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Modern LHC physics

Classic motivation First-principle simulations
- dark matter - start with Lagrangian
- baryogenesis - calculate scattering using QFT
- Higgs VEV - simulate events (teory]

- simulate detectors [experiment]

LHC physics — LHC events in virtual worlds
- fundamental questions
- huge data set Searching for BSM physics
- complete uncertainty control - compare simulations and data
- first-principle precision simulations - analyze data systematically
- understand LHC dataset (smorBsm
Traditional methods — With a little help from data science...

- discover in rates

- unveil little black holes
- find supersymmetry

- travel through extra dimensians

- beat Bochum scattering decay Qco shower detectors
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Ask a data scientist

LHC questions

- How to get from 3 - 105 Bytes/s to 300 - 10° Bytes/s?
Data compression

- How to analyze events with 4-vectors?
Graph neural networks

- How to combine tracker and calorimeter?
Super-resolution networks

- How to remove pile-up?
Data denoising

- How to look for BSM physics?
Autoencoders

- How to compare measured with data?
Simulation-based inference

What's in there for theory?




Shortest ML-intro ever

Fit-like approximation
- approximate known f(x) using fy(x)
- no parametrization, just very many values 6
- B-space the fun space [iatent space]

Construction and contol
- define (well-defined) loss function
- minimize loss to find best 6
- compare x — fy(x) for training/test data

LHC applications
- regression
- classification
- generation
- conditional generation

— Transforming numerical science




Generative networks

GANGogh [2017]
- create new pieces of art
- generation r — pe(r) sampled r ~ N/
- train on 80,000 pictures
- generate flowers '-.a_,
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Generative networks

GANGogh 2017
- create new pieces of art
- generation r — pe(r) sampled r ~ N
- train on 80,000 pictures
- generate portraits |
— LHC?




ML-applications for analysis

TOp tagging [supervised classification] i
- ‘hello world’ of LHC-ML = °
- different NN-architectures;

— Just do it right... §




ML-applications for analysis

Top tagging  [supervised classification] ;
 “hello world’ of LHG-ML = |
- different NN-architectures;
— Just do it right... 1

00 01 02 03 04 0
signal

Particle flow [classification, super-resolution] - -F - :%; B 5%
- mother of jet tools s RIS
- combined detector channels nmmunnul S eenmn—
— Seriously impressive
Towards a Computer Vision Particle Flow * O e ¥ BT
Al opte gt ity ; "

" yyis resolved by a 3 layer.




QCD and symmetries

Lund plane representation finput preprocessing]
- QCD-inspired input with cutting-edge networks
- angular separation vs transverse momentum

QCD rejection v. Top tagging efficiency

— Understanding data helps ot 35 s

ol b backor i
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Jet tagging in the Lund plane with graph networks
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QCD and symmetries

Lund plane representation [input preprocessing]

- QCD-inspired input with cutting-edge networks
- angular separation vs transverse momentum
— Understanding data helps T L e

Pyt 8223 simuation
sl pp =, backoround: pp-i

L0000 Ty |  Jet tagging in the Lund plane with graph networks

1000 P . Dreyer” Wt O

oy, Pors ook, Oford 01

T
— particieNet (06 19)

1
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Self-supervised training [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings
- learn symmetries/augmentations
— Symmetry-aware latent space

Abstract

ki ofrepesnttion s hyss gt We o CLR 030 th




Non-QCD and parton densities

Anomaly searches  [unsupervised training]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Discussed later ===




Non-QCD and parton densities

Anomaly searches [unsupervised training]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Discussed later == ==

NNPDF/N3PDF parton densities il blast
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory - ! 3"‘” B----——

of parton distribution functions




Events and amplitudes

Speeding up Sherpa (sampiing]
- precision simulations limiting factor for Runs 3&4
- unweighting critical
— Phase space sampling "

Ne=1)

de/dm (56 GV
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Events and amplitudes

Speeding up Sherpa [sampling] . =)
- precision simulations limiting factor for Runs 3&4

de/dm [pb Gov-1)

- unweighting critical e emm P ]
— Phase space sampling """

Accelerating Monto Garlo event gencration — rejection
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Speeding up amplitudes [precision regression]

[e—— e

- loop-amplitudes expensive
- interpolation standard Optimising simulations for diphoton production at

hadron colliders using amplitude neural networks

— Network amplitudes
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Invertible event generation and errors

Unfolding and inversion [conditional normalizing flows]
- shower/hadronization unfolded by jet algorithm
- detector/decays unfolded e.g. in tops
- calibrated inverse sampling
— Backwards generation ..

