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Not our future
- seach for BSM models
- measure fiducial rates
- measure couplings

forward

Simulation-based inference
- start with Lagrangian
- calculate scattering using QFT
- simulate events (sherpa, Madgraph, Pythia]
- simulate detectors [Geants, Delphes]
— LHC events in virtual worlds

Searching for BSM physics

- compare simulations and data

- analyze data systematically (smerT)

- publish useable results

- understand LHC dataset
— With a little help from ML

[SM or BSM]

p—

%*ﬁa%ﬂ@




Shortest ML-intro ever

Fit-like approximation
- approximate known f(x) using fy(x)
- no parametrization, just very many values 6
- f-space the fun space [iatent space]

Construction and contol
- define (well-defined) loss function
- minimize loss to find best 6
- compare x — fy(x) for training/test data

LHC applications
. regression [matrix element over phase space]
- classification [gluon/quark/bottom/top inside jet]
. generation [event generation, detector simulation]

- conditional generation [unfolding, inference]

— Transforming numerical science




Generative networks

GANGogh [2017]
- generation r — po(r) sampled r ~ N
- networks to create new pieces of art
- train on 80,000 pictures
- generate flowers '-.a_,
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Generative networks

GANGogh 2017
- generation r — pe(r) sampled r ~ N/
- networks to create new pieces of art
- train on 80,000 pictures
- generate portraits
— Nowadays INNs




ML-applications for analysis

TOp tagging [supervised classification] i
- ‘hello world’ of LHC-ML = &
- different NN-architectures;

— Justdo it right... i
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ML-applications for analysis

Top tagging  [supervised classification] ;
 “hello world’ of LHG-ML = |
- different NN-architectures;
— Just do it right... 1
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Particle flow [classification, super-resolution] - -F - :%; B 5%
- mother of jet tools s RIS
- combined detector channels nmmunnul S eenmn—
— Seriously impressive
Towards a Computer Vision Particle Flow * O e ¥ BT
Al opte gt ity ; "

" yyis resolved by a 3 layer.




QCD and symmetries

Lund plane representation finput preprocessing]
- QCD-inspired input with cutting-edge networks
- angular separation vs transverse momentum

QCD rejection v. Top tagging efficiency

— Understanding data helps ot 35 s

ol b backor i
10000 L ke R =1 et > 500 Gev

P ron smaseo 0 HEP ourpaize

Jet tagging in the Lund plane with graph networks

1000 Frdrc . Dreyer” Wl O

— wondners

— ParticieNet (06 19)
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QCD and symmetries

Lund plane representation [input preprocessing]

- QCD-inspired input with cutting-edge networks
- angular separation vs transverse momentum
— Understanding data helps T L e

Pyt 8223 simuation
sl pp =, backoround: pp-i

L0000 Ty |  Jet tagging in the Lund plane with graph networks

1000 P . Dreyer” Wt O

oy, Pors ook, Oford 01

T
— particieNet (06 19)
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Self-supervised training [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings
- learn symmetries/augmentations
— Symmetry-aware latent space

Abstract
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Non-QCD and parton densities

Anomaly searches  [unsupervised training]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Trigger, searches ===




Non-QCD and parton densities

Anomaly searches [unsupervised training]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Trigger, searches e

NNPDF/N3PDF parton densities il blast]
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory ) P! 3"'” -




Events and amplitudes

Speeding up Sherpa (sampiing]
- precision simulations limiting factor for Runs 3&4
- unweighting critical
— Phase space sampling "

Ne=1)

de/dm (56 GV
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Deviaton (0]



Events and amplitudes

Speeding up Sherpa [sampling] . =)
- precision simulations limiting factor for Runs 3&4

de/dm [pb Gov-1)

- unweighting critical e emm P ]
— Phase space sampling """

Accelerating Monto Garlo event gencration — rejection
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Speeding up amplitudes [precision regression]

[e—— e

- loop-amplitudes expensive
- interpolation standard Optimising simulations for diphoton production at

hadron colliders using amplitude neural networks

— Network amplitudes
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Invertible event generation and errors

Unfolding and inversion [conditional normalizing flows]
- shower/hadronization unfolded by jet algorithm
- detector/decays unfolded e.g. in tops
- calibrated inverse sampling
— Discussed later e« P 21
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Invertible event generation and errors

