Formulas Al-Feynman PySR

Optimal Obs

Analytic form

Tilman Plehn

Universität Heidelberg

ErUM-Data, Wiehl, September 2022

LHC physics

Formulas Al-Feynman PySR Optimal Obs Analytic form

Modern LHC physics

Classic motivation

- · dark matter
- · baryogenesis
- · Higgs VEV

HC physics

Formulas AI-Feynman PySR Optimal Obs Analytic form

Modern LHC physics

Classic motivation

- · dark matter
- · baryogenesis
- · Higgs VEV

LHC physics

- · fundamental questions
- huge data set
- · complete uncertainty control
- $\cdot\,$ first-principle precision simulations

HC physics

Formulas AI-Feynman PySR Optimal Obs

Modern LHC physics

Classic motivation

- · dark matter
- baryogenesis
- · Higgs VEV

LHC physics

- · fundamental questions
- huge data set
- · complete uncertainty control
- · first-principle precision simulations

Traditional methods

- · discover in rates
- · unveil little black holes
- find supersymmetry
- travel extra dimensions
- measure couplings

HC physics

Formulas Al-Feynman PySR Optimal Obs

Modern LHC physics

Classic motivation

- · dark matter
- baryogenesis
- Higgs VEV

LHC physics

- · fundamental questions
- huge data set
- · complete uncertainty control
- · first-principle precision simulations

Traditional methods

- · discover in rates
- · unveil little black holes
- find supersymmetry
- travel extra dimensions
- measure couplings

First-principle simulations

- · start with Lagrangian
- · calculate scattering using QFT
- simulate events
- simulate detectors
- → LHC events in virtual worlds

HC physics

Formulas Al-Feynman PySR Optimal Obs

Modern LHC physics

Classic motivation

- dark matter
- · baryogenesis
- Higgs VEV

LHC physics

- · fundamental questions
- huge data set
- · complete uncertainty control
- · first-principle precision simulations

Traditional methods

- · discover in rates
- · unveil little black holes
- find supersymmetry
- travel extra dimensions
- measure couplings

First-principle simulations

- · start with Lagrangian
- calculate scattering using QFT
- simulate events
- · simulate detectors
- → LHC events in virtual worlds

Simulation-based inference

- $\cdot\,$ compare simulations and data
- · analyze data systematically [SMEFT]
- · understand LHC dataset [SM or BSM]
- · publish useable results
- \rightarrow With a little help from data science...

Al-Feynma

- PySR
- Optimal Obs
- Analytic form

Why Formulas

Modern LHC physics — all numerics

· Lagrangian defining the relevant parameters through formula

$$\mathcal{L} = \overline{Q}_L i \mathcal{D} Q_L + \overline{Q}_R i \mathcal{D} Q_R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \mu^2 |\phi|^2 - \lambda |\phi|^4 - \frac{f_{\phi,2}}{3\lambda^2} |\phi|^6$$

- · extract Feynman rules
- $\cdot\,$ compute and square transition amplitudes
- · add parton-shower gluon radiation
- $\cdot\,$ simulate hadronization/fragmentation and detector response
- $\rightarrow\,$ Nothing to look at and understand

Al-Feynma

- PySR
- Optimal Obs
- Analytic form

Why Formulas

Modern LHC physics — all numerics

· Lagrangian defining the relevant parameters through formula

$$\mathcal{L} = \overline{Q}_L i \mathcal{D} Q_L + \overline{Q}_R i \mathcal{D} Q_R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \mu^2 |\phi|^2 - \lambda |\phi|^4 - \frac{f_{\phi,2}}{3\lambda^2} |\phi|^6$$

- · extract Feynman rules
- · compute and square transition amplitudes
- · add parton-shower gluon radiation
- $\cdot\,$ simulate hadronization/fragmentation and detector response
- $\rightarrow\,$ Nothing to look at and understand

Benefit of formulas

recognizable content

$$\begin{split} \dot{N}(t) &= -\lambda N(t) & \text{decay law} \\ E &= \frac{m}{2} \dot{x}^2 + \frac{k}{2} x^2 & \text{harmonic oscillator} \\ E &= mc^2 & \text{something with Einstein} \end{split}$$

