- Additional confining gauge interaction of multiplets averages out (analogous to quark-hadron duality in QCD)
- EFT as tool for describing BSM effects is of very limited use in describing processes with vast dynamic range such as VBS at the LHC

2HDM for baryogenesis

V(

Minimal model for baryogenesis [Hou, Modak, TP]

- first-order ew phase transition plus CP-phase
- complex 2HDM [type-3, Muhlleitner etal]

$$\Phi, \Phi') = \mu_{11}^2 |\Phi|^2 + \mu_{22}^2 |\Phi'|^2 - \left(\mu_{12}^2 \Phi^{\dagger} \Phi' + \text{h.c.}\right) + \frac{\eta_1}{2} |\Phi|^4 + \frac{\eta_2}{2} |\Phi'|^4 + \eta_3 |\Phi|^2 |\Phi'|^2 + \eta_4 |\Phi^{\dagger} \Phi'|^2 + \left[\frac{\eta_5}{2} (\Phi^{\dagger} \Phi')^2 + \left(\eta_6 |\Phi|^2 + \eta_7 |\Phi'|^2\right) \Phi^{\dagger} \Phi' + \text{h.c.}\right].$$

scalar mixing $c_\gamma^2 = (\eta_1 v^2 - m_h^2)(m_H^2 - m_h^2)$

- complex Yukawa sector $\overline{F}_i(-\lambda_{ij}s_\gamma + \rho_{ij}c_\gamma)hF_i + \cdots$ rotated to $\lambda_{ij} = \sqrt{2} m_i / v \delta_{ij} \in \mathbb{R}$ while $\rho_{ij} \in \mathbb{C}$
- allowed $m_{A,H,H^+} \sim 300$... 600 GeV, $|
 ho_{tc}| \sim 0.5$

A2a A2b **A3a** B1x B3a

2HDM for baryogenesis

LHC to find the necessary states [Uli's talk]

- ρ_{tc} from anomalous $t \rightarrow ch$ decays
- heavy Higgs produced through $|\rho_{tc}|$
- charged Higgs decaying through c_{γ}

 $cg
ightarrow bH^+
ightarrow b(W^+_\ell h)
ightarrow b~W^+_\ell W^+_\ell W^-_\ell$

A2a A2b **A3a** B1x

2HDM for baryogenesis

LHC to find the necessary states [Uli's talk]

- ho_{tc} from anomalous $t \rightarrow ch$ decays
- heavy Higgs produced through $|\rho_{tc}|$
- charged Higgs decaying through c_γ

0

$$g
ightarrow bH^+
ightarrow b(W_\ell^+ h)
ightarrow b W_\ell^+ W_\ell^+ W_\ell^-$$

É

 $H^+(A/H)$

b(t)

 \bar{b}

(A/H)

b(t)

– neutral Higgs decaying through ρ_{tc}

$$cg \rightarrow tH/tA \rightarrow t (t\bar{c})$$

probed by recycled 4t search

A3a

The CP-Violating NMSSM Higgs Sector

• The NMSSM Higgs Sector: 2 Higgs doublets and 1 complex singlet

$$\begin{aligned} \mathcal{H}_{d} &= \begin{pmatrix} \frac{1}{\sqrt{2}}(v_{d}+h_{d}+ia_{d})\\ h_{d}^{-} \end{pmatrix}, \quad \mathcal{H}_{u} = \boldsymbol{e}^{i\varphi_{u}}\begin{pmatrix} h_{u}^{+}\\ \frac{1}{\sqrt{2}}(v_{u}+h_{u}+ia_{u}) \end{pmatrix}, \\ \mathcal{S} &= \frac{\boldsymbol{e}^{i\varphi_{s}}}{\sqrt{2}}(v_{s}+h_{s}+ia_{s}). \end{aligned}$$

