Precision Forward and Inverse Simulations

Tilman Plehn

Universität Heidelberg

ATLAS, April 2022

The bestest generative network

Normalizing flows — INN [Ardizzone, Köthe]

- · Gaussian latent space
- bijective mapping
- known Jacobian
- · log-likelihood loss
- $\rightarrow \ \ Better \ than \ VAEs \ and \ GANs \quad \ \ [for different opinion \ ask \ Daniel \ \rightarrow \ OTUS]$

The bestest generative network

Normalizing flows - INN [Ardizzone, Köthe]

- · Gaussian latent space
- bijective mapping
- known Jacobian
- · log-likelihood loss
- \rightarrow Better than VAEs and GANs [for different opinion ask Daniel –

Bayesian INNs [Bellagente, Haußmann, Luchmann, TP]

- network weight distributions [Gal (2016)]
- · sample for output [efficient ensembling]
- · working for regression, classification
- · events with error bars [density & uncertainty maps]
- · 2D: wedge ramp, kicker ramp,...
- \rightarrow INNs just fits

Precision generator

ML-event generators [Butter, Plehn..., CaloFlow: Krause & Shih]

- · useful ML-playground
- training from event samples
 no momentum conservation
 no detector effects [Fastsim easy to include]
- 1- top-quark pairs $t\overline{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1, 2, 3\}$ jets [Z-peak, variable jet number, jet-jet topology]

Precision generator

ML-event generators [Butter, Plehn..., CaloFlow: Krause & Shih]

- · useful ML-playground
- training from event samples
 no momentum conservation
 no detector effects [Fastsim easy to include]
- 1- top-quark pairs $tar{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1, 2, 3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

- \cdot challenging ΔR_{jj} features
- $\cdot \,$ opposite of importance sampling

$$\begin{split} & w^{(1-jet)} = 1 \\ & w^{(2-jet)} = f(\Delta R_{j_1,j_2}) \\ & w^{(3-jet)} = f(\Delta R_{j_1,j_2})f(\Delta R_{j_2,j_3})f(\Delta R_{j_1,j_3}) \\ & f(\Delta R) = \frac{\Delta R - R_-}{R_+ - R_-} \quad (\Delta R \in [R_-, R_+]) \end{split}$$

Precision generator

ML-event generators [Butter, Plehn..., CaloFlow: Krause & Shih]

- · useful ML-playground
- training from event samples
 no momentum conservation
 no detector effects [Fastsim easy to include]
- 1- top-quark pairs $t\overline{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1,2,3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

- $\begin{array}{l} \cdot \mbox{ challenging } \Delta R_{jj} \mbox{ features} \\ \cdot \mbox{ opposite of importance sampling } \\ w^{(1\cdot jet)} = 1 \\ w^{(2\cdot jet)} = f(\Delta R_{j_1,j_2}) \\ w^{(3\cdot jet)} = f(\Delta R_{j_1,j_2}) f(\Delta R_{j_2,j_3}) f(\Delta R_{j_1,j_3}) \\ f(\Delta R) = \frac{\Delta R R_-}{R_+ R_-} \quad (\Delta R \in [R_-, R_+]) \end{array}$
- \rightarrow Per-cent precision in reach

Precision generator

ML-event generators [Butter, Plehn..., CaloFlow: Krause & Shih]

- · useful ML-playground
- training from event samples
 no momentum conservation
 no detector effects [Fastsim easy to include]
- 1- top-quark pairs $tar{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1,2,3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

- · challenging ΔR_{jj} features
- $\cdot\,$ opposite of importance sampling

$$\begin{split} w^{(1-jet)} &= 1 \\ w^{(2-jet)} &= f(\Delta R_{j_1,j_2}) \\ w^{(3-jet)} &= f(\Delta R_{j_1,j_2}) f(\Delta R_{j_2,j_3}) f(\Delta R_{j_1,j_3}) \\ f(\Delta R) &= \frac{\Delta R - R_-}{R_+ - R_-} \quad (\Delta R \in [R_-, R_+]) \end{split}$$

 \rightarrow Per-cent precision in reach

Controlled precision generator

ML-event generators

- useful ML-playground transferable to detector simulation needed for inverse simulations
- training from event samples
 no detector effects [Fastsim easy to include]
- 1- top-quark pairs $t\overline{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1, 2, 3\}$ jets [Z-peak, variable jet number, jet-jet topology]

Controlled precision generator

ML-event generators

- useful ML-playground transferable to detector simulation needed for inverse simulations
- training from event samples
 no detector effects [Fastsim easy to include]
- 1- top-quark pairs $tar{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1, 2, 3\}$ jets [Z-peak, variable jet number, jet-jet topology]

