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Modern LHC physics

Classic motivation First-principle simulations
- dark matter - start with Lagrangian
- baryogenesis - calculate scattering using QF T
- Higgs VEV - simulate events

- simulate detectors

LHC physics — LHC events in virtual worlds

- fundamental questions

- huge data set BSM searches

. complete uncertainty control - compare simulations and data

- first-principle precision simulations - analyze data systematically (sverm

- understand LHC dataset (smoresm

Traditional methods - publish useable results

- discover in rates — With a little help from data science...

- unveil little black holes
- find supersymmetry
- travel extra dimensions

forward

- measure couplings
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Ask a data scientist

LHC questions

- How to get from 3 PB/s to 300 MB/s?
Data compression  [Netfix]

- How to analyze events with 4-vectors?
Graph neural networks [cars]

- How to incorporate symmetries?
Contrastive learning  (Google]

- How to combine tracker and calorimeter?
Super-resolution  (Gaming]

- How to remove pile-up?
Data denoising (cars]

- How to look for BSM physics?
Autoencoders  [sap]

- How to compare simulations and data?

- How to treat uncertatinties?

— How can we contribute to data science?




Shortest ML-intro ever

Fit-like approximation
- approximate known f(x) using fy(x)
- no parametrization, just very many values 6
- new representation/latent space 6

Construction and contol
- define (well-defined) loss function
- minimize loss to find best 6
- compare x — fy(x) for training/test data

LHC applications
- regression  x — fy(x)
- classification x — fy(x) € [0, 1]
- generation r~N — fy(r)
- conditional generation r ~ N — fy(r|x)

— Transforming numerical science




ML-applications for analysis

Top tagging  [supervised classification] :
- ‘hello world’ of LHC-ML = 1§
- the end of QCD
- different NN-architectures
— Non-NN left in the dust...
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ML-applications for analysis

Top tagging  [supervised classification]
- ‘hello world’ of LHC-ML
- the end of QCD
- different NN-architectures:
— Non-NN left in the dust...

8X8 Layer Truth

Particle flow [classification, super-resolution] : f z
- mother of jet tools 2 e :
- combined detector channels N S E s
- similar studies in CMS
_+ Seriously impressive Tt
ful WY ‘3 g, oa® .
25 2 zsé 2§
Towards a Computer Vision Particle Flow * o ¢ e ®
B—— .
g i st e e S el
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Symmetries

Learning symmetries  [representation, visualization]
- (particle) physics is all symmetries
- identify symmetries in 2D systems [paintings]
- CNN on PCAs of penultimate network layers
— Networks represent data patterns

label 1 [ T= - metr
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Symmetries

Learning symmetries [representation, visualization]
- (particle) physics is all symmetries
- identify symmetries in 2D systems  [paintings]
- CNN on PCAs of penultimate network layers
— Networks represent data patterns

PCA dataset

b1 abez [ >  Symmeny
= e

label3  labols )

Symmetric Networks  [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetry-aware latent space

Abstract

i, s s cxmpl, e cotrut 4 i repeetation b tp snd QCD s

o We g JeCLIL et i ke il i




Non-QCD and parton densities

Anomaly searches  [unsupervised training, see later]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Spirit of LHC e




Non-QCD and parton densities

Anomaly searches  [unsupervised training, see later]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Spirit of LHC ==

NNPDF/N3PDF parton densities i blast
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory N 3"'” “" o e

of parton distribution functions




Events and amplitudes

Speeding up Sherpa (sampiing]
- precision simulations limiting factor for Runs 3&4
- unweighting critical
— Phase space sampling "

Ne=1)

de/dm (56 GV

Ratio

Deviaton (0]



Events and amplitudes

Speeding up Sherpa [sampling] . =)
- precision simulations limiting factor for Runs 3&4

de/dm [pb Gov-1)

- unweighting critical e emm P ]
— Phase space sampling """

Accelerating Monto Garlo event gencration — rejection
nmplng e exen maten

i g | 2
s | oses | oot
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wr | 4
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Speeding up amplitudes [precision regression]