• The Higgs Potential: (neglecting D-term contributions)

$$\begin{split} V_{H} = & (|\lambda S|^{2} + m_{H_{d}}^{2})H_{d}^{\dagger}H_{d} + (|\lambda S|^{2} + m_{H_{u}}^{2})H_{u}^{\dagger}H_{u} + m_{S}^{2}|S|^{2} \\ & + \left|\kappa S^{2} - \lambda H_{d} \cdot H_{u}\right|^{2} + \left(\frac{1}{3}\kappa A_{\kappa}S^{3} - \lambda A_{\lambda}SH_{d} \cdot H_{u} + \text{h.c.}\right) \end{split}$$

- CP Violation in the Higgs Sector: $\lambda, \kappa, A_{\lambda}, A_{\kappa}$ can be complex
- Higgs interaction states mix: Mass term

$$\mathcal{L}_{\text{neutral}}^{m} = \frac{1}{2} \phi^{T} M_{\phi\phi} \phi , \quad \phi = (h_{d}, h_{u}, h_{s}, a_{d}, a_{u}, a_{s})$$

mass eigentstates $h_1, ..., h_5$ with $m_{h_1} \le ... \le m_{h_5}$

BSM Physics $\mathcal{O}(\alpha_{\sf new}^2) \equiv \mathcal{O}((\alpha_{\lambda} + \alpha_{\kappa} + \alpha_t)^2)$ NMSSM Mass Corrections

A2a A2b **A3a** B1x

[Dao,Gabelmann,Mühlleitner,Rzehak, preliminary]

Corrections to h_u -like Higgs (\cong SM-like Higgs)

remaining theoretical error $\mathcal{O}(\text{few \%})$

coupling to WW/ZZ normalized to SM transparent: excluded by Higgs data full (dashed): $h_u = h_1 (h_2)$

SUSY-EW and SUSY-QCD Corrections to Charged Higgs Decays

[NMSSMCALCEW; Dao, Mühlleitner, Patel, Sakurai, '21]

Points from scan in the NMSSM parameter space, compatible w/ experimental constraints

$$\begin{split} \delta_{\Gamma}(H^{+}XY) &= \frac{\Gamma(H^{+} \to XY)^{\text{NLO}}}{\Gamma(H^{+} \to XY)^{\text{LO}}} - 1\\ \Delta_{\text{BR}}(H^{+}XY) &= \frac{\text{BR}^{\text{NLO}}(H^{+} \to XY) - \text{BR}^{\text{LO}}(H^{+} \to XY)}{\max(\text{BR}^{\text{NLO}}(H^{+} \to XY), \text{BR}^{\text{LO}}(H^{+} \to XY))} \end{split}$$

BSM Physics

Tilman Plehn

A3a

A2a A2b

Tilman Plehn

- A3a B1x
- DO

Invisible Higgs Decays in the N2HDM

- \bullet Updated Limit on Higgs invisible branching ratio: BR_{inv} <0.11 $\mbox{[ATLAS]}$
- Indirect constraints on BR_{inv} in the N2HDM: below 0.1 → electroweak (EW) corrections to BR_{inv} become important
- Dark Doublet Phase (DDP) of the N2HDM: 2 *SU*(2)_{*L*} doublet fields Φ_{1,2} and a real singlet field Φ_S with two discrete ℤ₂ symmetries, DDP: Φ₁, Φ_S get VEV, not Φ₂ → dark particles *H*_D, *A*_D, *H*[±]_D from Φ₂, lightest one is DM candidate

[Azevedo, Gabriel, Mühlleitner, Sakurai, Santos, '21]

 $\mathsf{BR}^{\mathsf{NLO}} < 0.1$: no additional constraints from inclusion of EW corrections

Measuring QCD splittings

Jet properties from low-level observables [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