Discriminator: training vs generated

- · input $\{p_T, \eta, \phi, M, M_{\mu\mu}, \Delta R\}$
- · output D = 0(generator), 1(truth)
- \cdot decent generator training $D \approx 0.5$
- · additional event weight $w_D = \frac{D}{1-D}$
- → Control & reweight

Uncertain precision generator

Bayesian INN generator

- · learned uncertainty over phase space
- · useful after control step
- · low statistics means large uncertainty
- \rightarrow Training-related error bars

Uncertain precision generator

Bayesian INN generator

- · learned uncertainty over phase space
- · useful after control step
- · low statistics means large uncertainty
- \rightarrow Training-related error bars

Theory uncertainties

- · systematics from data augmentation
- adjust data in tails $[a = 0 \dots 30]$

$$w = 1 + a \left(\frac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}} \right)^2$$

- train conditionally on a
- · uncertainty from sampling a
- \rightarrow Network for LHC standards

Inverse

Systematic inverse simulation

Invertible ML-simulation [orthogonal technique to Omnifold]

- · detector unfolding known problem [needed for global analyses]
- · QCD parton from jet algorithm standard
- · jet radiation combinatorics challenge
- · decays established by top groups [needed for global analyses]
- · matrix element method an old dream
- → Free choice of data-theory inference point

Systematic inverse simulation

Invertible ML-simulation [orthogonal technique to Omnifold]

- · detector unfolding known problem [needed for global analyses]
- · QCD parton from jet algorithm standard
- · jet radiation combinatorics challenge
- · decays established by top groups [needed for global analyses]
- · matrix element method an old dream
- → Free choice of data-theory inference point

Conditional INN [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

· partonic events from $\{r\}$, given detector event

Systematic inverse simulation

Invertible ML-simulation [orthogonal technique to Omnifold]

- · detector unfolding known problem [needed for global analyses]
- · QCD parton from jet algorithm standard
- · jet radiation combinatorics challenge
- · decays established by top groups [needed for global analyses]
- · matrix element method an old dream
- → Free choice of data-theory inference point

Conditional INN [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- · partonic events from $\{r\}$, given detector event
- · maximum likelihood loss

l

$$\begin{split} & = -\left\langle \log p(\theta|x_{p}, x_{d}) \right\rangle_{x_{p}, x_{d}} \\ & = -\left\langle \log p(g(x_{p}, x_{d})) + \log \left| \frac{\partial g(x_{p}, x_{d})}{\partial x_{p}} \right| \right\rangle_{x_{p}, x_{d}} - \log p(\theta) + \text{const.} \end{split}$$

- $\cdot\,$ eventually to be combined with reweighting
- \rightarrow Stable and statistically calibrated

Uncertainties

Inverting to hard process

Undo QCD jet radiation

- · nasty jet combinatorics, little information
- · detector level: $pp \rightarrow ZW$ +jets [variable number of objects]
- · hard process given, ME vs PS jets from network

Inverting to hard process

Undo QCD jet radiation

- · nasty jet combinatorics, little information
- · detector level: $pp \rightarrow ZW$ +jets [variable number of objects]
- · hard process given, ME vs PS jets from network

Matrix element method [Butter, Heimel, Martini, Peitzsch, TP (soon)]

· parameter likelihood from parton-level events

$$\mathcal{L}(\theta) = \prod_{i=1}^{N} p(\vec{x}^{(i)}|\theta) = \prod_{i=1}^{N} \frac{1}{\sigma_{\text{fid}}(\theta)} \int d^{m}z \; \frac{d^{m}\sigma(\theta)}{dz_{1}\dots dz_{m}} \; T(\vec{x}^{(i)}, \vec{z})$$

$$T(\vec{x}, \vec{z}) = p_{\text{INN}}(\vec{z}|\vec{x}) \epsilon(\vec{x}) \implies \qquad \mathcal{L}(\theta) = \prod_{i=1}^{N} \frac{\epsilon(\vec{x}^{(i)})}{\sigma_{\text{fid}}(\theta)} \int d^{m}z \; \frac{d^{m}\sigma(\theta)}{dz_{1}\dots dz_{m}} \; p_{\text{INN}}(\vec{z}|\vec{x}^{(i)})$$

$$= \prod_{i=1}^{N} \frac{\epsilon(\vec{x}^{(i)})}{\sigma_{\text{fid}}(\theta)} \left\langle \frac{d^{m}\sigma(\theta)}{dz_{1}\dots dz_{m}} \right\rangle_{\vec{z} \sim p_{\text{INN}}}$$

Uncertainties

ML for LHC Theory

ML-applications in LHC physics

- · just another numerical tool for a numerical field
- · driven by money from data science, medical research
- · goals are...
 - ...improve established tasks ...develop new tools for established tasks ...transform through new ideas
- · comprehensive unfolding possible
- → Let's make a difference!

