Precision Forward and Inverse Simulations for the LHC

Tilman Plehn

Universität Heidelberg

Bern, March 2022

LHC goals

Fundamental questions

- · particle nature of dark matter?
- · origin of the Higgs mechanism? [hierarchy problem?]
- matter-antimatter asymmetry? [CP-symmetry]
- · Standard Model all there is?

Rates

- many processes
- · vastly different rates
- high precision
- · predicted by theory

LHC goals

Fundamental questions

- · particle nature of dark matter?
- · origin of the Higgs mechanism? [hierarchy problem?]
- matter-antimatter asymmetry? [CP-symmetry]
- · Standard Model all there is?

Rates

- many processes
- · vastly different rates
- high precision
- predicted by theory
- · but completely useless!

Precision

First-principle simulations

Simulation-based inference [likelihood-free inference]

- · understand events completely
- · Lagrangian to start
- · perturbative QFT
- · event generation [Sherpa, Madgraph, Pythia, Powheg]
- · detector simulation
- → LHC events in virtual worlds

First-principle simulations

Simulation-based inference [likelihood-free inference]

- · understand events completely
- · Lagrangian to start
- perturbative QFT
- · event generation [Sherpa, Madgraph, Pythia, Powheg]
- · detector simulation
- → LHC events in virtual worlds

Forward LHC simulations

- · HL-LHC: preparing for 25-fold data set
- $\cdot\,$ simulated events \sim expected events
- · 1%-2% statistical uncertainty [NNLO/N³LO]
- · low-rate high-multiplicity processes
- time-dependent signal hypotheses
- → Event generation limiting factor

Precision Tilman Plehn Generative

Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

neural network — learned function by minimizing loss

regression $x \to f(x)$ classification $x \rightarrow p(x) \in [0, 1]$ generation $x \to p_X(x)$ sampled $x \sim \mathcal{N}$

- · networks to create new pieces of art
- train on 80,000 pictures
- · generate portraits

Generative

Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

neural network — learned function by minimizing loss

regression $x \to f(x)$ classification $x \rightarrow p(x) \in [0, 1]$ generation $x \to p_X(x)$ sampled $x \sim \mathcal{N}$

- · networks to create new pieces of art
- train on 80,000 pictures
- generate portraits

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

- trained on 15,000 portraits
- sold for \$432.500

Generative

Generative networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

neural network — learned function by minimizing loss

- regression $x \rightarrow f(x)$ classification $x \rightarrow p(x) \in [0, 1]$ generation $x \to p_X(x)$ sampled $x \sim \mathcal{N}$
- networks to create new pieces of art
- train on 80,000 pictures
- generate portraits

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

- trained on 15,000 portraits
- sold for \$432,500

LHC examples

- jets [Nachman (2017), Carrazza-Dreyer (2019)...]
- · events [Butter (2019), Review (2020)...]
- · detector [Nachman (2017), Erdmann (2018), Kasieczka (2020), Krause-Shih (2021)...]
- · unfolding [Omnifold, cGAN, cINN (2020)...]
- · inference [QCD splittings (2020)...]
- · COMPRESSION [Rabemananjara (2021), ephemeral (2022)...]

Uncertain normalizing flows

Normalizing flows — INN [Ardizzone, Köthe]

- · Gaussian latent space
- · bijective mapping
- known Jacobian
- · log-likelihood loss
- $\rightarrow\,$ Better than VAEs and GANs

Uncertain normalizing flows

Normalizing flows - INN [Ardizzone, Köthe]

- · Gaussian latent space
- · bijective mapping
- known Jacobian
- · log-likelihood loss
- $\rightarrow\,$ Better than VAEs and GANs

Bayesian INNs [Bellagente, Haußmann, Luchmann, TP]

- network weight distributions [Gal (2016)]
- · sample for output [efficient ensembling]
- working for regression, classification
- · events with error bars [density & uncertainty maps]
- · 2D: wedge ramp, kicker ramp,...
- \rightarrow INNs just fits

Precision generator

ML-event generators [Butter, Plehn..., CaloFLow: Krause & Shih]

- useful ML-playground
- training from event samples no momentum conservation no detector effects [sharper structures]
- 1- top-quark pairs $t \overline{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1, 2, 3\}$ jets [Z-peak, variable jet number, jet-jet topology]

Precision generator

ML-event generators [Butter, Plehn..., CaloFLow: Krause & Shih]

- · useful ML-playground
- training from event samples no momentum conservation no detector effects [sharper structures]
- 1- top-quark pairs $tar{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1,2,3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