- · symmetry properties $t = p_{T,1}p_{T,2}\sin(2\Delta\phi)$ independent of p_z
- · Taylor series $\sin \phi = \phi + \mathcal{O}(\phi^2)$
- \rightarrow Way to understand physics

- Optimal Obs
- Analytic form

Why Formulas

Modern LHC physics — all numerics

 $\cdot\,$ Lagrangian defining the relevant parameters through formula

$$\mathcal{L} = \overline{Q}_{L} i \mathcal{D} Q_{L} + \overline{Q}_{R} i \mathcal{D} Q_{R} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \mu^{2} |\phi|^{2} - \lambda |\phi|^{4} - \frac{f_{\phi,2}}{3\Lambda^{2}} |\phi|^{6}$$

- extract Feynman rules
- $\cdot\,$ compute and square transition amplitudes
- · add parton-shower gluon radiation
- $\cdot\,$ simulate hadronization/fragmentation and detector response
- $\rightarrow\,$ Nothing to look at and understand

Formulas as ML-models

- · neural networks best interpolation [NNPDF]
- · interpolation vs extrapolation

planetary movements time series in cancer research weather forecast background modelling with one/two sideband(s) LHC-simulation of kinematics tails

- \rightarrow feature-based networks useless
- \rightarrow model-based ML implicit bias, formulas, differential equations

PySR

Analytic form

Al-Feynman

Properties of physics formulas [Udrescu & Tegmark]

- units limiting allowed structures $[A(p^2 = 0, m = 0) = 0]$
- · Taylor low-order polynomials everywhere
- $\cdot\,$ smoothness $\,$ nature is smooth and differentiable
- · symmetry translation, rotation, scaling...
- compositionality $f(x, y, z) = f_1(x, y) f_2(y, z)$
- separability $f(x, y, z) = f_1(x) f_2(y, z)$
- $\rightarrow\,$ Basis for extracting physics formulas from data?

Symbolic Regression Tilman Plehn LHC physics Formulas Al-Feynman PySR Optimal Obs

AI-Feynman

Properties of physics formulas [Udrescu & Tegmark]

- · units limiting allowed structures $[A(p^2 = 0, m = 0) = 0]$
- · Taylor low-order polynomials everywhere
- · smoothness nature is smooth and differentiable
- · symmetry translation, rotation, scaling...
- · compositionality $f(x, y, z) = f_1(x, y) f_2(y, z)$
- separability $f(x, y, z) = f_1(x) f_2(y, z)$
- \rightarrow Basis for extracting physics formulas from data?

Algorithm

- · start with numerical dataset f(x, y)
- · Brute force the standard algorithm
- · represent formula by 1D string [pocket calculator]
- $\cdot\,$ loss function balancing complexity and precision

$$L = \log \operatorname{rank} + \lambda \log \max \left(1, \frac{\operatorname{RMS}}{10^{-15}} \right)$$

Symbolic Regression Tilman Plehn LHC physics Formulas AI-Feynman PySR

Analytic form

Al-Feynman

Properties of physics formulas [Udrescu & Tegmark]

- · units limiting allowed structures $[A(\rho^2 = 0, m = 0) = 0]$
- · Taylor low-order polynomials everywhere
- $\cdot\,$ smoothness $\,$ nature is smooth and differentiable
- · symmetry translation, rotation, scaling...
- compositionality $f(x, y, z) = f_1(x, y) f_2(y, z)$
- separability $f(x, y, z) = f_1(x) f_2(y, z)$
- → Basis for extracting physics formulas from data?