[e—— e

- loop-amplitudes expensive
- interpolation standard Optimising simulations for diphoton production at

hadron colliders using amplitude neural networks

— Network amplitudes

Targest 100% A
120] ggn .
o largest 1% Au H
process.boosted o B
100{ process boost egestoram | 1
T Fro
o
" #
2
i
. i
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X102

Invertible event generation and errors e om0 s
Unfolding and inversion [conditional normalizing flows, see later] %?E
- shower/hadronization unfolded by jet algorithm :z P N
- detector/decays unfolded e.g. in tops Og et R
- calibrated inverse sampling 00 T Tl
— Backwards generation | ,;

PR

e
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Invertible event generation and errors

Unfolding and inversion  [conditional normalizing flows, see later] g

- shower/hadronization unfolded by jet algorithm 0

- detector/decays unfolded e.g. in tops g

- calibrated inverse sampling
— Backwards generation

Abstract 2

X102

2 ot incl
-~ Parton Truth
— Parton NN

Detector Truth

X107

o s AT

60 8 100 120
P [GeV]

2 jet incl.

————— Parton Truth

—— Parton cINN
Detector Truth

Pofeerr et L]

Nt e s b 3 i

e et e e e e e e

Generative networks with uncertainties (ayesian discriminator-flows]
- control through discriminator [GAN-iike]

- uncertainties through Bayesian networks

— Precision & control

80 85
Mitreco [GeV]

0

. Train

7+ 1 jet exclusive
—— Reweighted

ae(0,6,12)

7 00 125 150
Pry, [GeV]



String landscape and learned formulas

Navigating string landscape  (reinforcement learning]
- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning

ulﬂii

€

Figure 1: Lef: Clutr snucure indimensionlly reduced s samples fo RLand 25 GA runs (CA
o all samples of GA and RL). The. runs. Right:

(input) values (N and Ns respectively) in reltion to principal components for a PCA fit of the
individual output of GA and RL.




String landscape and learned formulas

Navigating string Iandscape [reinforcement learning]
- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstract
Figure 1: Lefi: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA bt i o i b In okt of B e
il samples of GA and RL). The col
(inpu) values (N and N respectively) in relation to principal components for a PCA fit of the
individual output of GA and RL. G g g o g umpin s

Learning formulas [genetic algorithm, symbolic regression, see later]

- approximate numerical function through formula
- example: score/optimal observables

— Useful approximate formulas Emg=m =3

Back to the Formula — LHC Edition

‘compl dof|function

3 1[de

i )

51

61
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51
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53 Abstract

6 1 X

5 7 81810 n e s W i

fsin(A6 +9)) ‘on matrix-element Iuformation to extract, fo lustanee, optlunal LEC observables. This way

Table 8: Score hall of fame for simplificd WBF Higgs production with £ gy =0, including a

o ssbted 7 producdon. We e e o the Lm0 ofCP bl
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Modern generative networks

Normalizing flows — INN
- phase space density estimation
- trained on event samples
- Gaussian latent space
- bijective mapping
- known Jacobian
- log-likelihood loss

— Better for physics than VAEs and GANs

forward

scattering decay QCD shower i detectors

Y




Modern generative networks

Normalizing flows — INN
- phase space density estimation
- trained on event samples
- Gaussian latent space
- bijective mapping
- known Jacobian
- log-likelihood loss
— Better for physics than VAEs and GANs

Bayesian networks with uncertainties 0z 01 06 08
- network weight distributions  (cal 2016)) 014] Rt Ar— 0,04, Ay = 001
- " p T Oped
. sample for OUtpUt [efficient ensembling] 0.12 B tiop

inty

- working for regression, classification £o10

- events with error bars [density & uncertainty maps]
- 2D: wedge ramp, kicker ramp,...
— Bayesian INNs just fits with error bars

0.08

0.06

Absolute Uncertai

0.04

0.02

0.00

0.2 0.4 0.6 0.8



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Modern generative networks

Normalizing flows — INN
- phase space density estimation
- trained on event samples
- Gaussian latent space
- bijective mapping
- known Jacobian
- log-likelihood loss

