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Briefest introduction ever

Neural network just a function

— think fp(x) just as f(x)
— no parametrization, just very many values 6
— 6-space the cool space [iatent space]

Construction through minimization

— define loss function L
— minimize through task
— evaluate x — f(x) in test/use case

LHC applications
— regression: parton momentum from jet constituents
matrix element over phase space
— classification: gluon/quark/bottom/top inside jet
— generation: sample r — f(r)




Challenges towards HL-LHC

Paradigm shift: model searches — fundamental understanding of data

— precision QCD
— precision simulations

— precision measurements

=- Nothing fundamental without simulations ot even unsupervised...]
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Challenges towards HL-LHC

Paradigm shift: model searches — fundamental understanding of data

— precision QCD

— precision simulations

— precision measurements
=- Nothing fundamental without simulations ot even unsupervised...]

10-year HL-LHC requirements

simulated event numbers ~ expected events [actor 25 for HL-LHC]
— general move to NLO/NNLO  (1%-2% error]

higher relevant multiplicities et recoll, extra jets, WBF, etc.]

new low-rate high-multiplicity backgrounds

— cutting-edge predictions not through generators (N3LO in Pythia?)
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simulated event numbers ~ expected events [actor 25 for HL-LHC]
— general move to NLO/NNLO  (1%-2% error]

higher relevant multiplicities et recoll, extra jets, WBF, etc.]

new low-rate high-multiplicity backgrounds

— cutting-edge predictions not through generators (N3LO in Pythia?)

Three ways to use ML

— improve current tools: iSherpa, ML-MadGraph, etc
— new tools: ML-generator-networks
— conceptual ideas in theory simulations and analyses




Generative networks

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]

— neural network: learned function f(X) [regression, classification]

— can networks create new pieces of art?
map random numbers to image pixels?

— train on 80,000 pictures
i
— generate flowers

organized by style and genre
bt i
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Generative networks

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]

— neural network: learned function f(x) (regression, classification]

— can networks create new pieces of art?
map random numbers to image pixels?

— train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales
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Generative networks

GANGoOgh  [Bonafilia, Jones, Danyluk (2017)]

— neural network: learned function f(x) (regression, classification]

— can networks create new pieces of art?
map random numbers to image pixels?

— train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales

Jet portraits  (de Oliveira, Paganini, Nachman (2017)]
— calorimeter or jet images
sparsity the technical challenge
1- reproduce valid jet images from training data
2- organize them by QCD vs W-decay jets
— high-level observables m, 751 as check
= GANs generating QCD jets
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GAN algorithm

Generating events [phase space positions, possibly with weights]

— training:  true events {x7}
output:  generated events {r} — {xg}
— discriminator constructing D(x) by minimizing (classifier D(x) = 1, 0 true/generator]

Lp = ( — log D(x)) + ( —log(1 — D(x)))
— generator constructing r — xg by minimizing (b needed
Lg = ( —log D(x))xG

— equilibrium D=0.5 = Lp/2=Lg= —10g0.5
= statistically independent copy of training events

{r}, {m} H Generator @ MC Data

Discriminator } ------ a




GAN algorithm

Generating events [phase space positions, possibly with weights]

— training:  true events {x7}
output:  generated events {r} — {xg}
— discriminator constructing D(x) by minimizing  (classifier D(x) = 1, 0 true/generator]
— generator constructing r — xg by minimizing (o needed
= statistically independent copy of training events

Generative network studies

— Jets [de Oliveira (2017), Carrazza-Dreyer (2019)]

— Detector simulations  [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020,2021)]
— Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]
— Unfolding [Datta (2018), Omnifold (2019), Bellagente (2019), Bellagente (2020), Vandegar (2020), Howard (2020)]

— Templates for QCD factorization [Lin (2019)]

— EFT models [Erbin (2018)]

— Event subtraction [Butter (2019)]

— Phase space [Bothmann (2020), Gao (2020), Klimek (2020)]

— Basics [GANplification (2020), DCTR (2020)]

— Unweighting [verheyen (2020), Backes (2020)]

— Superresolution [DiBello (2020), Baldi (2020)]

— Parton densities  [Carrazza (2021)]

— Uncertainties [Bellagente (2021)]




GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known

compare GAN vs sampling vs fit

10 quantiles === truth
0.161 GAN trained on 100 data points fit
— quantiles with x2-values 014 =
— fit like 500-1000 sampled points o1
GAN like 500 Sampled points [amplifictation factor 5] ‘:);o‘m
requiring 10,000 GANned events 008

— interpolation and resolution the key nnPoF
= GANSs beyond training data ; l

8 -6 -4 -2 0 2 4 6 8
x

50 quantiles
GAN 100 data points

w

n

= sample
o

=10-2/.200

£ 500

3

=3

fit

101 102 10° 10* 10° 10
number GANed




How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {f — 6 jets

t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof  (constants hard to learn]
parton level, because it is harder