Benchmarking and naming

Feynman	Equation	Time [s]	Methods	Data
1.6.20	$f = e^{-\frac{\theta^2}{2\sigma^2}} / \sqrt{2\pi\sigma^2}$	2992	ev, bf-log	10 ²
l.9.18	$F = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	5975	all	10 ⁶
l.10.7	$m = \frac{v_{m_0}^2}{\sqrt{1 - \frac{v_0^2}{2}}}$	14	unit, bf	10
l.11.19	$A = x_1 y_1 + x_2 y_2 + x_3 y_3$	184	unit, pf	10 ²
1.34.10	$\omega = \frac{\omega_0}{1 - v/c}$	13	unit, bf	10
1.34.27	$E = \hbar \omega$	8	unit	10
I.40.1	$n = n_0 e^{-\frac{mgx}{k_b T}}$	20	unit, bf	10

Symbolic Regression Tilman Plehn LHC physics Formulas Al-Feynman PySR

Analytic form

AI-Feynman

Properties of physics formulas [Udrescu & Tegmark]

- units limiting allowed structures $[A(p^2 = 0, m = 0) = 0]$
- · Taylor low-order polynomials everywhere
- $\cdot\,$ smoothness $\,$ nature is smooth and differentiable
- · symmetry translation, rotation, scaling...
- compositionality $f(x, y, z) = f_1(x, y) f_2(y, z)$
- separability $f(x, y, z) = f_1(x) f_2(y, z)$
- $\rightarrow\,$ Basis for extracting physics formulas from data?

Benchmarking and naming

Feynman	Equation	Time [s]	Methods	1
1.6.20	$f = e^{-\frac{\theta^2}{2\sigma^2}} / \sqrt{2\pi\sigma^2}$	2992	ev, bf-log	
l.9.18	$F = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	5975	all	
l.10.7	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	14	unit, bf	(b
l.11.19	$A = x_1 y_1 + x_2 y_2 + x_3 y_3$	184	unit, pf	0
I.34.10	$\omega = \frac{\omega_0}{1 - v/c}$	13	unit, bf	(0 -
1.34.27	$E = \hbar \omega$	8	unit	P
I.40.1	$n = n_0 e^{-\frac{mgx}{k_b T}}$	20	unit, bf	10

PySR

PySR alternative approach [Miles Cranmer]

- · motivation: explainable AI
- modeling language of physics: formulas
- → combine networks and formulas [slides from Miles's talk at Hammers & Nails 2022]

Formulas Al-Feynman

- PySR
- Optimal Obs
- Analytic form

Networks and formulas

Formulas vs networks [Cranmer, Cranmer, etal]

- $\cdot\,$ network to extract actual degrees of freedom
- · networks fast to evaluate
- $\cdot \,$ access to derivatives
- $\rightarrow\,$ Formulas through networks

Formulas

- Al-reylin
- PySR
- Optimal Obs
- Analytic form

Networks and formulas

Formulas vs networks [Cranmer, Cranmer, etal]

- · network to extract actual degrees of freedom
- · networks fast to evaluate
- · access to derivatives

$\rightarrow\,$ Formulas through networks

Formula encoding

Symbolic Regression Tilman Plehn

- LHC physics Formulas Al-Feynman PySR Optimal Obs
- Analytic form

Analytic formulas for LHC observables [Brehmer, Butter, TP, Soybelman]

- · function $t(x|\theta)$ approximated by tree
- \cdot order-one phase space parameters $x_{p} = p_{T}/m_{H}, \Delta \eta, \Delta \phi$ [node]
- · operators $\sin x, x^2, x^3, x + y, x y, x * y, x/y$ [node]
- → figures of merit [complexity = number of nodes]

$$\mathsf{MSE} = \frac{1}{n} \sum_{i=1}^{n} \left[g_i(x) - t(x, z | \theta) \right]^2$$

 $\mathsf{score} \approx \mathsf{MSE} + \mathsf{parsimony} \cdot \mathsf{complexity}$

- Symbolic regression finds analytic expressions to fit a dataset.
- Pioneering work by Langley et al., 1980s; Koza et al., 1990s; Lipson et al., 2000s

Symbolic Regression Tilman Plehn LHC physics Formulas Al-Feynman PySR

Optimal Obs

Analytic form

Optimization

Simulated annealing

- · combine trees to populations
- · mutate trees exchange, add, delete nodes
- · acceptance probability

$$p = \exp\left(-\frac{\text{score}_{\text{new}} - \text{score}_{\text{old}}}{\alpha T \text{ score}_{\text{old}}}\right)$$

- · added: proper fit of pre-factors
- $\rightarrow\,$ Hall of Fame: best equation per complexity

