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Nothing is ever new

LHC visionaries

— 1991: NN-based quark-gluon tagger [visionary: Lénnblad, Peterson, Régnvaldsson]

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD *, Carsten PETERSON * * and Thorsteinn ROGNVALDSSON ***
Department of Theoretical Physics, University of Lund, Solvegatan 14A, S-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e” events with ~85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to study the so-called string
effect.

In addition, heavy quarks (b and c) in e*e~ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.
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Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
to reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
cxamples considered are the _semileptonic decays of
a heavy Higgs boson at_/s=16TeV, and of top
quark-antiquark pairs at 8 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons 5], and a longitudinally-
invariant k -clustering_algorithm for hadron-hadron
collisions was proposed [6]. This algorithm has been
compared with the more commonly used cone algorithm
from the viewpoints of a parton-shower Monte Carlo
program [6, 7], and a fixed-order matrix-clement calcu-
Jation [8], and advantages of the cluster algorithm were
eported . both case. This paper i concured with

a comparison between the algorithms for the task of
reconstructing the hadronic decays of heavy particles,
which was also studied in a preliminary way in [9)

The only as-yet unobserved particies of the minimal
Standard Model are the top quark and Higgs boson. The
scarch for, and study of, these paricles arc among the
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Why LHC jets?

Data from ATLAS & CMS
— most LHC interactions qq, gg — qq, g9
— quarks/gluon visible as jets o, X £ ~ 108fb x 80/fb ~ 100 events
= Tons of data
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Why LHC jets?

Data from ATLAS & CMS

— most LHC interactions qq, gg — qq, g9
— quarks/gluon visible as jets oy, X £ &~ 108fb x 80/fb ~ 1010 events
= Tons of data

Physics in jets

— re-summed perturbative QFT prediction from QCD
— jets as decay products
67% W —jj 70%Z —j 60%H—j 67%t—jj 60%71—j..
— flavor tagging classic multivariate
— new physics in ‘dark showers’
= Fundamentally interesting
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Data from ATLAS & CMS
— most LHC interactions qq, g9 — qq, 99
— quarks/gluon visible as jets oy, X £ & 10%fb x 80/fb ~ 100 events
=- Tons of data

Physics in jets

— re-summed perturbative QFT prediction from QCD

— jets as decay products
67% W —jj 70%Z —j 60%H—j 67%t—jj 60%71—j..
flavor tagging classic multivariate

— new physics in ‘dark showers’
= Fundamentally interesting

Subjets for the cool stuff

— resonance searches in VV, VH, tt

— target masses high
target EFT kinematic same

= Why invent high-level observables?




Early ML-years

A brief history of ML-tagging

2014/15: first jet image papers [Cogan, Kagan, Strauss, Schwartzman, de Oliveira, Mackey, Nachman]
2017: first (working) ML top tagger (Kasieczka, TR Russell, Schell
ML4Jets 2017: what architecture works best?

To see how our DEEPTOPLOLA tagger deals with this problem and to test what kind of
structures drive the network output, we turn the problem around and ask the question if the
Minkowski metric is really the feature distinguishing top decays and QCD jets. To this end,
we define the invariant mass m(E;) and the distance d,, in Eq.(6) with a trainable diagonal
metric. After applying a global normalization we find

g =diag( 0.99+0.02, 9)
—1.014+0.01,—1.01 £ 0.02, —0.99 + 0.02) ,
wher the crrors are given by five independently trained copics. It is crucial for our physics
[37] that the disti: ing power of the DEEPTOPLOLA tagger is indeed the
same mass drop [1] that drives many QCD-based top taggers [6,7] and the image-based top
tagger, as shown in detail in Ref. [20].
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Abstract

Based on the established task of identifying boosted, hadronically decaying top
quarks, we compare a wide range of modern machine learning approaches. Unlike
most established methods they rely on low-level input, for instance calorimeter
output. While their network architectures are vastly different, their performance
is e atively similar. In general, we find that these new approaches are ex-
tremely powerful and great fun.
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Early ML-years

A brief history of ML-tagging

2014/15: first jet image papers  [Cogan, Kagan, Strauss, Schwartzman, de Oliveira, Mackey, Nachman]
2017: first (working) ML top tagger [Kasieczka, TR Russell, Schell

ML4Jets 2017: what architecture works best?

— ML4Jets 2018: lots of architectures work [1902.09914]

— ML4Jets 2020: nothing is ever over [preyer, Carrazza, Qu]

QCD rejection v. Top tagging efficiency
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Early ML-years

A brief history of ML-tagging
— 2014/15: first jet image papers [Cogan, Kagan, Strauss, Schwartzman, de Oliveira, Mackey, Nachman]
2017: first (working) ML top tagger [Kasieczka, TR Russell, Schell]
ML4Jets 2017: what architecture works best?
ML4Jets 2018: lots of architectures work (1902.00914]
ML4Jets 2020: nothing is ever over  [preyer, Carrazza, Qul

Tagglng with per—jet errors [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson]

— Bayesian tagging network
— similar performance as deterministic network
— Per-jet error: training statistics
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Anomaly searches

From supervised to unsupervised learning

— what ML people consider cool

knowledge just an unwanted bias
elevate ignorance to structural requirement

— unsupervised learning/anomaly searches  [remember Bruce Knutsen?]
— fun LHC applications: Tao Liu’s talk