— flat observables flat [phase space coverage okay]
— standard observables with tails [statistical error indicated]
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improved resolution 1M training events]
1M true events x 10!
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How to GAN LHC events

Idea: replace ME for hard process [sutter, TP, Winterhalder]

— medium-complex final state {f — 6 jets

t/t and W+ on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof  (constants hard to learn]
parton level, because it is harder

flat observables flat [phase space coverage okay]
— standard observables with tails [statistical error indicated]

improved resolution [50M generated events]

. . . 50M gencrated events x10°
Forward simulation working 3
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Bonus: unweighting & errors without binning

Gaining from unweighting  [Buteer, TR, Winterhalder]

— phase space sampling: weighted events s weight x | M (2]

events: constant weights

— unweighting the weak spot of standard MC ::: K‘\%\m
— learn phase space patterns (densiy estimation] s 10

generate unweighted events  trough loss] U
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Bonus: unweighting & errors without binning

Gaining from unweighting  Buter, TR, Winterhalder]

— phase space sampling: weighted events s weight x | M 2]
events: constant weights

— unweighting the weak spot of standard MC .

— learn phase space patterns (densiy estimation] s 10 .
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How to GAN away detector effects

Goal: invert Monte Carlo [Bellagente, Butter, Kasiczka, TP, Winterhalder]

— parton shower, detector simulation typical examples [drawing random numbers]
— inversion possible, in principle [entangled convolutions, model assumed]

— GAN task

DELPHES GAN
partons ~ —  detector — partons

= Full phase space unfolded

Conditional GAN

— random numbers — parton level
hadron level as condition
matched event pairs

Condition




Detector unfolding
Z o+
Reference process pp — ZW — (££) (jj) v j
— broad jj mass peak '
narrow ¢¢ mass peak J
modified 2 — 2 kinematics
fun phase space boundaries
— GAN same as event generation  with MMD]
Model (in\denendence
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25 Truth 3.0 Truth
— FCGAN —— FCGAN
20 —— Delphes —— Delphes

e e DR e W S |
= T iy
50 75 100 125 150 175 200 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0
myj [GeV]

prj, [GeV]




Detector unfolding 4
las
Reference process pp — ZW — (¢£) (jj) s j
— broad jj mass peak _
J

narrow ¢¢ mass peak
modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MMD]

Model (in)dependence
— detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]
pr,j; =30...50 GeV pr;,=30...40 GeV p;,- =20...50 GeV (12)

pr i 72> 60 GeV . (13)
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Detector unfolding

Reference process pp — ZW — (¢£) (jj)
— broad jj mass peak
narrow £¢ mass peak J
modified 2 — 2 kinematics
fun phase space boundaries

— GAN same as event generation  fwith MMD]

Model (in)dependence
— detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

pr,j; =30...50 GeV pr;,=30...40 GeV p;,- =20...50 GeV (12)

prj, > 60 GeV (13)
x10~%
— model dependence  [Thank you to BenN] 60 Ttk (W)
— train: SM events 5 T s
test: 10% events with W’ in s-channel = o
= Working fine, but ill-defined < w0
:é 2.0
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Proper inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow

Jacobian tractable [specifically: coupling layer]

evaluation in both directions — INN  (Ardizzone, Rother, Ksthe]
— standard setup, random-number-padded working like FCGAN
— conditional: parton-level events from {r}
— maximum likelihood loss

L= = (log P(8]%, Xa)),

ag( Xpa Xd)

> — log p(9) + const.

<Iog P(9(Xp, Xa)) + log ‘
Xp,Xg

Condition

@/ ey, 22)




Proper inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

— network as bijective transformation — normalizing flow
Jacobian tractable [specifically: coupling layer]
evaluation in both directions — INN  [Ardizzone, Rother, Kothe]

— standard setup, random-number-padded working like FCGAN
— conditional: parton-level events from {r}
— maximum likelihood loss

Again pp — ZW — (££) (jj)

— performance on distributions like FCGAN
— parton-level probability distribution for single detector event
= Well-defined statistical inversion

single detector event
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Proper inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Kéthe]

network as bijective transformation — normalizing flow
Jacobian tractable [specifically: coupling layer]
evaluation in both directions — INN  [Ardizzone, Rother, Kothe]

standard setup, random-number-padded working like FCGAN
conditional: parton-level events from {r}
maximum likelihood loss

Again pp — ZW — (££) (jj)

— performance on distributions like FCGAN
— parton-level probability distribution for single detector event
= Well-defined statistical inversion

single detector event
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14 FCGAN
>
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Inverting to hard process

What theorists want: undo ISR
— detector-level process pp — ZW+jets  (variable number of objects]
— ME vs PS jets decided by network

— training jet-inclusively or jet-exclusively
parton-level hard process chosen 2 — 2

x10~* x10~*
- i 2 jet incl. 25 2 jot excl.
...... Parton Truth ~---= Parton Truth
— Parton oINN |~ 2.0 —— Parton cINN