Symbolic Regression Tilman Plehn LHC physics Formulas Al-Feynman PySR Optimal Obs

Analytic form

Optimization

Simulated annealing

- · combine trees to populations
- $\cdot\,$ mutate trees $\,$ exchange, add, delete nodes
- $\cdot\,$ acceptance probability

$$p = \exp\left(-\frac{\text{score}_{\text{new}} - \text{score}_{\text{old}}}{\alpha T \text{ score}_{\text{old}}}\right)$$

- · added: proper fit of pre-factors
- \rightarrow Hall of Fame: best equation per complexity

Miles' example

PvSR

Orbital mechanics

Force law from orbital mechanics [Lemos, Jeffrey, Cranmer, Ho, Battaglia]

- · data 3- years of solar system [sun, planets, big moons]
- · objects scalar property per body, call it 31 masses
- · graph network interaction as 465 edges, summed
- · loss mean weighted error
- · PySR interpret edges as force
- · post-processing re-train masses and force law
- \rightarrow Gravity it is...

Formulas

- Al-Feynma
- PySR
- Optimal
- Analytic form

Orbital mechanics

Force law from orbital mechanics [Lemos, Jeffrey, Cranmer, Ho, Battaglia]

- · data 3- years of solar system [sun, planets, big moons]
- · objects scalar property per body, call it 31 masses
- · graph network interaction as 465 edges, summed
- · loss mean weighted error
- · PySR interpret edges as force
- · post-processing re-train masses and force law
- → Gravity it is...

PySR

- Optimal Obs
- Analytic form

PySR competition

Standard in ML: conference challenges

- · Kaggle tracking, Higgs
- $\cdot\,$ ML4Jets $\,$ top tagging, anomaly seraches, autoencoder, detector simulation

How well does this work?

- GECCO 2022 symbolic regression competition - equations track
- PySR won second place overall, but by far finds the simplest solutions:
- (First place is a proprietary software from a startup, so PySR is technically the best overall open-source symbolic regression!)

PySR

Optimal Obs

Analytic form

Standard in ML: conference challenges

- · Kaggle tracking, Higgs
- $\cdot\,$ ML4Jets $\,$ top tagging, anomaly seraches, autoencoder, detector simulation

AllesCranmer / PySR Public			
High-Performance Symbolic Regression in Python			
좌 Apache-2.0 license			
☆ 761 stars 양 81 forks			

- Open-source, free forever
- · Extensible Python API compatible with scikit-learn
- · Can be distributed over 1000-core clusters
- · Custom operators, losses, constraints

Optimal Obs

Optimal observables

Measure model parameter θ optimally

· single-event likelihood [from Monte Carlo]

$$p(x| heta) = rac{1}{\sigma_{ ext{tot}}(heta)} rac{d^d \sigma(x| heta)}{dx^d}$$

· expanded locally in θ , define score [just taylor log]

$$\log \frac{p(x|\theta)}{p(x|\theta_0)} \approx (\theta - \theta_0) \nabla_{\theta} \log p(x|\theta) \bigg|_{\theta_0} \equiv (\theta - \theta_0) t(x|\theta_0) \equiv (\theta - \theta_0) \mathcal{O}^{\text{opt}}(x)$$

 $\cdot\,$ parton level, as used in ATLAS

$$p(x|\theta) \approx |\mathcal{M}|_0^2 + \theta |\mathcal{M}|_{int}^2 \quad \Rightarrow \quad t(x|\theta_0) \sim \frac{|\mathcal{M}|_{int}^2}{|\mathcal{M}|_0^2},$$

 \rightarrow Easy at parton level, LEP physics...