- using neural networks for simulation-based inference
- $\begin{array}{lll} \mbox{ condition} & (simulated) \mbox{ jets} \\ train & model \mbox{ parameters} \longrightarrow \mbox{ Gaussian latent space} \\ test & \mbox{ Gaussian sampling} \longrightarrow \mbox{ QCD } \mbox{ parameter measurement} \end{array}$
- going beyond C_A vs C_F [Kluth etal]

$$P_{qq} = C_F \left[D_{qq} \frac{2z(1-y)}{1-z(1-y)} + F_{qq}(1-z) + C_{qq}yz(1-z) \right]$$

$$P_{gg} = 2C_A \left[D_{gg} \left(\frac{z(1-y)}{1-z(1-y)} + \frac{(1-z)(1-y)}{1-(1-z)(1-y)} \right) + F_{gg}z(1-z) + C_{gg}yz(1-z) \right]$$

$$P_{gq} = T_R \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right]$$

Training

Measuring QCD splittings

Jet properties from low-level observables [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

- using neural networks for simulation-based inference
- condition (simulated) jets
 - train model parameters \longrightarrow Gaussian latent space
 - test Gaussian sampling \longrightarrow QCD parameter measurement
- going beyond CA vs CF [Kluth etal]
- idealized shower [Sherpa]

Measuring QCD splittings

Jet properties from low-level observables [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

- using neural networks for simulation-based inference
- condition (simulated) jets
 - train model parameters \longrightarrow Gaussian latent space
 - test Gaussian sampling \longrightarrow QCD parameter measurement
- going beyond C_A vs C_F [Kluth etal]
- idealized shower [Sherpa]
- reality hitting ...
- Fun measurement?

BSM Physics Tilman Plehn A2a A2b A3a B1x

B3a

DMEFT troubles all over again

Tree-level scalar mediator [2016]

- relic density for small $m_{\tilde{u}}$

B3a

DMEFT troubles all over again

Tree-level scalar mediator [2016]

- relic density for small $m_{\tilde{u}}$
- two effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{\mathcal{C}_{u\chi}}{\Lambda^2} \; (ar{u}_R \chi) \; (ar{\chi} u_R)$$

- EFT not valid for LHC and relic density...

BSM Physics Tilman Plehn A2a A2b A3a

B3a

DMEFT troubles all over again

Tree-level scalar mediator [2016]

- relic density for small $m_{\tilde{u}}$
- two effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{u\chi}}{\Lambda^2} \, \left(ar{u}_R \chi
ight) \, \left(ar{\chi} u_R
ight) \qquad \mathcal{L}_{\mathsf{eff}} \supset rac{c}{\Lambda^3} (ar{\chi} \chi) \, G_{\mu
u} G^{\mu
u}$$

- EFT not valid for LHC and relic density...

Tree-level vector in s-channel

- relic density for small m_V or around pole
- only 4-fermion operator
- EFT not valid...

BSM Physics Tilman Plehn A2a A2b

B3a

DMEFT troubles all over again

Tree-level scalar mediator [2016]

- relic density for small $m_{\tilde{u}}$
- two effective Lagrangians

$$\mathcal{L}_{\text{eff}} \supset \frac{c_{u\chi}}{\Lambda^2} \, \left(\bar{u}_R \chi
ight) \, \left(\bar{\chi} u_R
ight) \qquad \mathcal{L}_{\text{eff}} \supset \frac{c}{\Lambda^3} (\bar{\chi} \chi) \, G_{\mu\nu} \, G^{\mu\nu} \, G^{\mu\nu}$$

- EFT not valid for LHC and relic density...

Tree-level vector in s-channel

- relic density for small m_V or around pole
- only 4-fermion operator
- EFT not valid...

EFT not valid...

