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Particle physics goals

Particle physics defined by

– fundamental questions

– lot of data

– first-principles predictions

– precision analysis

Fundamental questions

– particle nature of dark matter?

– origin of the Higgs mechanism?

– matter-antimatter asymmetry?

– Standard Model all there is?
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Particle physics goals

Particle physics defined by

– fundamental questions

– lot of data

– first-principles predictions

– precision analysis

Rate measurements

– many processes

– vastly different rates

– high precision

– predicted by theory
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Particle physics goals

Particle physics defined by

– fundamental questions

– lot of data

– first-principles predictions

– precision analysis

Rate measurements

– many processes

– vastly different rates

– high precision

– predicted by theory

Rates not interesting

– new physics rare and heavy

– phase space vast

⇒ bumps, tails, kinematics instead
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Experimental ML-applications

Top tagging [supervised classification]

– different NN-architectures

– tagger comparison

⇒ Just do it right...
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Experimental ML-applications

Top tagging [supervised classification]

– different NN-architectures

– tagger comparison

⇒ Just do it right...

Particle flow [classification, super-resolution]

– mother of jet tools

– combined detector channels

⇒ Seriously impressive
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Jets, QCD, symmetries

Lund plane representation [input preprocessing]

– QCD-inspired input with cutting-edge networks

– angular separation vs transverse momentum

⇒ Understanding data helps
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Jets, QCD, symmetries

Lund plane representation [input preprocessing]

– QCD-inspired input with cutting-edge networks

– angular separation vs transverse momentum

⇒ Understanding data helps

Self-supervised training [contrastive learning, transformer network]

– rotations, translations, permutations, soft splittings, collinear splittings

– learn symmetries/augmentations

⇒ Symmetry-aware latent space
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Non-QCD and parton densities

Anomaly searches [unsupervised training]

– look for non-QCD jets, non-SM events

– idea of BSM searches, trigger

⇒ Latent density?
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Non-QCD and parton densities

Anomaly searches [unsupervised training]

– look for non-QCD jets, non-SM events

– idea of BSM searches, trigger

⇒ Latent density?

NNPDF/N3PDF parton densities [full blast]

– starting point: pdfs without functional ansatz

– moving on: cutting-edge ML everywhere

⇒ Leaders in ML-theory
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Events and amplitudes

Speeding up event generation [sampling]

– precision simulations limiting factor for Runs 3&4

– unweighting critical

⇒ Phase space sampling
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Events and amplitudes

Speeding up event generation [sampling]

– precision simulations limiting factor for Runs 3&4

– unweighting critical

⇒ Phase space sampling

Speeding up amplitudes [regression]

– loop-amplitudes expensive

– interpolation standard

⇒ Network amplitudes
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String landscape and learned formulas

Navigating string landscape [reinforcement learning]

– searching for viable vacua

– high dimensions, unknown global structure

⇒ Model space sampling
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String landscape and learned formulas

Navigating string landscape [reinforcement learning]

– searching for viable vacua

– high dimensions, unknown global structure

⇒ Model space sampling

Learning formulas [genetic algorithm, symbolic regression]

– approximate numerical function through formula

– example: score/optimal observables

⇒ Useful approximate formulas
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LHC simulations

Simulation-based inference

– start with Lagrangian

– calculate scattering in perturbative QFT

– simulate events [theory: Sherpa, Madgraph, Pythia]

– simulate detectors [experiment: ATLAS, CMS, Delphes]

⇒ LHC events in virtual worlds

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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LHC simulations

Simulation-based inference

– start with Lagrangian

– calculate scattering in perturbative QFT

– simulate events [theory: Sherpa, Madgraph, Pythia]

– simulate detectors [experiment: ATLAS, CMS, Delphes]

⇒ LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

– simulated event numbers ∼ expected events

– statistics requiring 1%-2% uncertainty

– flexible signal hypotheses [time-dependent]

– low-rate high-multiplicity backgrounds

Data Proc

12%

MC-Full(Sim)

10%

MC-Full(Rec)

2%

MC-Fast(Sim)

8%

MC-Fast(Rec)