...... Detector Truth - Detector Truth
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Inverting to hard process

What theorists want: undo ISR

— detector-level process pp — ZW+jets  |variable number of objects]

— ME vs PS jets decided by network

— training jet-inclusively or jet-exclusively
parton-level hard process chosen 2 — 2

Towards systematic inversion

— detector unfolding known problem
— QCD parton from jet algorithm standard
— jet radiation possible

= Invertible simulation in reach

forward

scattering QCD shower

I [ el || |

detectors
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Y

-
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inverse



Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Hoche, Kothe, TP, Radev]

— condition jets with QCD parameters
train model parameters — Gaussian latent space
test Gaussian sampling — QCD parameter measurement

— going beyond C4 vs Cr  [Kiuth etal]
2z(1 —y)
1—z(1-y)
z(1—y) N 1-20-y)
1—z(1-y) 1-0-20-y)

Pgqg = Tr {qu (22 + (1 - z)2) + ngyz(1 — z)]

Pgq = Cr {qu + Faq(1 — 2) + Caqyz(1 — Z)]

Pgg = 2Ca [Dgg ( ) + Fggz(1 — 2) + Cggyz(1 — Z)]

Training

Inference
T, €T
{on} Summary LHC (=} Summary
net Jets net

pr v

z .
_>' QCD Gaussian
cINN Gausslan) @easurement cINN ol
P(z)

P(m|{z}) 9(z: k) z~ P(2)




Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

— condition jets with QCD parameters
train

model parameters — Gaussian latent space
test Gaussian sampling —» QCD parameter measurement
— going beyond C4 vs Cr  Kuuthetal
Pgg = Cr [DWM + Fag(1 — 2) + Caqyz(1 — z)]
1—2(1-y)
Pgg = 2Cs [Dgg (1 i“z(: f)y) 1 f(: f)(;)(: f)y)) + Fagz(1 — 2) + Cggyz(1 — z)]
Pgq = Ta [Faqg (Z + (1 = 2°) + Caquz(1 — 2)] [0
— idealized shower

= Posterior
0.3
[Sherpa]

— Gaussian fit

== Absolute error of 2.5
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Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

— condition jets with QCD parameters
train

test
— going beyond Cy vs Cr  [Kuuth etal

Paq = Cr |Dgg—22" =Y Foa Caqvz(1
99 = CF aqm*’ qq(1 — 2) + Cqqyz(1 — 2)

pggzch[ogg< -y | (-20-y)

model parameters — Gaussian latent space
Gaussian sampling —» QCD parameter measurement

PR S T 7y)> + Fggz(1 — 2) + Cggyz(1 —z)]

o =0.06

Pgg = Th [qu (z2 T (1= z)2) + Cgqyz(1 — z)] .
— idealized shower (sherpa)
— reality hitting...

— More ML-opportunities...

= Posterior
—— Gaussian fit

** Relative error of 2%
== Absolute error of 2.5




Machine learning for LHC theory

Machine learning for the LHC

— Classification/regression standard

learning vs smart pre-processing
uncertainties?
experimental realities?

— GANsSs the cool kid

generator trying to produce best events
discriminator trying to catch generator

— INNs my theory hope

flow networks for control
condition for inversion
Bayesian for errors

— Progress needs crazy ideas

jesse Thaler (MIT)




Bonus: subtraction
Subtract samples without binning  (sutter, TP, winterhaider]

Ap_s = /A% + AL > max(AB, AS)

— GAN setup: differential class label, sample normalization
— toy example
1 1
Pe(x)=_+01  Ps(x)=- = Pgs=01

— statistical uncertainty

10° 0.13
GAN vs Truth S
7 0.12 == (B-S)muntlo
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Bonus: subtraction

Subtract samples without binning  (sutter, TP, winterhaider]
— statistical uncertainty

Ap_s = /A% + AL > max(AB, AS)

— GAN setup: differential class label, sample normalization
— toy example

1 1
Pg(x) = — +0.1 Ps(x)=- = Pg_g=0.1
X X
— event-based background subtraction [weird notation, sorry]
p—e’e B pp—oy—ee (S) = p—Z—ee (B-S)

x10!

GAN vs Truth

[pb/GeV]
= s
R

do
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Bonus: subtraction
Subtract samples without binning  (suteer, TP, winterhaider]

Ap_s = /A% + AL > max(AB, AS)

— GAN setup: differential class label, sample normalization
— toy example
1 1
PB(X) = ; +0.1 Ps(X) = ; = Pg_s=0.1

— statistical uncertainty

— event-based background subtraction  {weird notation, sorry]
p—ete B pp—oy—ee (S) = pp—Z—ee (B-S)
— collinear subtraction  [assumed non-local]

pp — Zg (B: matrix element, S: collinear abproximation)

0 20 40 60 80 100
pry [GeV]
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