Loop-mediated scalar in s-channel

- relic density around pole
- two effective Lagrangians

$$\mathcal{L}_{\mathsf{eff}} \supset rac{c_{\mathcal{S}}^{t}}{\Lambda^{2}}(\bar{t}t) \ (\bar{\chi}\chi) \qquad \mathcal{L}_{\mathsf{eff},3} \supset rac{c_{\chi}^{g}}{\Lambda^{3}}(\bar{\chi}\chi) \ \mathcal{G}_{\mu\nu}\mathcal{G}^{\mu\nu}$$

νSMEFT

BSM Physics

Tilman Plehn

B3a

Replace neutralino with RH neutrino [Bischer, TP, Rodejohann]

- focus on 4-fermion operators to 3rd generation

$(\overline{L}L)(\overline{L}L)$ and $(\overline{R}R)(\overline{R}R)$	$(\overline{L}L)(\overline{R}R)$	$(\overline{L}R)(\overline{R}L)$ and $(\overline{L}R)(\overline{L}R)$
	$ \begin{array}{ll} \mathcal{O}_{\textit{NI}} & (\overline{\textit{N}}_{\alpha} \gamma_{\mu} \textit{N}_{\beta}) (\overline{\textit{l}}_{\gamma} \gamma^{\mu} \textit{l}_{\delta}) \\ \\ \mathcal{O}_{\textit{Nq}} & (\overline{\textit{N}}_{\alpha} \gamma_{\mu} \textit{N}_{\beta}) (\overline{\textit{q}}_{\gamma} \gamma^{\mu} \textit{q}_{\delta}) \end{array} $	$ \begin{array}{c} \mathcal{O}_{\textit{Nlel}} & (\overline{N}_{\alpha} \overset{j}{P}_{\beta}) \epsilon_{jk} (\overline{e}_{\gamma} \overset{k}{P}_{\delta}) \\ \mathcal{O}_{\textit{INqd}} & (\overset{j}{l}_{\alpha} N_{\beta}) \epsilon_{jk} (\overline{d}_{\gamma}^{k} d_{\delta}) \\ \mathcal{O}_{\textit{INqd}}' & (\overset{j}{P}_{\alpha} \sigma_{\mu\nu} N_{\beta}) \epsilon_{jk} (\overline{d}_{\gamma}^{k} \sigma^{\mu\nu} d_{\delta}) \\ \mathcal{O}_{\textit{INuq}} & (\overset{j}{P}_{\alpha} N_{\beta}) (\overline{u}_{\gamma} d_{\delta}') \end{array} $

νSMEFT

Tilman Plehn

B3a

Replace neutralino with RH neutrino [Bischer, TP, Rodejohann]

- focus on 4-fermion operators to 3rd generation

$(\overline{L}L)(\overline{L}L)$ and $(\overline{R}R)(\overline{R}R)$	$(\overline{L}L)(\overline{R}R)$	$(\overline{L}R)(\overline{R}L)$ and $(\overline{L}R)(\overline{L}R)$
$ \begin{array}{c} & \overline{(N_{\alpha} \gamma_{\mu} N_{\beta})} (\overline{e}_{\gamma} \gamma^{\mu} e_{\delta}) \\ \mathcal{O}_{N \mu} & (\overline{N_{\alpha}} \gamma_{\mu} N_{\beta}) (\overline{u}_{\gamma} \gamma^{\mu} u_{\delta}) \\ \mathcal{O}_{N d} & (\overline{N_{\alpha}} \gamma_{\mu} N_{\beta}) (\overline{d}_{\gamma} \gamma^{\mu} d_{\delta}) \\ \mathcal{O}_{N N} & (\overline{N_{\alpha}} \gamma_{\mu} N_{\beta}) (\overline{N_{\gamma}} \gamma^{\mu} N_{\delta}) \\ \mathcal{O}_{e N \nu d} & (\overline{e}_{\alpha} \gamma_{\mu} N_{\beta}) (\overline{v}_{\gamma} \gamma^{\mu} d_{\delta}) \end{array} $	$ \begin{array}{ll} \mathcal{O}_{\textit{NI}} & (\overline{\textit{N}}_{\alpha} \gamma_{\mu} \textit{N}_{\beta}) (\overline{\textit{l}}_{\gamma} \gamma^{\mu} \textit{l}_{\delta}) \\ \\ \mathcal{O}_{\textit{Nq}} & (\overline{\textit{N}}_{\alpha} \gamma_{\mu} \textit{N}_{\beta}) (\overline{\textit{q}}_{\gamma} \gamma^{\mu} \textit{q}_{\delta}) \end{array} $	$ \begin{array}{c} \mathcal{O}_{\textit{Nlel}} & (\overline{N}_{\alpha} \overset{j}{P}_{\beta}) \epsilon_{jk} (\overline{e}_{\gamma} \overset{k}{P}_{\delta}) \\ \mathcal{O}_{\textit{INqd}} & (\overset{j}{l}_{\alpha} N_{\beta}) \epsilon_{jk} (\overline{d}_{\gamma}^{k} d_{\delta}) \\ \mathcal{O}_{\textit{INqd}}' & (\overset{j}{P}_{\alpha} \sigma_{\mu\nu} N_{\beta}) \epsilon_{jk} (\overline{d}_{\gamma}^{k} \sigma^{\mu\nu} d_{\delta}) \\ \mathcal{O}_{\textit{INuq}} & (\overset{j}{P}_{\alpha} N_{\beta}) (\overline{u}_{\gamma} d_{\delta}') \end{array} $