Unfolding and inversion [conditional normalizing flows]
- shower/hadronization unfolded by jet algorithm
- detector/decays unfolded e.g. in tops
- calibrated inverse samplina
. =
— Discussed later
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Generative networks with uncertainties  (ayesian discriminator-flows]
- control through discriminator  [aaniie] . ARy

- uncertainties through Bayesian networks

— Discussed later
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String landscape and learned formulas

Navigating string landscape  (reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model Space Samp“nq Genetic Algorithms and Reinforcement Learning
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RL).
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String landscape and learned formulas

Navigating string Iandscape [reinforcement learning]
- searching for viable vacua
- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning
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Abstract

Figure 1: Lefi: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA bt i i e b I okt of B e
1 “The col

(input) values (N and Ny respectively) in relation 1o principal components for a PCA fit of the 5

individual output of GA and RL. G g g o g sampin s

Learning formulas  (genetic aigorithm, symbolic regression]

- approximate numerical function through formula

- example: score/optimal observables
— Discussed later

Submission

Back to the Formula — LHC Edition
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Controlled precision generator

ML-event generators

- useful ML-playground
efficient ways to ship events
training on combined MC and data
transferable to detector simulation

- training from event samples
no detector effects [Fastsim easy to include]

. ZHH + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

7 + 3 jet exclusive

0.4

— Truth

normalized




Controlled precision generator

ML-event generators

- useful ML-playground
efficient ways to ship events
training on combined MC and data
transferable to detector simulation

- training from event samples
no detector effects [Fastsim easy to include]

. Zp,p, + {1 ,2, 3} jets [Z-peak, variable jet number, jet-jet topology]

Control through discriminator

- classification easier than generation

. 107! 7 + 2 jet exclusive
- input {pT7 7, ¢, M7 MIJ'H«’ AR} - —— Reweighted
- output D = 0(generator), 1(truth) =02 — INN
 Tiai
- decent generator training D ~ 0.5 g "

- additional event weight wp = 25 10
— Control & reweight ald SRS = N o
oo T - v““ !
001 ettt it bR
= o L JHITTIHT I AT




Uncertain precision generator

Uncertainties from Bayesian INN

- learned phase space density
plus uncertainty over phase space

- useful after control step

7 + 1 jet exclusive

- low statistics means large uncertainty
— Training-related error bars

normalized

—— Reweighted

0 50 100 150
Prg [GeV]




Uncertain precision generator

Uncertainties from Bayesian INN

- learned phase space density
plus uncertainty over phase space
- useful after control step 2
- low statistics means large uncertainty jg
5

7 + 1 jet exclusive

— Training-related error bars — Fr[ei“:eigmed
TIUU ‘TTI JRS12 ST SRPSR I 3¢ 1 »T‘: T‘\ i fi‘l

Theory uncertainties - \{\{ e e
- systematics from data augmentation ST TR RAD

1 pryh — 15 GeV 2
w=1ta 100 GeV

. - a€0,6,12]
- train conditionally on a

- uncertainty from sampling a —
- correlation to all of phase space 0 50 o [G“\ll‘]m 150
S -
— Network for LHC standards




Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event

forward

Y

scattering decay QCD shower detectors
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Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known problems

detector unfolding [needed for global analyses]
unfolding to QCD parton means jet algorithm
unfolding jet radiation known combinatorics problem
unfolding to hard process standard in top groups  ineeded for global analyses]
matrix element method an old dream
- improved through coherent ML-method

— Free choice of data-theory inference point

forward

N
>

scattering decay QCD shower detectors

inverse
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Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known problems

detector unfolding [needed for global analyses]

unfolding to QCD parton means jet algorithm

unfolding jet radiation known combinatorics problem

unfolding to hard process standard in top groups  ineeded for global analyses]
matrix element method an old dream

- improved through coherent ML-method
— Free choice of data-theory inference point

Conditional INN
- partonic events from {r}, given detector event
- maximum likelihood loss

L= = (Iog (8], Xa))
89(Xp, Xq)
IXp

- eventually to be combined with reweighting

— Stable and statistically calibrated

=- <Iog P(g(Xp, Xd)) + log

> — log p(6) + const.
Xp:Xd



Inverting to hard process

Undo QCD jet radiation
- nasty jet combinatorics, little information
- detector level: pp — ZW+jets  [variable number of objects]
- hard process given, ME vs PS jets from network

x10~2

20 2 jet incl.