- \cdot challenging ΔR_{jj} features
- $\cdot \,$ opposite of importance sampling

$$\begin{split} & w^{(1-jet)} = 1 \\ & w^{(2-jet)} = f(\Delta R_{j_1,j_2}) \\ & w^{(3-jet)} = f(\Delta R_{j_1,j_2}) f(\Delta R_{j_2,j_3}) f(\Delta R_{j_1,j_3}) \\ & f(\Delta R) = \frac{\Delta R - R_-}{R_+ - R_-} \quad (\Delta R \in [R_-, R_+]) \end{split}$$

Precision generator

ML-event generators [Butter, Plehn..., CaloFLow: Krause & Shih]

- · useful ML-playground
- training from event samples no momentum conservation no detector effects [sharper structures]
- 1- top-quark pairs $t\overline{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1,2,3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

- $\begin{array}{l} \cdot \mbox{ challenging } \Delta R_{jj} \mbox{ features} \\ \cdot \mbox{ opposite of importance sampling } \\ w^{(1\cdot jet)} = 1 \\ w^{(2\cdot jet)} = f(\Delta R_{j_1,j_2}) \\ w^{(3\cdot jet)} = f(\Delta R_{j_1,j_2}) f(\Delta R_{j_2,j_3}) f(\Delta R_{j_1,j_3}) \\ f(\Delta R) = \frac{\Delta R R_-}{R_+ R_-} \quad (\Delta R \in [R_-, R_+]) \end{array}$
- \rightarrow Per-cent precision in reach

Precision generator

ML-event generators [Butter, Plehn..., CaloFLow: Krause & Shih]

- · useful ML-playground
- training from event samples no momentum conservation no detector effects [sharper structures]
- 1- top-quark pairs $t\overline{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1,2,3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

· challenging
$$\Delta R_{jj}$$
 features

$$\begin{split} & w^{(1-jet)} = 1 \\ & w^{(2-jet)} = f(\Delta R_{j_1,j_2}) \\ & w^{(3-jet)} = f(\Delta R_{j_1,j_2})f(\Delta R_{j_2,j_3})f(\Delta R_{j_1,j_3}) \\ & f(\Delta R) = \frac{\Delta R - R_-}{R_+ - R_-} \quad (\Delta R \in [R_-, R_+]) \end{split}$$

 \rightarrow Per-cent precision in reach

Controlled precision generator

Discriminator: training vs generated

- · input $\{p_T, \eta, \phi, M, M_{\mu\mu}, \Delta R\}$
- · output D = 0(generator), 1(truth)
- $\cdot\,$ decent generator training $D\approx 0.5$
- · additional event weight $w_D = D/(1 D) \rightarrow 1$
- → Dual use control & reweight

Controlled precision generator

Discriminator: training vs generated

- · input $\{p_T, \eta, \phi, M, M_{\mu\mu}, \Delta R\}$
- · output D = 0(generator), 1(truth)
- $\cdot\,$ decent generator training $D\approx 0.5$
- $\cdot \,$ additional event weight $w_D = D/(1-D) \rightarrow 1$
- → Dual use control & reweight

Joint DiscFlow training [GAN inspiration]

- · adversarial loss unstable [Nash equilibrium??]
- · coupling through weights

$$\begin{aligned} \mathsf{DiscFlow} &= -\sum_{i=1}^{B} \ \mathsf{w}_{\mathcal{D}}(x_{i})^{\alpha} \ \log \frac{\mathsf{P}(x_{i})}{\mathsf{P}_{\mathsf{ref}}(x_{i})} \\ &\approx -\int dx \ \frac{\mathsf{P}_{\mathsf{ref}}^{\alpha+1}(x)}{\mathsf{P}^{\alpha}(x)} \ \log \frac{\mathsf{P}(x)}{\mathsf{P}_{\mathsf{ref}}(x)} \end{aligned}$$

 \rightarrow Per-cent precision

L

Uncertain precision generator

BINN generator

- · Bayesian precision generator
- · uncertainty over phase space
- · low statistics challening
- \rightarrow Training-related error bars

Uncertain precision generator

BINN generator

- · Bayesian precision generator
- · uncertainty over phase space
- · low statistics challening
- \rightarrow Training-related error bars

Theory uncertainties

- systematics from data augmentation
- adjust data in tails $[a = 0 \dots 30]$

$$w = 1 + a \, \left(rac{p_{T,j_1} - 15 \, \, {
m GeV}}{100 \, \, {
m GeV}}
ight)^2$$

- · train conditionally on smeared a
- · error bar from sampling a
- \rightarrow INNs for LHC standards

Inverse

Inverse simulation

Invertible ML-simulation [see also Ben Nachman's seminar]

- · detector unfolding known problem
- · QCD parton from jet algorithm standard
- · jet radiation combinatorics challenge
- · decays established by top groups
- · matrix element method the dream
- → multi-dimensional, unbinned, statistical?