13%

EvGen

18%

Heavy Ions

8%

Data Deriv

5%

MC Deriv

16%

Analysis

7%

ATLAS Preliminary
2020 Computing Model -CPU: 2030: Aggressive R&D

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy Ions
Data Deriv
MC Deriv
Analysis
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LHC simulations

Simulation-based inference

– start with Lagrangian

– calculate scattering in perturbative QFT

– simulate events [theory: Sherpa, Madgraph, Pythia]

– simulate detectors [experiment: ATLAS, CMS, Delphes]

⇒ LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

– simulated event numbers ∼ expected events

– statistics requiring 1%-2% uncertainty

– flexible signal hypotheses [time-dependent]

– low-rate high-multiplicity backgrounds

Three ways to use ML

– improve current tools

– new ML-tools

– conceptually new ideas
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Generative neural networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– can networks create new pieces of art?
map random numbers to image pixels

– train on 80,000 pictures [organized by style and genre]

– generate portraits
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Generative neural networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– can networks create new pieces of art?
map random numbers to image pixels

– train on 80,000 pictures [organized by style and genre]

– generate portraits

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

– trained on 15,000 portraits

– sold for $432.500

⇒ ML all marketing and sales
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Generative neural networks

GANGogh [Bonafilia, Jones, Danyluk (2017)]

– can networks create new pieces of art?
map random numbers to image pixels

– train on 80,000 pictures [organized by style and genre]

– generate portraits

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

– trained on 15,000 portraits

– sold for $432.500

⇒ ML all marketing and sales

Jet portraits [de Oliveira, Paganini, Nachman (2017)]

– calorimeter or jet images

– reproduce valid jet images from training data

– organize them by QCD vs W -decay jets

⇒ Generative networks useful for particle physics
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How to GAN

Adversarial training

– training: true events {xT }
output: generated events {r} → {xG}

– discriminator classifier function D(x) from minimizing [D(x) = 1(T), 0(G)]

LD =
〈
− log D(x)

〉
xT

+
〈
− log(1− D(x))

〉
xG

– generator mapping r → xG by minimizing [D needed]

LG =
〈
− log D(x)

〉
xG

– Nash equilibrium D = 0.5

⇒ statistically independent copy of training events
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How to GAN

Adversarial training

– training: true events {xT }
output: generated events {r} → {xG}

– discriminator classifier function D(x) from minimizing [D(x) = 1(T), 0(G)]

LD =
〈
− log D(x)

〉
xT

+
〈
− log(1− D(x))

〉
xG

– generator mapping r → xG by minimizing [D needed]

LG =
〈
− log D(x)

〉
xG

– Nash equilibrium D = 0.5

⇒ statistically independent copy of training events

GAN LHC events

– typical process t t̄ → 6 quarks [18D final state]

– observables with tails

⇒ two big LHC questions:
How precisely can we GAN?
What is their uncertainty? 0.0
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Chemistry of loss functions

Pointing GANs to specific features

– low-dimensional sharp features
phase space boundaries
kinematic cuts
invariant masses

– batch-wise comparison of distributions, MMD loss with kernel k

MMD2(PT ,PG) =
〈
k(x, x′)

〉
xT ,x
′
T

+
〈
k(y, y ′)

〉
yG,y
′
G
− 2
〈
k(x, y)

〉
xT ,yG

LG → LG + λG MMD2
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Chemistry of loss functions

Pointing GANs to specific features

– low-dimensional sharp features
phase space boundaries
kinematic cuts
invariant masses

– batch-wise comparison of distributions, MMD loss with kernel k

MMD2(PT ,PG) =
〈
k(x, x′)

〉
xT ,x
′
T

+
〈
k(y, y ′)

〉
yG,y
′
G
− 2
〈
k(x, y)

〉
xT ,yG

LG → LG + λG MMD2

⇒ It works...
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GANplification

Gain beyond training data

8 6 4 2 0 2 4 6 8
x

0.00

0.02

0.04
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0.08

0.10

0.12

0.14

0.16

0.18

p(
x)

10 quantiles
GAN trained on 100 data points

truth
fit
Sample
GAN

– true function known
compare sampling vs GAN vs fit

– quantiles with χ2-values

101 102 103 104 105 106

number GANed

10 2

qu
an

til
e 

M
SE

 GAN

 sample

 fit

 200
 300

50 quantiles
100 data points

– start with 100 sampled points
fit like 700 sampled points
GAN like 500 sampled points ...

