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Briefest introduction ever

Neural network just a function

– think fθ(x) just as f (x)

– no parametrization, just very many values θ

– θ-space the cool space [latent space]

Construction through minimization

– define loss function L

– minimize through task

– evaluate x → f (x) in test/use case

LHC applications

– regression: parton momentum from jet constituents
matrix element over phase space

– classification: gluon/quark/bottom/top inside jet

– generation: sample r → f (r)

...
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Challenges towards HL-LHC

Paradigm shift: model searches −→ fundamental understanding of data

– precision QCD

– precision simulations

– precision measurements

⇒ Nothing fundamental without simulations [not even unsupervised...]
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Challenges towards HL-LHC

Paradigm shift: model searches −→ fundamental understanding of data

– precision QCD

– precision simulations

– precision measurements

⇒ Nothing fundamental without simulations [not even unsupervised...]

10-year HL-LHC requirements

– simulated event numbers ∼ expected events [factor 25 for HL-LHC]

– general move to NLO/NNLO [1%-2% error]

– higher relevant multiplicities [jet recoil, extra jets, WBF, etc.]

– new low-rate high-multiplicity backgrounds

– cutting-edge predictions not through generators [N3LO in Pythia?]
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Challenges towards HL-LHC

Paradigm shift: model searches −→ fundamental understanding of data

– precision QCD

– precision simulations

– precision measurements

⇒ Nothing fundamental without simulations [not even unsupervised...]

10-year HL-LHC requirements

– simulated event numbers ∼ expected events [factor 25 for HL-LHC]

– general move to NLO/NNLO [1%-2% error]

– higher relevant multiplicities [jet recoil, extra jets, WBF, etc.]

– new low-rate high-multiplicity backgrounds

– cutting-edge predictions not through generators [N3LO in Pythia?]

Three ways to use ML

– improve current tools: iSherpa, ML-MadGraph, etc

– new tools: ML-generator-networks

– conceptual ideas in theory simulations and analyses
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Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– neural network: learned function f (x) [regression, classification]

– can networks create new pieces of art?
map random numbers to image pixels?

– train on 80,000 pictures [organized by style and genre]

– generate flowers
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Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– neural network: learned function f (x) [regression, classification]

– can networks create new pieces of art?
map random numbers to image pixels?

– train on 80,000 pictures [organized by style and genre]

– generate portraits
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Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– neural network: learned function f (x) [regression, classification]

– can networks create new pieces of art?
map random numbers to image pixels?

– train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

– trained on 15,000 portraits

– sold for $432.500

⇒ ML all marketing and sales
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Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– neural network: learned function f (x) [regression, classification]

– can networks create new pieces of art?
map random numbers to image pixels?

– train on 80,000 pictures [organized by style and genre]

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

– trained on 15,000 portraits

– sold for $432.500

⇒ ML all marketing and sales

Jet portraits [de Oliveira, Paganini, Nachman (2017)]

– calorimeter or jet images
sparsity the technical challenge

1- reproduce valid jet images from training data

2- organize them by QCD vs W -decay jets

– high-level observables m, τ21 as check

⇒ GANs generating QCD jets
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GAN algorithm

Generating events [phase space positions, possibly with weights]

– training: true events {xT }
output: generated events {r} → {xG}

– discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]

LD =
〈
− log D(x)

〉
xT

+
〈
− log(1− D(x))

〉
xG

– generator constructing r → xG by minimizing [D needed]

LG =
〈
− log D(x)

〉
xG

– equilibrium D = 0.5 ⇒ LD/2 = LG = − log 0.5

⇒ statistically independent copy of training events
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GAN algorithm

Generating events [phase space positions, possibly with weights]

– training: true events {xT }
output: generated events {r} → {xG}

– discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]

– generator constructing r → xG by minimizing [D needed]

⇒ statistically independent copy of training events

Generative network studies

– Jets [de Oliveira (2017), Carrazza-Dreyer (2019)]

– Detector simulations [Paganini (2017), Musella (2018), Erdmann (2018), Ghosh (2018), Buhmann (2020,2021)]

– Events [Otten (2019), Hashemi, DiSipio, Butter (2019), Martinez (2019), Alanazi (2020), Chen (2020), Kansal (2020)]

– Unfolding [Datta (2018), Omnifold (2019), Bellagente (2019), Bellagente (2020), Vandegar (2020), Howard (2020)]

– Templates for QCD factorization [Lin (2019)]

– EFT models [Erbin (2018)]

– Event subtraction [Butter (2019)]

– Phase space [Bothmann (2020), Gao (2020), Klimek (2020)]