Inverse simulation

Invertible ML-simulation [see also Ben Nachman's seminar]

- · detector unfolding known problem
- · QCD parton from jet algorithm standard
- · jet radiation combinatorics challenge
- $\cdot\,$ decays established by top groups
- · matrix element method the dream
- → multi-dimensional, unbinned, statistical?

Conditional INN [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

· partonic events from $\{r\}$, given detector event

Inverse simulation

Invertible ML-simulation [see also Ben Nachman's seminar]

- · detector unfolding known problem
- · QCD parton from jet algorithm standard
- · jet radiation combinatorics challenge
- $\cdot\,$ decays established by top groups
- · matrix element method the dream
- → multi-dimensional, unbinned, statistical?

Conditional INN [Bellagente, Butter, Kasieczka, TP, Rousselot, Winterhalder, Ardizzone, Köthe]

- · partonic events from $\{r\}$, given detector event
- maximum likelihood loss

$$\begin{split} L &= -\left\langle \log p(\theta | x_{p}, x_{d}) \right\rangle_{x_{p}, x_{d}} \\ &= -\left\langle \log p(g(x_{p}, x_{d})) + \log \left| \frac{\partial g(x_{p}, x_{d})}{\partial x_{p}} \right| \right\rangle_{x_{p}, x_{d}} - \log p(\theta) + \text{const.} \end{split}$$

 $\rightarrow\,$ Stable and statistically calibrated

Precision simulations Tilman Plehn Generative

Inverse

Inverting to hard process

Undo QCD jet radiation

- · nasty jet combinatorics, little information
- $\cdot \,\, ext{detector level: } pp
 ightarrow ext{ZW+jets} \,\,\, ext{[variable number of objects]}$
- · hard process given, ME vs PS jets from network

Inverting to hard process

Undo QCD jet radiation

- · nasty jet combinatorics, little information
- \cdot detector level: $pp \rightarrow ZW$ +jets [variable number of objects]
- · hard process given, ME vs PS jets from network

Matrix element method [Butter, Heimel, Martini, Peitzsch, TP (soon)]

· parameter likelihood from parton-level events

$$\mathcal{L}(\theta) = \prod_{i=1}^{N} p(\vec{x}^{(i)}|\theta) = \prod_{i=1}^{N} \frac{1}{\sigma_{\text{fid}}(\theta)} \int d^{m}z \ \frac{d^{m}\sigma(\theta)}{dz_{1}\dots dz_{m}} T(\vec{x}^{(i)}, \vec{z})$$

$$T(\vec{x}, \vec{z}) = p_{\text{INN}}(\vec{z}|\vec{x})\epsilon(\vec{x}) \implies \mathcal{L}(\theta) = \prod_{i=1}^{N} \frac{\epsilon(\vec{x}^{(i)})}{\sigma_{\text{fid}}(\theta)} \int d^{m}z \ \frac{d^{m}\sigma(\theta)}{dz_{1}\dots dz_{m}} p_{\text{INN}}(\vec{z}|\vec{x}^{(i)})$$

$$= \prod_{i=1}^{N} \frac{\epsilon(\vec{x}^{(i)})}{\sigma_{\text{fid}}(\theta)} \left\langle \frac{d^{m}\sigma(\theta)}{dz_{1}\dots dz_{m}} \right\rangle_{\vec{z} \sim \rho_{\text{INN}}}$$

Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

 $\begin{array}{lll} \mbox{ condition } & \mbox{ jets with QCD parameters} \\ \mbox{ train } & \mbox{ model parameters} \rightarrow \mbox{ Gaussian latent space} \\ \mbox{ test } & \mbox{ Gaussian sampling} \rightarrow \mbox{ parameter measurement} \end{array}$

· beyond C_A vs C_F [Kluth etal]

$$\begin{split} P_{qq} &= C_F \left[D_{qq} \frac{2z(1-y)}{1-z(1-y)} + F_{qq}(1-z) + C_{qq}yz(1-z) \right] \\ P_{gg} &= 2C_A \left[D_{gg} \left(\frac{z(1-y)}{1-z(1-y)} + \frac{(1-z)(1-y)}{1-(1-z)(1-y)} \right) + F_{gg}z(1-z) + C_{gg}yz(1-z) \right] \\ P_{gq} &= T_B \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right] \end{split}$$