... but requiring 10,000 GANned events

– interpolation and resolution key [implicit bias]

⇒ Generative networks beyond training data
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Statistical bonus: unweighting

Gaining beyond GANpliflication

– phase space sampling: PS weight ×|M|2
density information in weights [for uniform grid]

– experiment: observed configurations
density information in density

⇒ information in mix of density and weights
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Statistical bonus: unweighting

Gaining beyond GANpliflication

– phase space sampling: PS weight ×|M|2
density information in weights [for uniform grid]

– experiment: observed configurations
density information in density

⇒ information in mix of density and weights

– weak spot: hit-and-miss unweighting
relative event weights wj/wmax ∈ [0, 1]
random number r ∈ [0, 1] < wj/wmax means keep event
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Statistical bonus: unweighting

Gaining beyond GANpliflication

– phase space sampling: PS weight ×|M|2
density information in weights [for uniform grid]

– experiment: observed configurations
density information in density

⇒ information in mix of density and weights

– weak spot: hit-and-miss unweighting
relative event weights wj/wmax ∈ [0, 1]
random number r ∈ [0, 1] < wj/wmax means keep event

– learn from weighted, generate unweighted events

LD =

〈
− w(x) log D(x)

〉
xT〈

w(x)
〉

xT

+
〈
− log(1− D(x))

〉
xG

LG =
〈
− log D(x)

〉
xG

⇒ GANs can unweight
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Statistical bonus: subtraction

Subtract samples without binning

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– GAN setup: differential class label, sample normalization
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Statistical bonus: subtraction

Subtract samples without binning

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– GAN setup: differential class label, sample normalization

– toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

0 25 50 75 100 125 150 175 200
x

10−2

10−1

100

P
(x

)

GAN vs Truth

B

S

B − S

0 25 50 75 100 125 150 175 200
x

0.08

0.09

0.10

0.11

0.12

0.13

P
(x

)

(B − S)GAN

(B − S)Truth ± 1σ
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Statistical bonus: subtraction

Subtract samples without binning

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– GAN setup: differential class label, sample normalization

– toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)

20 40 60 80 100
Ee� [GeV]

0.0

0.5

1.0

1.5

2.0

d
�

d
E

e�
[p

b
/G
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]

⇥101
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Statistical bonus: subtraction

Subtract samples without binning

– statistical uncertainty
∆B−S =

√
∆2

B + ∆2
S > max(∆B,∆S)

– GAN setup: differential class label, sample normalization

– toy example

PB(x) =
1
x

+ 0.1 PS(x) =
1
x
⇒ PB−S = 0.1

– event-based background subtraction [weird notation, sorry]

pp → e+e− (B) pp → γ → e+e− (S) ⇒ pp → Z → e+e− (B-S)

– collinear subtraction [assumed non-local]

pp → Zg (B: matrix element, S: collinear approximation)

⇒ GANs can subtract samples

0 20 40 60 80 100
pT,g [GeV]
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10−1

100

101

d
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d
p T
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[p

b
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Variational autoencoder

Alternative generative architecture

– reconstruction loss [like autoencoder]

LVAE =
∑
|x − x′|2 + βDKL

– Gaussian latent space via KL-divergence

DKL(p; q) =

∫
dx p(x) log

p(x)

q(x)

DKL(Nµ,σ ;N0,1) =
1 + log σ2 − µ2 − σ2

2
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Variational autoencoder

Alternative generative architecture

– reconstruction loss [like autoencoder]

LVAE =
∑
|x − x′|2 + βDKL

– Gaussian latent space via KL-divergence

DKL(p; q) =

∫
dx p(x) log

p(x)

q(x)

DKL(Nµ,σ ;N0,1) =
1 + log σ2 − µ2 − σ2

2

– VAE-GAN replacing reconstruction loss

LVAE-GAN = LGAN + βDKL

– application to detector simulations [ask Gregor]
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Calomplification

Gain for fast detector simulation

– photon shower in 3D-calorimeter
energy deposition in 303 cells
1k showers for training, 218k showers as truth
downsized VAE-GAN architecture

⇒ how many generated events make sense?