– Basics [GANplification (2020), DCTR (2020)]

– Unweighting [Verheyen (2020), Backes (2020)]

– Superresolution [DiBello (2020), Baldi (2020)]

– Parton densities [Carrazza (2021)]

– Uncertainties [Bellagente (2021)]
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GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]
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– true function known
compare GAN vs sampling vs fit

– quantiles with χ2-values
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– fit like 500-1000 sampled points
GAN like 500 sampled points [amplifictation factor 5]

requiring 10,000 GANned events

– interpolation and resolution the key [NNPDF]

⇒ GANs beyond training data
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]

– improved resolution [1M training events]
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]

– improved resolution [10M generated events]
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How to GAN LHC events

Idea: replace ME for hard process [Butter, TP, Winterhalder]

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]

– improved resolution [50M generated events]

– Forward simulation working
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Bonus: unweighting & errors without binning

Gaining from unweighting [Butter, TP, Winterhalder]

– phase space sampling: weighted events [PS weight×|M|2]

events: constant weights

– unweighting the weak spot of standard MC

– learn phase space patterns [density estimation]

generate unweighted events [through loss]
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Bonus: unweighting & errors without binning

Gaining from unweighting [Butter, TP, Winterhalder]

– phase space sampling: weighted events [PS weight×|M|2]

events: constant weights

– unweighting the weak spot of standard MC

– learn phase space patterns [density estimation]

generate unweighted events [through loss]
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Events with error bars [Bellagente, Haußmann, Luchmann, TP]

(1) learn phase space density as usual

(2) learn error from weight distributions [Bayesian network]

– generate events with error bars
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How to GAN away detector effects

Goal: invert Monte Carlo [Bellagente, Butter, Kasiczka, TP, Winterhalder]

– parton shower, detector simulation typical examples [drawing random numbers]

– inversion possible, in principle [entangled convolutions, model assumed]

– GAN task

partons DELPHES−→ detector GAN−→ partons

⇒ Full phase space unfolded

Conditional GAN

– random numbers −→ parton level
hadron level as condition
matched event pairs



Invertible
Networks

Tilman Plehn

Simulations

Events

Unfolding

Inverting

Measurements

Detector unfolding

Reference process pp → ZW → (``) (jj)
– broad jj mass peak

narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

Model (in)dependence
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Detector unfolding

Reference process pp → ZW → (``) (jj)
– broad jj mass peak

narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

Model (in)dependence

– detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

pT ,j1 = 30 ... 50 GeV pT ,j2 = 30 ... 40 GeV pT ,`− = 20 ... 50 GeV (12)

pT ,j1 > 60 GeV (13)
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Detector unfolding

Reference process pp → ZW → (``) (jj)
– broad jj mass peak

narrow `` mass peak
modified 2→ 2 kinematics
fun phase space boundaries

– GAN same as event generation [with MMD]

Model (in)dependence

– detector-level cuts [14%, 39% events, no interpolation, MMD not conditional]

pT ,j1 = 30 ... 50 GeV pT ,j2 = 30 ... 40 GeV pT ,`− = 20 ... 50 GeV (12)

pT ,j1 > 60 GeV (13)

– model dependence [Thank you to BenN]

– train: SM events
test: 10% events with W ′ in s-channel

⇒ Working fine, but ill-defined
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Proper inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

– network as bijective transformation — normalizing flow
Jacobian tractable [specifically: coupling layer]

evaluation in both directions — INN [Ardizzone, Rother, Köthe]

– standard setup, random-number-padded working like FCGAN

– conditional: parton-level events from {r}
– maximum likelihood loss

L = −〈log p(θ|xp, xd )〉xp,xd

= −
〈

log p(g(xp, xd )) + log
∣∣∣∣∂g(xp, xd )

∂xp

∣∣∣∣〉
xp,xd

− log p(θ) + const.
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Proper inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

– network as bijective transformation — normalizing flow
Jacobian tractable [specifically: coupling layer]

evaluation in both directions — INN [Ardizzone, Rother, Köthe]

– standard setup, random-number-padded working like FCGAN

– conditional: parton-level events from {r}
– maximum likelihood loss

Again pp → ZW → (``) (jj)

– performance on distributions like FCGAN

– parton-level probability distribution for single detector event

⇒ Well-defined statistical inversion
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Proper inverting

Invertible networks [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

– network as bijective transformation — normalizing flow
Jacobian tractable [specifically: coupling layer]

evaluation in both directions — INN [Ardizzone, Rother, Köthe]

– standard setup, random-number-padded working like FCGAN

– conditional: parton-level events from {r}
– maximum likelihood loss

Again pp → ZW → (``) (jj)