Optimal Obs

Optimal observables

Measure model parameter θ optimally

· single-event likelihood [from Monte Carlo]

$$p(x|\theta) = rac{1}{\sigma_{ ext{tot}}(heta)} rac{d^d \sigma(x| heta)}{dx^d}$$

· expanded locally in θ , define score [just taylor log]

$$\log \frac{p(x|\theta)}{p(x|\theta_0)} \approx (\theta - \theta_0) \nabla_{\theta} \log p(x|\theta) \bigg|_{\theta_0} \equiv (\theta - \theta_0) t(x|\theta_0) \equiv (\theta - \theta_0) \mathcal{O}^{\text{opt}}(x)$$

· parton level, as used in ATLAS

$$p(x|\theta) \approx |\mathcal{M}|_0^2 + \theta |\mathcal{M}|_{int}^2 \quad \Rightarrow \quad t(x|\theta_0) \sim \frac{|\mathcal{M}|_{int}^2}{|\mathcal{M}|_0^2},$$

 \rightarrow Easy at parton level, LEP physics...

Discrete symmetry

- · CPV at dimension-6
- unique CP-observable [C-even, P-odd, T-odd]

$$t \propto \epsilon_{\mu\nu\rho\sigma} k_1^{\mu} k_2^{\nu} q_1^{\rho} q_2^{\sigma} \operatorname{sign} \left[(k_1 - k_2) \cdot (q_1 - q_2) \right] \stackrel{\text{lab frame}}{\longrightarrow} \sin \Delta \phi_{jj}$$

→ Computable, modulo prefactor from D6-operator

DUCD

Optimal Obs

Analytic form

Optimal observables after detector

Computing score using MadMiner

· likelihood ratio at detector level

k

$$pg \quad \frac{p(x_d|\theta)}{p(x_d|\theta_0)} = \log \quad \frac{\int dx_p \ T(x_d|x_p) \ p(x_p|\theta)}{\int dx_p \ T(x_d|x_p) \ p(x_p|\theta_0)}$$

minimization problem for

$$F(x_d) = \int dx_\rho \left| g(x_d, x_\rho) - \hat{g}(x_d) \right|^2 T(x_d | x_\rho) p(x_\rho | \theta)$$

smart choice

$$g(x_d, x_p) = \frac{p(x_p|\theta)}{p(x_p|\theta_0)} \qquad \Rightarrow \qquad \hat{g}_*(x_d) = \frac{p(x_d|\theta)}{p(x_d|\theta_0)}$$

- · same for unobservable phase-space directions [joint score $t(x, z | \theta]$
- \rightarrow Minimization means ML, function as NN

PySR

Optimal Obs

Analytic form

Optimal observables after detector

Computing score using MadMiner

· likelihood ratio at detector level

k

$$pg \quad \frac{p(x_d|\theta)}{p(x_d|\theta_0)} = \log \quad \frac{\int dx_p \ T(x_d|x_p) \ p(x_p|\theta)}{\int dx_p \ T(x_d|x_p) \ p(x_p|\theta_0)}$$

· minimization problem for

$$F(x_d) = \int dx_p \left| g(x_d, x_p) - \hat{g}(x_d) \right|^2 T(x_d | x_p) p(x_p | \theta)$$

smart choice

$$g(x_d, x_p) = \frac{p(x_p|\theta)}{p(x_p|\theta_0)} \qquad \Rightarrow \qquad \hat{g}_*(x_d) = \frac{p(x_d|\theta)}{p(x_d|\theta_0)}$$

- · same for unobservable phase-space directions [joint score $t(x, z|\theta]$]
- \rightarrow Minimization means ML, function as NN

Going back to formulas [Brehmer, Butter, TP, Soybelman]

- · detector-level score from MadMiner
- · parton-level score analytically
- · good enough formula for controlled use?
- \rightarrow Symbolic regression

Formulas Al-Feynman PySR

Analytic form

Score around Standard Model

 \cdot shift in distributions, reflected in score $\mbox{[parton level]}$ CP-effect in $\Delta\phi_{jj}$ D6-effect in $\rho_{T,j}$

Formulas Al-Feynman PySR

Analytic form

Around Standard Model

Score around Standard Model

 \cdot shift in distributions, reflected in score $\mbox{[parton level]}$ CP-effect in $\Delta\phi_{jj}$ D6-effect in $\rho_{T,j}$

 \cdot best 4-parameter formula including $\Delta\eta$ [without/with detector]

$$t = -x_{p,1} \left(x_{p,2} + c \right) \left(a - b \Delta \eta \right) \sin(\Delta \phi + d)$$

with a = 1.086(11) b = 0.10241(19) c = 0.24165(8) d = 0.00662(32)a = 0.926(2) b = 0.08387(35) c = 0.3542(20) d = 0.00911(67)