0.05

0.10

0.15

a.u.
218k Geant4
1k Geant4
VAE-GAN

600 800 1000
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2
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Calomplification

Gain for fast detector simulation

– photon shower in 3D-calorimeter
energy deposition in 303 cells
1k showers for training, 218k showers as truth
downsized VAE-GAN architecture

⇒ how many generated events make sense?

– benchmarking as function of quantiles [bin resolution]

comparison using DJS(p; q) = DKL(p; q) + DKL(q; p)

⇒ Generative networks really amplify data sets

4 16 64 256 1k 4k 16k
nquant

10−1

10−2

10−3

10−4

10−5

1k 5k

10k 50k

1k→1000k

218k validation
showers

DJS

Evis

Geant4

VAE-GAN

4 16 64 256 1k 4k 16k
nquant

10−2

10−3

10−4

10−5

10−6

1k
5k

10k

50k

1k→1000k

DJS
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Normalizing flows — invertible networks

Looking for stable networks

– mapping physics space←→ latent space

– INN: bijective mapping
symmetric training and evaluation
Gaussian latent space

– structural element: coupling block [affine, spline]

– log-likelihood loss [moved into Gaussian latent space]

LINN = −
〈

log
PG(x)

PT (x)

〉
xT

= −
〈
ψ(x)2

2
− log J(x)− log PT (x)

〉
xT
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Generative networks with error bars

Bayesian generative network

⟨pT⟩ =
1
N

N

∑
i

⟨pT⟩ωi

σ2
pred =

1
N

N

∑
i

(⟨pT⟩ − ⟨pT⟩ωi
)2

BNN

sa
mp

lin
g

σ2
stoch =

1
N

N

∑
i

σ2
stoch, ωi

Output

output

( ⟨pT⟩ω1

σstoch, ω1
)

Ensemble of networks

0.2 0.8
-0.1

-0.3
0.70.5

0.9
-0.2

0.4

( ⟨pT⟩ω2

σstoch, ω2
)

(
⟨pT⟩ω3

σstoch, ω3)

q(ω)

x

x

x

x

– data: event sample [points in 2D space]

learn phase space density
Gaussian in latent space
mapping bijective
sample from latent space

– Bayesian version
allow weight distributions
learn uncertainty map
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Generative networks with error bars

Bayesian generative network

– data: event sample [points in 2D space]

learn phase space density
Gaussian in latent space
mapping bijective
sample from latent space

– Bayesian version
allow weight distributions
learn uncertainty map

– 2D wedge ramp

p(x) = ax + b = ax +
1− a

2 (x2
max − x2

min)

xmax − xmin

(∆p)2 =

(
x − 1

2

)2
(∆a)2

+

(
1 +

a
2

)2
(∆xmax)2 +

(
1− a

2

)2
(∆xmin)2

explaining minimum in σpred(x)

0.5
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1.5

N
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ed
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Truth

±σpred
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x
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Fit: ∆a = 0.09, ∆xmax = 0.01

σpred

±δσpred
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Generative networks with error bars

Bayesian generative network

– data: event sample [points in 2D space]

learn phase space density
Gaussian in latent space
mapping bijective
sample from latent space

– Bayesian version
allow weight distributions
learn uncertainty map

– Gaussian ring [µ = 4, w = 1]

∆p =

∣∣∣∣G(r)

r
µ− r

w2

∣∣∣∣2 (∆µ)2 +

∣∣∣∣∣ (r − µ)2

w3
− 1

w

∣∣∣∣∣
2

(∆w)2

explaining dip in σpred(x)

⇒ Generative networks just (non-parametric) fits
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N
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×10−3

Fit: ∆µ = 0.04 σpred

±δσpred

σpred

±δσpred
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Precision generator

Challenging an INN-generator

– Zµµ + {1, 2, 3} jets [Z -peak, variable jet number, jet-jet topology]

– training on 5.4M Z+jets events
truth defined as high-stats training data
goal: 1% precision relative to truth