Contents

1	Introduction	4
2	Machine Learning in event generators	5
	2.1 Phase space sampling	6
	2.2 Scattering Amplitudes	7
	2.3 Loop integrals	9
	2.4 Parton shower	10
	2.5 Parton distribution functions	11
	2.6 Fragmentation functions	12
3	End-to-end ML-generators	13
	3.1 Fast generative networks	13
	3.2 Control and precision	15
4	Inverse simulations and inference	16
	4.1 Particle reconstruction	17
	4.2 Detector unfolding	17
	4.3 Unfolding to parton level	19
	4.4 MadMiner	20
	4.5 Matrix element method	22
5	Synergies, transparency and reproducibility	23
6	Outlook	24
R	eferences	25

Machine Learning and LHC Event Generation

Anja Burne¹¹, Timan Pelue¹, Seffers Schumark¹ (Editors), Bierne Eberge¹¹, Stehan Carne¹¹, ¹ Mc Carne¹¹, Francesco Ammuho Di Bello¹¹, Bierne Eberge¹¹, ¹ Stehan Carne¹¹, ¹ Stehan Carne¹¹, ¹ Charl Carne¹¹, ¹ Elian Clem¹², ¹ Elian Clem¹², ¹ Mc Hanne¹¹, ¹ Mc Hanne Charl, ¹ Timor Hanne¹¹, ¹ Charles Masser¹¹, ¹ Marcell Lochson¹², ¹ Mc Hand Kagers¹¹, ¹ Carnel Matter¹², ¹ Mc Hanne Hanne¹¹, ¹ Mc Hanne¹¹, ¹ Mc Hanne¹¹, ¹ Gregor Kattericka¹², ¹ Holm Kim¹², ¹ Schler Kom¹², ¹ Mc Mathem¹², ¹ Mc Hanne¹¹, ¹ Gregor Kattericka¹², ¹ Holm Mitter¹², ¹ Mc Mathem¹², ¹ Matterin¹², ¹ Gregor Kattericka¹², ¹ Holm Mitter¹², ¹ Moho Materin¹², ¹ Matterin¹², ¹ Gregor Kattericka¹², ¹ Holm Mitter¹², ¹ Moho Materin¹², ¹ Matterin¹², ¹ Gregor Katterick¹², ¹ Holm Mitter¹², ¹ Holm Mitter¹², ¹ Holm Materin¹², ¹ Matterin¹², ¹ Gregor Katterick¹², ¹ Holm Mitter¹², ¹ Holm Mitter¹², ¹ Holm Matterin¹², ¹ Matterin¹², ¹ Gregor Katterick¹², ¹ Holm Mitter¹², ¹ Hol

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data origins of multi-propose detectors with fundamental theory proterm in the physical strain of the strain or machine isaming to even generation and simulation-based inference, including couperional developments driven by the strength requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the appear on depresense of prover iterational the comparison of cells.

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass)

Uncertainties Inverse

Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

 $\begin{array}{lll} & \mbox{ condition } jets \mbox{ with QCD parameters} \\ train & \mbox{ model parameters} \rightarrow \mbox{ Gaussian latent space} \\ test & \mbox{ Gaussian sampling} \rightarrow \mbox{ parameter measurement} \end{array}$

· beyond C_A vs C_F [Kluth etal]

$$\begin{split} P_{qq} &= C_F \left[D_{qq} \frac{2z(1-y)}{1-z(1-y)} + F_{qq}(1-z) + C_{qq}yz(1-z) \right] \\ P_{gg} &= 2C_A \left[D_{gg} \left(\frac{z(1-y)}{1-z(1-y)} + \frac{(1-z)(1-y)}{1-(1-z)(1-y)} \right) + F_{gg}z(1-z) + C_{gg}yz(1-z) \right] \\ P_{gq} &= T_B \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right] \end{split}$$

Training

Inference

Uncertainties Inverse

Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

 $\begin{array}{lll} & \mbox{ condition } & \mbox{ jets with QCD parameters} \\ & \mbox{ train } & \mbox{ model parameters} \rightarrow \mbox{ Gaussian latent space} \\ & \mbox{ test } & \mbox{ Gaussian sampling} \rightarrow \mbox{ parameter measurement} \end{array}$

$$P_{qq} = C_F \left[D_{qq} \frac{2z(1-y)}{1-z(1-y)} + F_{qq}(1-z) + C_{qq}yz(1-z) \right]$$

$$P_{gg} = 2C_A \left[D_{gg} \left(\frac{z(1-y)}{1-z(1-y)} + \frac{(1-z)(1-y)}{1-(1-z)(1-y)} \right) + F_{gg}z(1-z) + C_{gg}yz(1-z) \right]$$

$$P_{gq} = T_R \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right] \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- · idealized shower [Sherpa]
- More ML-opportunities...