2004 F{y T Parton Truth
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Inverting to hard process

Undo QCD jet radiation
- nasty jet combinatorics, little information
- detector level: pp — ZW+jets  [variable number of objects]
- hard process given, ME vs PS jets from network

Matrix element method [Butter, Heimel, Martini, Peitzsch, TP (soon)]
- parameter likelihood from parton-level events f(tink pp — 4 with cPV]

N (i) A m_ d"o(6) ) 3
co) = 1p0) =] 5= [ "z o TE.2)
i=1 =1 M

N m
169 - PG = 20 =TT [ FO pia)
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Optimal observables

Measure model parameter 6 optimally
- single-event likelihood again

px(0) = ! d™o(x|0)

Otot (9) axm

- expanded in 6 around 6, define score
p(x16)

_ —(0_ = (0 — opt
ogp(xlgo)N(o 00) Vo log p(x|6) 90_(9 00) t(x]60) = (0 — 60) O®'(x)
- parton level, as used in ATLAS [cpy)
M|?
PIxIO) ~ [MB+OME, = Hx|go) ~ Al
|MI5

=- Easy at parton level, LEP physics...




Optimal observables

Measure model parameter 6 optimally
- single-event likelihood again

px(0) = ! d™o(x|0)

Otot (9) axm

- expanded in 6 around 6, define score

p(xlo)

= = opt
% plxifo) = (0 — 60) t(x|00) = (0 — 60) 6 (x)

%o

(9 — 90) Vo |ng(X|9)

- parton level, as used in ATLAS [cpy)

~ A2 2 |MIE
p(x|0) = (Ml + 0| Mliy = Hx|60) ~

(M5

= Easy at parton level, LEP physics...

q q q u A
. e z +
Discrete symmetry E i M oo %éj
N .

¢ e q - I

- CPV at dimension-6 in WBF
- unique CP-observable (c-even, P-odd, T-odd]

lab frame

to epvpo K Ky G G5 sign[(ki — ke) - (q1 — G2)] "—" sin Ad;
= Computable including prefactor




PySR

Analytic formula for score M cranmer (2020)]
- function to approximate  t(x|0)
- order-one phase space parameters  Xp = pr/My, An, A¢  [node]
- operators  sin X, X2, X3, X4+ y,X — Yy, X% y,X/y [node]
. represent formula as tree [complexity = number of nodes]
= figures of merit

MSE = % g [a1x) — t(x,z\&)]z

— MSE + parsimony - complexity

loop over annealing SR Cyele

Simulated annealing loop over popultion

- combine trees to populations
- mutate trees  exchange, add, delete nodes
- acceptance probability

— ex (_ MSE’new - MSEYOId)
P= P aT MSE‘OH

- added: proper fit of pre-factors
= Hall of Fame: best equation per complexity KX
result




Score around Standard Model

Score around Standard Model  [srehmer, Butter, TP, Soybelman]

- shift in distributions, reflected in score [parton level]
CP-effect in Ag;;
Dé6-effect in pr

T
g
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3
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Score around Standard Model

Score around Standard Model  [Brehmer, Butter, TP, Soybelman]

- shift in distributions, reflected in score [parton level]
CP-effect in Ag;;
De6-effect in pr ;

- best 4-parameter formula including A7  witoutwith detector]
t=—Xp,1 (Xp,2 + C) (a — bAn)sin(A¢ + d)

with a=1.086(11) b=0.10241(19) ¢ =0.24165(8) d = 0.00662(32)
a=0.926(2) b=0.08387(35) c=0.3542(20) d = 0.00911(67)

= Mostly expected formula

compl dof |function MSE
3 1 |aAd 1.30- 101
4 1 |sin(are) 275107
5 1 |aAdzp, 993.1072 17
6 1 |—zp1sin(Ad+a) 1.90-107%
7 1 |(—zp,1 — a)sin(sin(Ag)) 5.63-1072 £
8 1 |(a—zp1)zp2sin(Ag) 1.61-1072
14 2 |zp1(aA¢ —sin(sin(Ag)))(zp2 +b)  1.44-1072
15 3 |—(zp2(aAn® +xp1) +b)sin(Ag+c) 1.30-1072
16 4 |—zp1(a—bAn)(zpy2 +c)sin(Ap+d) 8.50-1073 1072
(Tp2 + a)(bzp1(c — Ag) -3 T 10 15 20 2
BT —2p,1(dAN + exy2 + f) sin(A¢ + g)) 8.18-10 complexty