- indirect detection from dwarf spheriodals

- direct detection only for Dirac neutrino [induced vector coupling]

A2a A2b A3a B1x B3a

ν SMEFT

Tree-level models, slightly weirder?

- gauged (B L)₃ vector leptoquarks scalar leptoquarks
- relic density required
- EFT constraints for DD, ID, etc model constraints from collider
- EFT consistency improved
- \Rightarrow global analysis framework?

BSM Physi Tilman Ple A2a

B3a

DMEFT analysis

Many technical innovations [Kahlhöfer etal]

- Fully automated calculation of RG evolution and matching onto non-relativistic effective operators for direct detection
- EFT validity at the LHC addressed through flexible form factors suppressing events with large missing energy
- Indirect detection constraints from $\gamma\text{-rays},$ solar νs and CMB energy injection
- Highly efficient likelihood evaluations allowing scans of up to 14 Wilson coefficients (including interference) simultaneously

Example: Global fits of dim-6 operators (relic density imposed as upper limit)

- No significant excess in any data set (best-fit point "preferred" at 1σ level)
- Plenty of viable parameter space for WIMP models (contribution from parity-violating operators required)
- Preference for $m_\chi\gtrsim 100\,{
 m GeV}$

Many other scans with different sets of operators and different constraints

Athron et al. (the GAMBIT collaboration), arXiv:2106.XXXXX

Dark metter in jets

Consider a dark sector with a SU(3) dark gauge group [Aachen-Heidelberg]

- the dark pions π_d^{\pm} are stable and viable dark matter candidates;
- the interaction between the dark sector and the SM ist mediated by a Z';
- cosmology and direct detection constraints suggest benchmark scenario with $m_\pi \approx$ 5 GeV, $m_{Z'} \approx$ 1 TeV

Novel LHC signature: Z' production with decay into dark sector:

 \rightarrow semi-visible jets: challenging benchmark scenario for BSM searches at the LHC [Bernreuther, Kahlhoefer, Krämer, Tunney, JHEP 01 (2020) 162]

Tilman Plehn

Dark matter in jets

Existing LHC searches for missing energy sensitive to such a scenario

To improve the LHC sensitivity to dark sectors one should

- search for long-lived particles
- suppress QCD backgrounds using neural networks

Tilman Plehn

B3a

Dark matter in jets

Long-lived particle searches at the LHC

- are generally tailored towards heavy LLPs and thus not very sensitive to BSM physics at the GeV scale, but
- can be improved by modifications of the vertex reconstruction and the analysis cuts:

modified vertex corrections: light blue, modified analysis cuts: dark blue. Dashed lines: projections for 300 $\rm fb^{-1}$