Novelty Detection Meets Collider Physics

Jan Hajer,b? Ying-Ying Li,** Tao Liu,> and He Wang®
UInstitute for Advanced Studies, The Hong Kong University of Science and Technology,

lear Water Bay, Kowloon, Hong Kong S.A.R, P.R.China

2Centre for Cosmology, Particle Physics and Phenomenology,

Université catholique de Lowvain, Lowvain-lo-Newve B-1348, Belgium
3 Department of Physics, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong S.A.R., P.R.Chin
*Kauli Institute for Theoretical Physics, University of California Sanla Barbara, CA 931064030, USA

Novelty detection is the machine learning task to recognize data, which belong to an unknown
pattern. Complementary to supervised learning, it allows to analyze data model-independently. We,
demonstrate the potential role of novelty detection in collider physics, using autoencoder-based
deep neural network. Explicitly, we develop a st of density-based novelty evaluators, which are
sensitive to the clustering of unknown-pattern testing datal or new-physics signal events, for the
design of detection algorithms. We also explore the influence of the known-pattern data fiuctuations,
arising from non-signal regions, on detection sensitivity. Strategies to address it are proposed. The
algorithms are applied to detecting fermionic di-top partner and resonant di-top productions at LHC,
and exotic Higgs decays of two specific modes at a future e+ collider. With parton-level analysis,
we conclude that potentially the new-physics benchmarks can be recognized with high efficiency.




ML in simulation

Fundamental understanding a unique LHC feature

— precision theory
— precision simulations
— precision measurements




ML in simulation

Fundamental understanding a unique LHC feature

— precision theory

— precision simulations

— precision measurements

= What’s needed to keep the edge?
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ML in simulation

Fundamental understanding a unique LHC feature

— precision theory

— precision simulations

— precision measurements

= What’s needed to keep the edge?

Precision event generation

simulated event numbers ~ expected events [factor 25 for HL-LHC]
general move to NLO/NNLO  [1%-2% error]

higher relevant multiplicities (et recoil, extra jets, WBF, etc.]

new low-rate high-multiplicity backgrounds
cutting-edge predictions not through generators N3LO in Pythia?]
interpretation beyond specific models  (ets+MET]



ML in simulation

Fundamental understanding a unique LHC feature

— precision theory

— precision simulations

— precision measurements

= What's needed to keep the edge?

Precision event generation

— simulated event numbers ~ expected events [factor 25 for HL-LHC]
general move to NLO/NNLO  [1%-2% error]

higher relevant multiplicities et recoil, extra jets, WBF, etc.]

new low-rate high-multiplicity backgrounds

cutting-edge predictions not through generators (N3LO in Pythia?]
interpretation beyond specific models  fets+MeT]

Three ways to use ML

— improve current tools: iSherpa, ML-MadGraph, etc
— new ideas, like fast ML-generator-networks
— conceptual ideas in theory simulations and analyses



Coolest ML-algorithm

Generative adversarial network

— training:  true events {x7}
output:  generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]

Lp={—log D(x)>XT +{ —log(1 — D(X))>XG
— generator constructing r — xg by minimizing (0 needed
Lg = ( —log D(x )
— equilibbrium D =05 = Lp=Lg=—1log0.5
= statistically independent copy of training events

{r},{m} H Generator @ @ MC Data

Discriminator




Coolest ML-algorithm

Generative adversarial network
— training:  true events {x7}
output: ~ generated events {r} — {xg}
— discriminator constructing D(x) by minimizing (classiier D(x) = 1, 0 true/generator]
— generator constructing r — xg by minimizing (o needed
= statistically independent copy of training events

Vast number of studies

Jets  [de Oliveira (2017), Carrazza-Dreyer (2019)]

Detector simulations  [paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020)]

Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]

Unfolding  [patta (2018), Omnifold (2019), Bellagente (2019), Bellagente (2020), Howard (2020)]
Templates for QCD factorization (Lin 2019)]

EFT models [Emin (2018)]

Event subtraction [sutter (2019)]

Sherpa [Bothmann (2020), Gao (2020)]

Basics  [cANplfication (2020), DCTR (2020)]

Unweighting  (verneyen (2020), Backes (2020)]

Superresolution  [pigello (2020), Baldi (2020)]




Inversion

Beyond forward simulation [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— bijective transformation — physics mapped on latent space
Jacobian tractable — normalizing flow  [specifically: coupling layer]
evaluation in both directions — INN  [ardizzone, Rother, Ksthe]

— conditional GAN/INN: inverted events generated

forward

Y

scattering QCD shower ior
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Beyond forward simulation [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— bijective transformation — physics mapped on latent space
Jacobian tractable — normalizing flow  [specifically: coupling layer]
evaluation in both directions — INN  [ardizzone, Rother, Ksthe]

— conditional GAN/INN: inverted events generated
— unfolding detector effects ... and jet radiation (oo — zw — (¢¢) (i
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Inversion

Beyond forward simulation [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

bijective transformation — physics mapped on latent space
Jacobian tractable — normalizing flow [specifically: coupling layer]
evaluation in both directions — INN  [Ardizzone, Rother, Ksthe]

conditional GAN/INN: inverted events generated
unfolding detector effects ... and jet radiation oo — zw — (¢¢) ()
= parton-level pdf from single detector-level event

single detector event
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Inference

Fun things we can do with simulation

— where physics can tell ML people how to do it right
— Kyle Cranmer’s talk
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