10−4

10−3

10−2

n
or

m
al

iz
ed

Z + 1 jet exclusive

Truth

INN

Train

0.95
1.00
1.05

M
o
d
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T

ru
th

25 50 75 100 125 150
pT,j1 [GeV]

0.1
1.0

10.0

δ[
%

]
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Precision generator

Challenging an INN-generator

– Zµµ + {1, 2, 3} jets [Z -peak, variable jet number, jet-jet topology]

– training on 5.4M Z+jets events
truth defined as high-stats training data
goal: 1% precision relative to truth

– holes in geometric distance ∆Rjj [QFT problem :)]

– magic transformation
monotouous function with weights [opposite of importance sampling]

w (1-jet) = 1

w (2-jet) = f (∆Rj1,j2
)

w (3-jet) = f (∆Rj1,j2
)f (∆Rj2,j3

)f (∆Rj1,j3
)

with

f (∆R) =


0 for ∆R < R−

∆R − R−
R+ − R−

for ∆R ∈ [R−,R+]

1 for ∆R > R+

0.0 0.5 1.0 1.5 2.0
0

2500

5000

7500

10000

ev
en

t
co

u
n
ts

true
distribution

weighted
distribution

0.0 0.5 1.0 1.5 2.0
∆Rj1j2

0.0

0.5

1.0

f
(∆
R
j 1
j 2

)



Generative
Networks

Tilman Plehn

LHC

Some ML...

GAN

GANplification

Statistical gains

VAE

Calomplification

INN

Uncertainties

Inverting

Precision generator

Challenging an INN-generator

– Zµµ + {1, 2, 3} jets [Z -peak, variable jet number, jet-jet topology]

– training on 5.4M Z+jets events
truth defined as high-stats training data
goal: 1% precision relative to truth

– holes in geometric distance ∆Rjj [QFT problem :)]

– magic transformation
monotouous function with weights [opposite of importance sampling]

w (1-jet) = 1

w (2-jet) = f (∆Rj1,j2
)

w (3-jet) = f (∆Rj1,j2
)f (∆Rj2,j3

)f (∆Rj1,j3
)

with

f (∆R) =


0 for ∆R < R−

∆R − R−
R+ − R−

for ∆R ∈ [R−,R+]

1 for ∆R > R+

⇒ Per-cent precision possible
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Control & precision

Additional discriminator: training vs generated

– input {pT , η, φ,M,Mµµ,∆R}
output D = 0G), 1T→ 0.5

– decent generator training D ≈ 0.5
– additional event weight

wD(x) =
D(x)

1− D(x)

⇒ 1. control and 2. reweight
0.0

0.1

0.2

n
or

m
al
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ed
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Reweighted

INN

Train

0.9
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w
D
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Mµµ [GeV]
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Control & precision

Additional discriminator: training vs generated

– input {pT , η, φ,M,Mµµ,∆R}
output D = 0G), 1T→ 0.5

– decent generator training D ≈ 0.5
– additional event weight

wD(x) =
D(x)

1− D(x)

⇒ 1. control and 2. reweight

Joint DiscFlow training [GAN-inspired]

– GAN-like training unstable [Nash equilibrium?]

– coupling through weights

LDiscFlow = −
B∑

i=1

wD(xi )
α log

P(xi )

Pref(xi )

≈ −
∫

dx
Pα+1

ref (x)

Pα(x)
log

P(x)

Pref(x)

0.000

0.005

0.010

D
en

si
ty

Truth

Fake

w · Truth

0.0

0.5

1.0

D
(x

)
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Control & precision

Additional discriminator: training vs generated

– input {pT , η, φ,M,Mµµ,∆R}
output D = 0G), 1T→ 0.5

– decent generator training D ≈ 0.5
– additional event weight

wD(x) =
D(x)

1− D(x)

⇒ 1. control and 2. reweight

Joint DiscFlow training [GAN-inspired]

– GAN-like training unstable [Nash equilibrium?]

– coupling through weights

LDiscFlow = −
B∑

i=1

wD(xi )
α log

P(xi )

Pref(xi )

≈ −
∫

dx
Pα+1

ref (x)

Pα(x)
log

P(x)

Pref(x)

⇒ Controlled unweighted events
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Control & precision

Additional discriminator: training vs generated

– input {pT , η, φ,M,Mµµ,∆R}
output D = 0G), 1T→ 0.5

– decent generator training D ≈ 0.5
– additional event weight

wD(x) =
D(x)

1− D(x)

⇒ 1. control and 2. reweight

Joint DiscFlow training [GAN-inspired]

– GAN-like training unstable [Nash equilibrium?]