Invertible Networks or Partons to Detector and Back Again

— N
- Detector Truth

[Gev-1]

. ;‘f;} Mof PN H]UH I
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0 5
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Invertible event generation and errors

Unfolding and inversion [conditional normalizing flows]

- shower/hadronization unfolded by jet algorithm
- detector/decays unfolded e.g. in tops ;g
- calibrated inverse sampling

| v §

— Backwards generation

Iuvertible Networks or Partons o Detector and Back Again

X102

2 et incl.
- Parton Truth
Parton cINN
Detector Truth

o PRI
o 20 10 60 80 100 120
Pre [GeV]
x10°!
_——

z;:;[l‘g W\Vﬂﬂﬂl
70 7 80 85 90 9%
My reco [GeV]
Generative networks with uncertainties [Bayesian discriminator-flows]
- control through discriminator  (aan-iie] [ e vy
— b

- uncertainties through Bayesian networks
— Discussed later

Abstract

ac0,6,12)
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String landscape and learned formulas

Navigating string landscape  (reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model Space Samp“nq Genetic Algorithms and Reinforcement Learning

€

ulﬂii

Figur I Lf: Clustrsructur in dimensionalyreduced s sample or L and 25 GA rns (FCA
RL).

(it s (X and N esceielyy i eaion 10 rinipl componcts or s PCA Bt o he
individual output of GA and RL.




String landscape and learned formulas

Navigating string Iandscape [reinforcement learning]
- searching for viable vacua
- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning

u
Y

Abstract

Figure 1: Lefi: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA bt i i e b I okt of B e
1 “The col

(input) values (N and Ny respectively) in relation 1o principal components for a PCA fit of the 5

individual output of GA and RL. G g g o g sampin s

Learning formulas  (genetic aigorithm, symbolic regression]

- approximate numerical function through formula

- example: score/optimal observables
— Discussed later

Submission

Back to the Formula — LHC Edition

‘compl dof| function NSE
1 13010
1
5 2 Gt D S
o
T Noveber 16, 01
u A
1 N Abstract
16 Foun(a6+d) 850100 107 \
N o), ) - =
s 7 81510 TE B % B ow i e W ene
—2pa(dn L erya + 1) in(86 +9)) ey o ot i o tract, o e, ot LIC sherabis. Ths vy

Table 8: Score hall of fame for simplificd WBF Higgs production with f,,g; = 0, including a
optimization fit
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Controlled precision generator

ML-event generators

- speed up generation
ship events
train on MC plus data
useful ML-playground
detector simulation next

. ZMN + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

normalized

0.4

0.2

7 + 3 jet exclusive




Controlled precision generator

ML-event generators

- speed up generation
ship events
train on MC plus data
useful ML-playground g
detector simulation next ”g
S

7 + 1 jet exclusive

. ZMN + {1 , 2, 3} jets 10°° : f[(&(iz\i'leligllted
?10.0 ‘TTI T “‘.
iscrimi £ rop i
Control through discriminator o PRI P A
- classification easier than generation 5 %é JHLPh T TL
- output D = 0(generator), 1(truth) o
- decent generator training D ~ 0.5 g - pannd
- additional event weight wp = 25 PERE]
— Control & reweight 2
' 0 50 - 100 150

P [GeV]




Uncertain precision generator

Uncertainties from Bayesian INN

- learned phase space density
plus uncertainty over phase space

- useful after control step

7 + 1 jet exclusive

- low statistics means large uncertainty
— Training-related error bars

normalized

—— Reweighted

0 50 100 150
Prg [GeV]