Score around Standard Model

Score around Standard Model  [srehmer, Butter, TP, Soybelman]

- shift in distributions, reflected in score [parton level]
CP-effect in Ag;;
Dé6-effect in pr

- best 4-parameter formula including An  withoutwith detector]
t=—Xp,1 (Xp,2 + C) (a— bAnD)sin(A¢ + d)

with a=1.086(11) b=0.10241(19) ¢ =0.24165(8) d = 0.00662(32)
a=0.926(2) b=0.08387(35) c=0.3542(20) d = 0.00911(67)

= Mostly expected formula

Using the formula

-
=)

- expected limits: CPV in WBF

very wrong formula

0.8

wrong formula g
right formula Sos

g i

MadMiner 2
N . . . © 0.4

- same within statistical limitation 4

o
N

= Unknown optimal observables next
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ML for LHC Theory

ML-applications in LHC physics

just another numerical tool for a numerical field
driven by money from data science, medical research
goals are...

...improve established tasks Machine Learning and LHC Event Generation
..develop new tools for established tasks i g S e G Pl 131

t f th h d Y Stefano Forte!!, , Eilam Gross'®,
‘Theo Heimel', Gudnm Heinrich', Lukas Henm:h“ luexzndex Held'S, Stefan Hoche'7,
-..transform through new iaeas e o e ot ot oo, S sone
Marumi Kado®?', Mtchael Kaxan“ Gregor Kasxeuka“ Felix K‘hns" Sabine |<uml25
) 1 Claudius Krause, Fm\k Krauss®, Kevin Kroninger?”, Rahool Kumar Barman'®,
Turn HL-LHC into fun! e o i gt bt Boptonmlo,
‘Fabio Maltoni®*2?, Till Martini®”, Olivier Mattelaer®®, Benjamin Nachman®" “
Sebastian Pitz’,. Juan Rojo™*, Matthew Schwartz**, David Shih®®, Frank Sieg«r“
Roy sxexcmm“, Bob Stienen®, Jesse Thaler', Rob Verheyen®®, Daniel Whiteson'®,
‘Ramon Winterhalder, and Jure Zupan'®

Abstract

Contents ‘They link the vast data output of multi-purpose detectors with fundamental theory pre-

1 Introduction 4 ud
ceptional developments driven by the specific requirements of particle physics. New

2 Machine Learning in event generators s ideas and tools developed at the interface of particle physics and machine learning will
2.1 Phase space sampling 6 i d precisic imulati -
22 Scattering Amplitudes 7 sion data, and enhance inference as an inverse simulation problem.

23 Loop integrals 9
24 Parton shower 10
2.5 Parton distribution functions 1
2.6 Fragmentation functions 12

3 End-to-end ML-generators 13
3.1 Fast generative networks 13
3.2 Control and precision 15 ‘Submitted to the Proceedings of the US Community Study

on the Future of Particle Physics (Snowmass)

4 Inverse simulations and inference 16
4.1 Particle reconstruction 17

42 Detector unfolding 17
4.3 Unfolding to parton level 19
44 MadMiner 20
45 Matrix clement method 2

5 Synergies, transparency and reproducibility 23
6 Outlook 2

References 25




Modern generative networks

Normalizing flows — INN
- Gaussian latent space
- bijective mapping
- known Jacobian
- log-likelihood loss
— Better than VAEs and GANs

forward

scattering decay QCD shower i detectors

Y




Modern generative networks

Normalizing flows — INN
- Gaussian latent space
- bijective mapping
- known Jacobian
- log-likelihood loss
— Better than VAEs and GANs

Bayesian INNs

- network weight distributions (Gl (2016)]
- sample for output (efiicient ensembling]
- working for regression, classification
- events with error bars  (density & uncertainty maps]
- 2D: wedge ramp, kicker ramp,...
— INNs just fits
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http://www.cs.ox.ac.uk/people/yarin.gal/website/
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