– coupling through weights

LDiscFlow = −
B∑

i=1

wD(xi )
α log

P(xi )

Pref(xi )

≈ −
∫

dx
Pα+1

ref (x)

Pα(x)
log

P(x)

Pref(x)

⇒ Reweighted precision events
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Uncertainties

Bayesian INN generator

– uncertainty over phase space

– training statistics leading source

⇒ Training-related error bars 10−4
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n
or

m
al

iz
ed

Z + 1 jet exclusive
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BINN
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Uncertainties

Bayesian INN generator

– uncertainty over phase space

– training statistics leading source

⇒ Training-related error bars

Theory uncertainties

– BNN regression/classification:
systematics from data augmentation

– systematic uncertainties in tails

w = 1 + a

(
pT ,j1 − 15 GeV

100 GeV

)2

– augment training data [a = 0 ... 30]

– train conditionally on smeared a
error bar from sampling a

⇒ Systematic/theory error bars
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n
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Uncertainties

Bayesian INN generator

– uncertainty over phase space

– training statistics leading source

⇒ Training-related error bars

Theory uncertainties

– BNN regression/classification:
systematics from data augmentation

– systematic uncertainties in tails

w = 1 + a

(
pT ,j1 − 15 GeV

100 GeV

)2

– augment training data [a = 0 ... 30]

– train conditionally on smeared a
error bar from sampling a

⇒ Systematic/theory error bars
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Inverting event simulations

Inverting LHC simulations

– unfolding QCD-shower to hard parton standard [jet algorithm]

unfolding detector common
unfolding top-quark decays useful
matrix element method complete unfolding

⇒ systematic approach through generative network

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse



Generative
Networks

Tilman Plehn

LHC

Some ML...

GAN

GANplification

Statistical gains

VAE

Calomplification

INN

Uncertainties

Inverting

Conditional GAN

Goal: invert standard simulation

– detector simulation typical Monte Carlo, random-number-driven

– inversion possible, in principle [but entangled convolutions]

– generative network task

partons DELPHES−→ detector GAN−→ partons

Conditional generative networks

– random numbers to parton level
hadron level as condition
training on matched event pairs

– FCGAN the first example
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Conditional INN

Statistical inversion

– task: construct parton-level pdf for (single) detector-level event

1- generative network: parton-level events from {r}
2- maximum likelihood loss

L = −〈log p(θ|xp, xd )〉xp,xd

= −〈log p(xd |xp, θ) + log p(θ|xp)− log p(xd |xp)〉xp,xd

= −〈log p(xd |xp, θ)〉xp,xd
− log p(θ) + const.

≈ −
〈

log p(g(xp, xd )) + log

∣∣∣∣∂g(xp, xd )

∂xp

∣∣∣∣〉
xp,xd

− log p(θ)
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Conditional INN

Statistical inversion

– task: construct parton-level pdf for (single) detector-level event

1- generative network: parton-level events from {r}
2- maximum likelihood loss

This time pp → ZW → (``) (jj)

– distribution: single pair (xp, xd ), 3200 unfoldings
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Conditional INN

Statistical inversion

– task: construct parton-level pdf for (single) detector-level event

1- generative network: parton-level events from {r}
2- maximum likelihood loss

This time pp → ZW → (``) (jj)

– distribution: single pair (xp, xd ), 3200 unfoldings

– calibration: 1500 pairs (xp, xd ), 60 unfoldings, truth in which quantile?

⇒ Conditional INNs solve inverse problems statistically
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Machine learning for LHC theory

Machine learning for the LHC

– Classification/regression standard
uncertainties?
symmetries?
experimental realities?

– GANs the cool kid
generator producing best events
discriminator checking generator
limited in precision and uncertainty control

– INNs my work horse
flow networks for control and precision
Bayesian for error bars
condition for inversion

– All results from 3 years, clearly a field for young people!
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