Uncertain precision generator

Uncertainties from Bayesian INN

- learned phase space density
plus uncertainty over phase space

- useful after control step

7 + 1 jet exclusive

B

S

- low statistics means large uncertainty g
5

— Training-related error bars —— Reweighted

Systematic uncertainties

- data augmentation

1 pryh — 15 GeV 2
w=1ta 100 GeV

L ;. a€0,6,12]
- training conditional on a

uncertainty from sampling a

- correlation to all of phase space 0 ETTT
pra [GeV
— Network for LHC standards i [GEV]




Learning background only
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Unsupervised classification

. anomaly searches [autoencoder]
train on background only
extract unknown signal

- reconstruct typical QCD jet
- non-QCD jets hard to describe
= Problem with complexity




Learning background only

1@40x40

Unsupervised classification

- anomaly searches [autoencoder]
train on background only
extract unknown signal

- reconstruct typical QCD jet
- non-QCD jets hard to describe
= Problem with complexity

Autoencoder magic
- anything goes@LHC
- symmetric performance S «++ B?
- identify BSM in latent space
= LHC solutions needed...

10@40x40

10820x20 5@20x20 400 100

100 400

10!

- s
ep. 50 ep. 100 —— op. 50, AUC: 0.88 10 — ¢p. 50, AUC: 0.88
—— ep. 100, AUC: 0.89 —— ep. 100, AUC: 0.89
. 3 — ep. 150, AUC: 0.89 —— ep. 150, AUC: 0.89
QcD 10 S ep. 200, AUC: 0.89 ) ep. 200, AUC: 0.89
o Ly 107
& 102 &
p. 15 " ep. 200 :
L, s 10
I 10'{ [DVAE. t/Q=1.0 DVAE. t/Q=1.0
LS Signal: QCD Signal: tops
0500 02 01 06 08 10 0705 02 04 06 08 10
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Learning background only

1@40x40  10@40x40  10@20x20 5@20x20 4

0 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Unsupervised classification

- anomaly searches [autoencoder]
train on background only
extract unknown signal

- reconstruct typical QCD jet
- non-QCD jets hard to describe
= Problem with complexity

Autoencoder magic
- anything goes@LHC
- symmetric performance S «++ B?
- identify BSM in latent space
= LHC solutions needed...




Optimal observables

Measure model parameter 6 optimally

- single-event likelihood

1 d"o(x|0)
p(x|0) = (@) dxm
- expanded in 6 around 6, define score
p(xlo) . o ooy opt
o8 10 ~ (6 — 6p) Vo logp(x|0)| = (6 — 6o) t(x|6o) = (6 — 60) 6™ (x)

K]
- leading order parton level
|ME,

p(x10) & M3+ OIME = t(x]6p) ~ 1
M2




Optimal observables

Measure model parameter 6 optimally

- single-event likelihood
1 d"o(x|6)

p(x|0) = (@) o™

- expanded in 6 around 6, define score

og 5((;";;)) ~ (0 — 6p) Vg log p(x|0) . = (0 — 6o) t(x]60) = (6 — 6p) O™'(x)
- leading order parton level ,
PO ~ IMB+OIME, = ton) ~ (T
CP-violating Higgs production q
- unique CP-observable W
t o< cpvpo ki Ky GF 6F sign [(ki — ke) - (G1 — G2)] "2 sin Agy A
- CP-effect in Ag;; ¢

Dé-effect in pr;
= Key LHC observable




PySR

Analytic formula for score
- function to approximate  t(x|0)
- phase space parameters  xp = pr/my, An, A¢  [node]
- operators  sinX, X2, X3, X4+ y,X — y, X% y,X/y [node]
- represent formula as tree  [complexity = number of nodes]
= Figures of merit

1 2 ) )
MSE=-—>" [g,v(x) — t(x, 2\9)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

compl dof |function MSE
3 1 |aAg 1.30-1071
4 1 |sin(aA¢) 2.75-107! -
5 1 |aAga,, 9.93-102 1°
6 1 |—zp,1sin(A¢+a) 1.90-1071
7 1 |(~zp1 — a)sin(sin(A¢)) 5.63-1072 2
8 1 |(a—mp1)zp2sin(Ag) 1.61-1072
14 2 |zp1(aA¢ —sin(sin(A¢)))(zp2 +b)  1.44-1072
15 3 |—(zp2(aln®+2p1) +b)sin(Ag +c) 1.30-1072
16 4 |—zp1(a—bAn)(zp2 +c)sin(Ap+d) 8.50-10-3 107
(@p.2 + @) (bzp,1(c — Ag) -3 5 10 15 20 25 30
BT —p1(dAn + exp o + f) sin(A¢ + g)) 8.18-10 complexity