\rightarrow Mostly expected formula

Analytic form

Away from Standard Model

Score away from Standard Model

· scaling beyond linearization

$$p(x| heta) = |\mathcal{M}|_0^2 + heta |\mathcal{M}|_{int}^2 + heta^2 |\mathcal{M}|_{quad}^2$$

saturating score

· combination of different regimes

- ryon
- Optimal Obs
- Analytic form

Away from Standard Model

Score away from Standard Model

· scaling beyond linearization

$$p(x|\theta) = |\mathcal{M}|_{0}^{2} + \theta |\mathcal{M}|_{int}^{2} + \theta^{2} |\mathcal{M}|_{quad}^{2}$$

saturating score

	$\theta \ll 1$	$ heta\gtrsim 1$
approximation	$\left \begin{array}{c} \frac{\left \mathcal{M}\right _{\text{int}}^{2}}{\left \mathcal{M}\right _{0}^{2}} + \frac{1}{\left \mathcal{M}\right _{0}^{2}} \left(2\left \mathcal{M}\right _{\text{quad}}^{2} - \frac{\left \mathcal{M}\right _{\text{int}}^{4}}{\left \mathcal{M}\right _{0}^{2}}\right) \theta \end{array} \right.$	quadratic term 2 - 0
scaling	mostly constant	decreasing with $\boldsymbol{\theta}$

- · combination of different regimes
- regression including division [rational function, complexity 31]

$$t(x_{\rho,\times}, s_{\phi}, \Delta\eta | f_{W\widetilde{W}} = 1) = \frac{a' x_{\rho,\times} (e' s_{\phi}^2 x_{\rho,\times} - s_{\phi} \Delta\eta - f')}{(b' x_{\rho,\times} + s_{\phi} - g')(e' s_{\phi}^2 x_{\rho,\times} - s_{\phi} \Delta\eta - f') - c' s_{\phi}^2 - d'}$$

with $a' = 0.75$ $b' = 0.38$ $c' = 4.2$ $d' = 4.6$ $e' = 1.1$ $f' = 0.26$ $g' = 0.21$

 \rightarrow Optimal observables more complex

cmpl	dof	function	MSE
3	1	$ ax_{p,\times} $	0.124
12	2	$ax_{p,\times}/(x_{p,\times}/\Delta\eta + \Delta\eta + b)$	0.116
15	2	$(s_{\phi}+a)(-s_{\phi}+x_{p,\times}-b)/(-s_{\phi}+x_{p,\times}+\Delta\eta/x_{p,\times})$	0.054
26	4	$a/(b - (s_{\phi} - c - d/(s_{\phi}^2 - s_{\phi}\Delta\eta - s_{\phi}/x_{p,\times} + ex_{p,\times}^2))/x_{p,\times})$	0.048
31	7	$\left a/(b - (s_{\phi} + (cs_{\phi}^2 - d))/(es_{\phi}^2 x_{p,\times}^2 - s_{\phi} \Delta \eta + f) - g)/x_{p,\times} \right $	0.039

Formulas Al-Feynmai PySR

Optimal Obs

Analytic form

Expectation for analysis

So what does the formula buy us?

 MSE for score: very wrong formula wrong formula right formula MadMiner

- Formulas Al-Feynman PySR Optimal Obs
- opunta obo
- Analytic form

Expectation for analysis

So what does the formula buy us?

- MSE for score: very wrong formula wrong formula right formula MadMiner
- expected limits: very wrong formula wrong formula right formula ≈ MadMiner
- → Statistically limited for Run 2

Formulas Al-Feynman

- i yon
- Analytic form

ML for LHC Theory

ML-applications in LHC analysis and theory

- · just another numerical tool for a numerical field
- $\cdot\,$ driven by money from data industry, medical research
- · goals are...

...improve established tasks

...develop new tools for straightforward tasks ...come up with new ideas, now possible

- · example recovering formulas from complex observables
- $\rightarrow\,$ Opportunity for young people to make a difference!