— Better for physics than VAEs and GANs

Bayesian networks with uncertainties
- network weight distributions  (cai (2016)]
- sample for output fefficient ensembling]
- working for regression, classification
- events with error bars [density & uncertainty maps]
- 2D: wedge ramp, kicker ramp,...
— Bayesian INNs just fits with error bars

Z + 1 jet exclusive

—— Reweighted
—— Train

50 100 150
1y [GeV]
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Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event

forward

Y

scattering decay QCD shower detectors
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Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known problems

detector unfolding
unfolding to QCD parton means jet algorithm
unfolding jet radiation known combinatorics problem
unfolding to hard process standard in top groups  ineeded for global analyses]
matrix element method an old dream
- improved through coherent ML-method

— Free choice of data-theory inference point

forward

N
>

scattering decay QCD shower detectors

inverse

<
«




Inverting to hard process

Conditional INN
- partonic events from {r}, given detector event
- loss based on likelihood, Bayes’ theorem, Jacobian

L = — (log p(8|xp, Xa))

Xp,Xg
09(Xp, X,
= - <|og P(9(Xp, Xq)) + log % > — log p(8) + const.
XP Xp,Xg
- eventually to be combined with reweighting
— Stable and statistically calibrated
Undo QCD jet radiation in pp — ZW+jets <10-2
- nasty jet combinatorics, missing higher.  *° i
[ s Parton Truth
- hard process given and relevant 20 ! —— Parton cINN
- jet radiation universal QCD 3 15 ! Petector Truch
- ME vs PS jets from network fg10
— Report measurement where it matters - 05
0.0
< L

0 25 50 75 100 125 150 175 200
Prar [GeV]




Learning background only
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Unsupervised classification

- train on background only
extract unknown signal from reconstruction error
- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S <> B?




Learning background only

1@40x40  10@40x40  10@20x20 5@20x20 400100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Unsupervised classification
- train on background only
extract unknown signal from reconstruction error
- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B?

Moving to latent space

- anomaly score from latent space?

- VAE — does not work

GMVAE — does not work
Dirichlet VAE — works okay
density estimation — does not work

—— ep. 50, AUC: 0.88
ep. 100, AUC: 0.89
ep. 150, AUC: 0.89
ep. 200, AUC: 0.89

ep. 50, AUC: 0.8
ep. 100, AUC: 0.89
ep. 150, AUC: 0.89
ep. 200, AUC: 0.89

10'[DVAE, 1/Q=1.0 DVAE, t/Q=1.0

0700 02 04 06 08 10 %00 02 04 06 08 10




Learning background only . e ssemen semen om0 0w

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B?

Normalized autoencoder [penalize missing features]
- normalized probability loss
- Boltzmann mapping (£, =Msg
e~ Eo(x)
T Z
L= —{logpg(x)) = (Eo(X) + log Zg )
- inducing background metric
- small MSE for data, large MSE for model
- Zy from (Langevin) Markov Chain
— Symmetric autoencoder, at last

Po(x) =

5@20x20 5@40x40 10@40x40 1@40x40




Learning background ONlY .. e om0 sema om0 om0 sorman sesoms 108500 st

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B? e

top tagging

Normalized autoencoder [penalize missing features]

- normalized probability loss

- Boltzmann mapping (£, =Msg ] ao
—Eg(x
po(x) = ez—:” ;
L= —(logps(x)) = (Eg(x) + log Zy) 00 N
- inducing background metric - —
- small MSE for data, large MSE for model 20
- Zy from (Langevin) Markov Chain .

— Symmetric autoencoder, at last

10 Qco

1077
MSE



Optimal observables

Measure model parameter 6 optimally

- single-event likelihood

1 d"o(x|0)
p(x|0) = (@) dxm
- expanded in 6 around 6, define score
p(xlo) . o ooy opt
o8 10 ~ (6 — 6p) Vo logp(x|0)| = (6 — 6o) t(x|6o) = (6 — 60) 6™ (x)