PySR

Analytic formula for score

- function to approximate  t(x|6)
- phase space parameters  xp = pr/my, An, A¢  node]
- operators  sin X, X2, X3, X 4+ y,X — Y, X % Yy, X/y [node]
. represent formula as tree [complexity = number of nodes]

= Figures of merit

1¢ 2 . .
MSE=-—>" [g,-(x) — t(x, 2\9)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

- expected limits: 1.0{cPvin weF
very wrong formula 08
wrong formula o aprpr,
right formula Sos
; 2
MadMiner 2
e . g . . © 0.4
- same within statistical limitation §
= New optimal observables next 0.2
0.0F— — sy R ) —

-1.00 -0.75 -0.50 —0.25 0.00 025 0.50 0.75 1.00
oy




ML for LHC Theory

ML-applications in LHC physics

just another numerical tool for a numerical field
driven by money from data science, medical research
goals are...

...improve established tasks Machine Learning and LHC Event Generation
..develop new tools for established tasks i g S e G Pl 131

t f th h d Y Stefano Forte!!, , Eilam Gross'®,
‘Theo Heimel', Gudnm Heinrich', Lukas Henm:h“ luexzndex Held'S, Stefan Hoche'7,
-..transform through new iaeas e o e ot ot oo, S sone
Marumi Kado®?', Mtchael Kaxan“ Gregor Kasxeuka“ Felix K‘hns" Sabine |<uml25
) 1 Claudius Krause, Fm\k Krauss®, Kevin Kroninger?”, Rahool Kumar Barman'®,
Turn HL-LHC into fun! e o i gt bt Boptonmlo,
‘Fabio Maltoni®*2?, Till Martini®”, Olivier Mattelaer®®, Benjamin Nachman®" “
Sebastian Pitz’,. Juan Rojo™*, Matthew Schwartz**, David Shih®®, Frank Sieg«r“
Roy sxexcmm“, Bob Stienen®, Jesse Thaler', Rob Verheyen®®, Daniel Whiteson'®,
‘Ramon Winterhalder, and Jure Zupan'®

Abstract

Contents ‘They link the vast data output of multi-purpose detectors with fundamental theory pre-

1 Introduction 4 ud
ceptional developments driven by the specific requirements of particle physics. New

2 Machine Learning in event generators s ideas and tools developed at the interface of particle physics and machine learning will
2.1 Phase space sampling 6 i d precisic imulati -
22 Scattering Amplitudes 7 sion data, and enhance inference as an inverse simulation problem.

23 Loop integrals 9
24 Parton shower 10
2.5 Parton distribution functions 1
2.6 Fragmentation functions 12

3 End-to-end ML-generators 13
3.1 Fast generative networks 13
3.2 Control and precision 15 ‘Submitted to the Proceedings of the US Community Study

on the Future of Particle Physics (Snowmass)

4 Inverse simulations and inference 16
4.1 Particle reconstruction 17

42 Detector unfolding 17
4.3 Unfolding to parton level 19
44 MadMiner 20
45 Matrix clement method 2

5 Synergies, transparency and reproducibility 23
6 Outlook 2

References 25




Modern generative networks

Normalizing flows — INN
- Gaussian latent space
- bijective mapping
- known Jacobian
- log-likelihood loss
— Better than VAEs and GANs

forward

scattering decay QCD shower i detectors

Y




Modern generative networks

Normalizing flows — INN
- Gaussian latent space
- bijective mapping
- known Jacobian
- log-likelihood loss
— Better than VAEs and GANs

Bayesian INNs

- network weight distributions (Gl (2016)]
- sample for output (efiicient ensembling]
- working for regression, classification
- events with error bars  (density & uncertainty maps]
- 2D: wedge ramp, kicker ramp,...
— INNs just fits

0.12
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0.06

Absolute Uncertai
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0.00

&Zza

Fit: Az = 0.04, Azy, = 0.01
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http://www.cs.ox.ac.uk/people/yarin.gal/website/
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