[Bernreuther, Carrasco Mejia, Kahlhoefer, Krämer, Tunney, JHEP 04 (2021) 210]

Tilman Plehn

B3a

Strongly interacting dark sectors at the LHC

Casting a graph net to catch dark showers

- dark showers vs QCD serious generic challenge for jet classification
- supervised deep neural networks now leading jet-taggers
- graph convolutional neural networks most powerful, also for dark showers
- dynamic graph network as a dark shower tagger gives super-powers

[Bernreuther, Finke, Kahlhoefer, Krämer, Mück, SciPost Phys. 10 (2021) 046]

Jet autoencoders

Unsupervised learning — the typical jets [Heimel, Kasieczka, TP, Thompson; Dillon, TP, Sauer, Sorrenson]

- train network to map jets onto typical jets
- train QCD \rightarrow find anomalous tops \rightarrow works train tops \rightarrow find anomalous QCD \rightarrow not good...
- next, give latent space a meaning: VAE
- next, make latent space multi-modal

Tilman Plehn

B3a

A2a A2b A3a B1x

Jet autoencoders

Unsupervised learning — the typical jets [Heimel, Kasieczka, TP, Thompson; Dillon, TP, Sauer, Sorrenson]

- train network to map jets onto typical jets
- train QCD \rightarrow find anomalous tops \rightarrow works train tops \rightarrow find anomalous QCD \rightarrow not good...
- next, give latent space a meaning: VAE
- next, make latent space multi-modal

Better latent spaces

- sample from Dirichlet distribution
- separate modes
- ⇒ Tag symmetrically in latent space [Heidelberg-Aachen]

A2a A2b A3a B1x **B3a**

Anomaly detection with autoencoders

Challenging BSM scenarios for unsupervised machine learning?

- Autoencoders shown to work as top-taggers
- however, standard autoencoders have a simplicity bias tend to identify complex jet imagines as anomaly, irrespective of training
- improve existing autoencoders: modify the data preprocessing, loss function, latent space
- truly model-independent autoencoder for anomaly tagging still to be developed

improved autoencoder for dark shower tagging

[Finke, Krämer, Morandini, Mück, Oleksiyuk, 2104.09051; Heidelberg-Aachen in progress]

A2a A2b A3a B1x B3a

Generative networks with uncertainties

Bayesian generative network [Bellagente, Luchmann, Haußmann, TP]

- generate events with error bars
 i.e. learn density and uncertainty maps over phase space
- normalizing flow/INN [Köthe etal]
- 2D toy models: wedge ramp, kicker ramp, Gaussian ring
- ⇒ Error estimate works...

...and we see how the network learns!

A2a A2b A3a B1x B3a

Generative networks with uncertainties

Bayesian generative network [Bellagente, Luchmann, Haußmann, TP]

- generate events with error bars
 i.e. learn density and uncertainty maps over phase space
- normalizing flow/INN [Köthe etal]
- 2D toy models: wedge ramp, kicker ramp, Gaussian ring
- ⇒ Error estimate works...

Simple LHC process

- 1D kinematic distributions with errors

A2b A3a B1x **B3a**

Thank you...

ML4Jets hybrid July 6-8 2021

https://indico.cern.ch/event/980214

Local Organizers Anja Butter Barry Dillon Ullrich Köthe Tilman Plehn Hans-Christian Schultz-Coulon

INSTITUTE FOR THEORETICAL PHYSICS

> International Organization Committee Kyle Cranmer (NYU) Ben Nachman (LBNL) Maurizio Pierini (CERN) Tilman Piehn (Heidelberg) Jesse Thaler (MIT)

> > oto: Pestonic / Fotalia / Ariohe Storic: Composition Anke Heinzelman

UNIVERSITÄT

HEIDELBERG