Training

Inference

Precision

Inverse

Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

 $\begin{array}{lll} \cdot & \mbox{condition} & \mbox{jets with QCD parameters} \\ train & \mbox{model parameters} \rightarrow \mbox{Gaussian latent space} \\ test & \mbox{Gaussian sampling} \rightarrow \mbox{parameter measurement} \end{array}$

$$P_{qq} = C_F \left[D_{qq} \frac{2z(1-y)}{1-z(1-y)} + F_{qq}(1-z) + C_{qq}yz(1-z) \right]$$

$$P_{gg} = 2C_A \left[D_{gg} \left(\frac{z(1-y)}{1-z(1-y)} + \frac{(1-z)(1-y)}{1-(1-z)(1-y)} \right) + F_{gg}z(1-z) + C_{gg}yz(1-z) \right]$$

$$P_{gq} = T_R \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right] \begin{bmatrix} \sigma & = 0.9 \\ \sigma & = 0.9 \\ \sigma & = 0.9 \end{bmatrix}$$

- · idealized shower [Sherpa]
- More ML-opportunities...

Precision

Inverse

Precision simulations Tilman Plehn Generative

ML-applications in LHC analysis and theory

- · just another numerical tool for a numerical field
- · driven by money from data science, medical research
- · goals are...

ML for LHC Theory

- ...improve established tasks ...develop new tools for established tasks ...transform through new ideas
- · particle physics as exciting as our ideas
- → Opportunity to make a difference!

Contents

1	Introduction	4
2	Machine Learning in event generators	5
	2.1 Phase space sampling	6
	2.2 Scattering Amplitudes	7
	2.3 Loop integrals	9
	2.4 Parton shower	10
	2.5 Parton distribution functions	11
	2.6 Fragmentation functions	12
3	End-to-end ML-generators	13
	3.1 Fast generative networks	13
	3.2 Control and precision	15
4	Inverse simulations and inference	16
	4.1 Particle reconstruction	17
	4.2 Detector unfolding	17
	4.3 Unfolding to parton level	19
	4.4 MadMiner	20
	4.5 Matrix element method	22
5	Synergies, transparency and reproducibility	23
6	Outlook	24
Re	ferences	25

Machine Learning and LHC Event Generation

Anja burne¹³, Timan Polmi, Steffen Schumani (Editori), Sizoni Baigeri, Schack Carne¹⁴, Mc Carneri, ¹⁷, Francesto Armanio Diello¹⁴, Bierne Ebregeri, ² Stefano Fetteri, ¹⁵, Jason Harri, ¹⁴, Manani Criello¹⁴, ¹⁴ Liam Garris, ¹⁴ Die Dieseri, ¹ Galanti Bernethi, ¹¹, Jason Harris, ¹⁴, Namanio Haido¹⁵, ¹⁴ Melan Hoker, ¹⁵ Marani Kalo²³, ¹⁴ Melani Begari, ¹⁴ Gregor Katescha¹⁴, ¹⁴ Kin Birg¹⁴, ¹⁵ Sahne Kann¹⁷, ¹⁴ Biolo Malann¹⁶, ¹⁴ Tan Katawa¹⁵, Next Konforger¹⁴, ¹⁴ Moltswert, ¹⁴ Biolo Malann¹⁶, ¹⁴ Jan Martin¹⁶, ¹⁴ Oler Martene¹⁴, ¹⁴ Bogian Malsere², ¹⁵ Schois Minn¹⁶, ¹⁴ Jan Martin¹⁶, ¹⁴ Oler Martene¹⁴, ¹⁴ Bogian Malsere², ¹⁴ Schois Minn¹⁶, ¹⁴ Jan Bigh^{17,1} Matthew Schwartz, ¹⁴ Boya Shall, ¹⁴ Frank Singer¹⁵, ¹⁵ Schois Minn^{16,16}, ¹⁴ Minn^{16,16}, ¹⁴ Schois Martin^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Schois Minn^{16,16}, ¹⁴ Jan Bigh^{17,16}, ¹⁴ Minn^{16,16}, ¹⁴

Abstract

First-principle simulations are at the heart of the high-mergy physics research program. They link the start data coupted of mill-propose detectors with fundamental theory pradictions and interpretation. This review illustrates a wide range of applications of molemachine learning to everat generation and imulation-based infrarence, including conceptional developments driven by the specific requirements of particle physics. New diseas and tool developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of cullision data, and enhance inference as an inverse initiation problem.

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass)