K]
- leading order parton level
|ME,

p(x10) & M3+ OIME = t(x]6p) ~ 1
M2




Optimal observables

Measure model parameter 6 optimally

- single-event likelihood
1 d"o(x|6)

p(x|0) = (@) o™

- expanded in 6 around 6, define score

og 5((;";;)) ~ (0 — 6p) Vg log p(x|0) . = (0 — 6o) t(x]60) = (6 — 6p) O™'(x)
- leading order parton level ,
PO ~ IMB+OIME, = ton) ~ (T
CP-violating Higgs production q
- unique CP-observable W
t o< cpvpo ki Ky GF 6F sign [(ki — ke) - (G1 — G2)] "2 sin Agy A
- CP-effect in Ag;; ¢

Dé-effect in pr;
= Key LHC observable




PySR

Analytic formula for score
- function to approximate  t(x|0)
- phase space parameters  xp = pr/my, An, A¢  [node]
- operators  sinX, X2, X3, X4+ y,X — y, X% y,X/y [node]
- represent formula as tree  [complexity = number of nodes]
= Figures of merit

1 2 ) )
MSE=-—>" [g,v(x) — t(x, 2\9)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

compl dof |function MSE
3 1 |aAg 1.30-1071
4 1 |sin(aA¢) 2.75-107! -
5 1 |aAga,, 9.93-102 1°
6 1 |—zp,1sin(A¢+a) 1.90-1071
7 1 |(~zp1 — a)sin(sin(A¢)) 5.63-1072 2
8 1 |(a—mp1)zp2sin(Ag) 1.61-1072
14 2 |zp1(aA¢ —sin(sin(A¢)))(zp2 +b)  1.44-1072
15 3 |—(zp2(aln®+2p1) +b)sin(Ag +c) 1.30-1072
16 4 |—zp1(a—bAn)(zp2 +c)sin(Ap+d) 8.50-10-3 107
(@p.2 + @) (bzp,1(c — Ag) -3 5 10 15 20 25 30
BT —p1(dAn + exp o + f) sin(A¢ + g)) 8.18-10 complexity




PySR

Analytic formula for score

- function to approximate  t(x|6)
- phase space parameters  xp = pr/my, An, A¢  node]
- operators  sin X, X2, X3, X 4+ y,X — Y, X % Yy, X/y [node]
. represent formula as tree [complexity = number of nodes]

= Figures of merit

1¢ 2 . .
MSE=-—>" [g,-(x) — t(x, 2\9)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

- expected limits: 1.0{cPvin weF
very wrong formula 08
wrong formula o aprpr,
right formula Sos
; 2
MadMiner 2
e . g . . © 0.4
- same within statistical limitation §
= New optimal observables next 0.2
0.0F— — sy R ) —

-1.00 -0.75 -0.50 —0.25 0.00 025 0.50 0.75 1.00
oy




ML for LHC Theory

ML-applications in LHC physics
- just another numerical tool for a numerical field
- driven by money from data science, medical research
- goals are...

...improve established tasks
-.develop new tools for established tasks tachine Learning and LHC Event Generation
...transform through new ideas T ——

Simon Badger!, Sascha Caron’® Kyle Cranmer’, Francesco Armando Di Bell”,
link to growing Heidelberg lecture notes it G s o, e T S .|
9 9 g lectu e N o P e s Fanont’, o e, St s,
Marumi Kado®?", Michae Kagan®, Gregor Kasieczka®™, Felx Kling?, Sabine Kraml®,
1 Claudius Krause®, ank Krauss®, Kevin Kroninger®”, Rahool Kumar Blm\ln"
— Turn HL-LHC into fun! etV Voge il By Wi
Fabio Maltoni®* %, T\I Martini®’, Olivier Mattelaer*®, Benjamin Nachman®!2,
Sebastian Pitz', Juan Rojo™**, Matthew Schwartz*, David Shih’, Frank Siegert™,
Roy Stegeman”, Bob Stienen’, Jesse Thaler”, Rob Verheyen, Daniel Whiteson'®,
-

‘Ramon Winterhalder?, and Jure Zupan’

Abstract

‘They link the vast data output of multi-purpose detectors with fundamental theory pre-

ceptional developments driven by the s requirements of particle physics. New
ideas and tools developed at the interface of particle physics and machine learning will

d
sion data, and enhance inference as an inverse simulation problem.

‘Submitted to the Proceedings of the US Community Study
on the Future of Particle Physics (Snowmass)



http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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