– performance on distributions like FCGAN

– parton-level probability distribution for single detector event

⇒ Well-defined statistical inversion
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Inverting to hard process

What theorists want: undo ISR

– detector-level process pp → ZW+jets [variable number of objects]

– ME vs PS jets decided by network

– training jet-inclusively or jet-exclusively
parton-level hard process chosen 2→ 2
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Inverting to hard process

What theorists want: undo ISR

– detector-level process pp → ZW+jets [variable number of objects]

– ME vs PS jets decided by network

– training jet-inclusively or jet-exclusively
parton-level hard process chosen 2→ 2

Towards systematic inversion

– detector unfolding known problem

– QCD parton from jet algorithm standard

– jet radiation possible

⇒ Invertible simulation in reach
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Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

– condition jets with QCD parameters
train model parameters −→ Gaussian latent space
test Gaussian sampling −→ QCD parameter measurement

– going beyond CA vs CF [Kluth etal]

Pqq = CF

[
Dqq

2z(1− y)

1− z(1− y)
+ Fqq (1− z) + Cqqyz(1− z)

]

Pgg = 2CA

[
Dgg

(
z(1− y)

1− z(1− y)
+

(1− z)(1− y)

1− (1− z)(1− y)

)
+ Fgg z(1− z) + Cgg yz(1− z)

]
Pgq = TR

[
Fqq

(
z2 + (1− z)2

)
+ Cgqyz(1− z)

]
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Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

– condition jets with QCD parameters
train model parameters −→ Gaussian latent space
test Gaussian sampling −→ QCD parameter measurement

– going beyond CA vs CF [Kluth etal]

Pqq = CF

[
Dqq

2z(1− y)

1− z(1− y)
+ Fqq (1− z) + Cqqyz(1− z)

]

Pgg = 2CA

[
Dgg

(
z(1− y)

1− z(1− y)
+

(1− z)(1− y)

1− (1− z)(1− y)

)
+ Fgg z(1− z) + Cgg yz(1− z)

]
Pgq = TR

[
Fqq

(
z2 + (1− z)2

)
+ Cgqyz(1− z)

]
– idealized shower [Sherpa]
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Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

– condition jets with QCD parameters
train model parameters −→ Gaussian latent space
test Gaussian sampling −→ QCD parameter measurement

– going beyond CA vs CF [Kluth etal]

Pqq = CF

[
Dqq

2z(1− y)

1− z(1− y)
+ Fqq (1− z) + Cqqyz(1− z)

]

Pgg = 2CA

[
Dgg

(
z(1− y)

1− z(1− y)
+

(1− z)(1− y)

1− (1− z)(1− y)

)
+ Fgg z(1− z) + Cgg yz(1− z)

]
Pgq = TR

[
Fqq

(
z2 + (1− z)2

)
+ Cgqyz(1− z)

]
– idealized shower [Sherpa]

– reality hitting...

– More ML-opportunities... 0.9 1.0 1.1

Dqq
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σ =0.06
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σ =2.3

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5
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Machine learning for LHC theory

Machine learning for the LHC

– Classification/regression standard
learning vs smart pre-processing
uncertainties?
experimental realities?

– GANs the cool kid
generator trying to produce best events
discriminator trying to catch generator

– INNs my theory hope
flow networks for control
condition for inversion
Bayesian for errors

– Progress needs crazy ideas
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Bonus: subtraction

Subtract samples without binning [Butter, TP, Winterhalder]

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– GAN setup: differential class label, sample normalization

– toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

0 25 50 75 100 125 150 175 200
x

10−2

10−1

100

P
(x

)

GAN vs Truth

B

S

B − S
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x
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P
(x
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(B − S)GAN

(B − S)Truth ± 1σ
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Bonus: subtraction

Subtract samples without binning [Butter, TP, Winterhalder]

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– GAN setup: differential class label, sample normalization

– toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)

20 40 60 80 100
Ee� [GeV]

0.0

0.5

1.0

1.5

2.0

d
�

d
E

e�
[p

b
/G

eV
]

⇥101

GAN vs Truth
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B � S
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Bonus: subtraction

Subtract samples without binning [Butter, TP, Winterhalder]

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– GAN setup: differential class label, sample normalization

– toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)

– collinear subtraction [assumed non-local]

pp → Zg (B: matrix element, S: collinear approximation)

0 20 40 60 80 100
pT,g [GeV]

10−2

10−1

100

101

d
σ

d
p T

,g
[p

b
/G

eV
]

GAN vs Truth
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B − S
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