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Particle physics goals

Particle physics defined by
— fundamental questions
— lot of data
— first-principles predictions
— precision analysis

Fundamental questions

particle nature of dark matter?
origin of the Higgs mechanism?
matter-antimatter asymmetry?
Standard Model all there is?
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Particle physics goals

Particle physics defined by

— fundamental questions
— lot of data

first-principles predictions
precision analysis

Rate measurements
— many processes
— vastly different rates
— high precision
— predicted by theory

Rates not interesting
— new physics rare and heavy
— phase space vast
= bumps, tails, kinematics instead
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Experimental ML-applications

Top tagging  (supervised classification] ‘
— different NN-architectures » |
— tagger comparison
= Just do it right...

Background rejction
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Experimental ML-applications

Top tagging  (supervised classification] ‘
— different NN-architectures = °
— tagger comparison :
= Just do it right... §
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Particle flow [classification, super-resolution]
— mother of jet tools -
— combined detector channels ENEN HE) R
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Jets, QCD, symmetries

Lund plane representation [input preprocessing]
— QCD-inspired input with cutting-edge networks
— angular separation vs transverse momentum

QCD rejection v. Top tagging eff

= Understanding data helps a2z

sl pp -+ i
10000 T Noncike 8 =1 jets, pr> 500 Gev.

s outpaise

Jet tagging in the Lund plane with graph networks

icaion of bt beavy ortickes sk 3 1 s o vt




Jets, QCD, symmetries

Lund plane representation [input preprocessing]

— QCD-inspired input with cutting-edge networks
— angular separation vs transverse momentum

QCD refection v. Top tagging efficiency

= Understanding data helps 223 sion

sl pp -, background: pp-i
10000 T Lntiie =1 ets, > 500 Gev

Jet tagging in the Lund plane with graph networks

Self-supervised training [contrastive learning, transformer network]
— rotations, translations, permutations, soft splittings, collinear splittings
— learn symmetries/augmentations
= Symmetry-aware latent space

-

Abstract

et o sprsntatin o Lo s GCD s




Non-QCD and parton densities

Anomaly searches  (unsupervised training]
— look for non-QCD jets, non-SM events
— idea of BSM searches, trigger
= Latent density? ===




Non-QCD and parton densities

Anomaly searches [unsupervised training]
— look for non-QCD jets, non-SM events
— idea of BSM searches, trigger
= Latent density? ===

NNPDF/N3PDF parton densities il blast
— starting point: pdfs without functional ansatz
— moving on: cutting-edge ML everywhere
= Leaders in ML-theory N 3”"" | i




Events and amplitudes

Speeding up event generation  [sampling]

do/dm b Gev-1]
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— precision simulations limiting factor for Runs 3&4 ¢ |
— unweighting critical e / ]

= Phase space sampling




Events and amplitudes

Speeding up event generation  [sampiing] )
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— precision simulations limiting factor for Runs 3&4
— unweighting critical

= Phase space sampling

Speeding up amplitudes [regression]

— loop-amplitudes expensive mm—
— interpolation standard 35 | Opimising simulatons for diphoton production at
. — 0 W hadron colliders using amplitude neural networks
= Network amplitudes
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String landscape and learned formulas

Navigating string landscape  f[reinforcement learning]

— searching for viable vacua
— high dimensions, unknown global structure

Probing the Structure of String Theory Vacua with

= Model space Sampling Genetic Algorithms and Reinforcement Learning
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String landscape and learned formulas

Navigating String Iandscape [reinforcement learning]

— searching for viable vacua

— high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
= Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstrsct
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Learning formulas [genetic algorithm, symbolic regression]

— approximate numerical function through formula
— example: score/optimal observables

= Useful approximate formulas Emgm  E=m

Back to the Formula — LHC Edition
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LHC simulations

Simulation-based inference

start with Lagrangian
calculate scattering in perturbative QFT

simulate events [theory: Sherpa, Madgraph, Pythia]
— simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds
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LHC simulations

Simulation-based inference

start with Lagrangian
calculate scattering in perturbative QFT

simulate events [theory: Sherpa, Madgraph, Pythia]
simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set

simulated event numbers ~ expected events
statistics requiring 1%-2% uncertainty

flexible signal hypotheses [time-dependent]
low-rate high-multiplicity backgrounds

ATLAS Preliminary
2020 Computing Model -CPU: 2030: Aggressive R&D
2% 10%

8%
12%

== Data Proc
79% W MC-Full(Sim)
MC-Full(Rec)
m— MC-Fast(Sim)
= MC-Fast(Rec)
= EvGen
Heavy lons
= Data Deriv
" MC Deriv
Analysis




LHC simulations

Simulation-based inference
— start with Lagrangian
— calculate scattering in perturbative QFT
— simulate events [theory: Sherpa, Madgraph, Pythia]
— simulate detectors [experiment: ATLAS, CMS, Delphes]
= LHC events in virtual worlds

HL-LHC: preparing for 25-fold data set
— simulated event numbers ~ expected events
— statistics requiring 1%-2% uncertainty
— flexible signal hypotheses fime-dependent]
— low-rate high-multiplicity backgrounds

Three ways to use ML
— improve current tools
— new ML-tools
— conceptually new ideas



Generative neural networks

GANGogh  (Bonailia, Jones, Danyluk (2017)]

— can networks create new pieces of art?
map random numbers to image pixels
— train on 80,000 pictures [organized by style and genre]

— generate portraits




Generative neural networks

GANGOgh [Bonafilia, Jones, Danyluk (2017)]

— can networks create new pieces of art?
map random numbers to image pixels

— train on 80,000 pictures [organized by style and genre]
— generate portraits

Edmond de Belamy [Caselles-Dupre, Fautrel, Vernier (2018)]

— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales
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Generative neural networks

GANGogh  (Bonailia, Jones, Danyluk (2017)]

— can networks create new pieces of art?
map random numbers to image pixels

— train on 80,000 pictures [organized by style and genre]
— generate portraits

Edmond de Belamy [caselies-Dupre, Fautrel, Vernier (2018)]
— trained on 15,000 portraits
— sold for $432.500
= ML all marketing and sales

Jet portraits  [de Oliveira, Paganini, Nachman (2017)]
— calorimeter or jet images
— reproduce valid jet images from training data
— organize them by QCD vs W-decay jets
= Generative networks useful for particle physics

[Transformed] Azimuthal Angle (¢)
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How to GAN

Adversarial training

training:  true events {xr}
output: generated events {r} — {xg}
discriminator  classifier function D(x) from minimizing o) = 1m, o@y

Lp=(—log D(x)> + ( — log(1 — D(x))>
— generator mapping r — Xg by minimizing (0 needed
Lg=(—log D(x))xG
Nash equilibrium D = 0.5
= statistically independent copy of training events

Discriminator

[c----- ]




How to GAN t

Adversarial training w

training:  true events {xr} t
output:  generated events {r} — {xg}
discriminator  classifier function D(x) from minimizing io(x) = 1M, a@)

Lp = ~log D(x)), + ( ~log(1 — D(x))),

generator mapping r — Xg by minimizing (0 needed]
Lg={—log D(x))xG

Nash equilibrium D = 0.5

= statistically independent copy of training events

GAN LHC events
— typical process tf — 6 quarks (18D final state]
— observables with tails
= two big LHC questions:

How precisely can we GAN?
What is their uncertainty?
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Chemistry of loss functions

Pointing GANSs to specific features

— low-dimensional sharp features

phase space boundaries
kinematic cuts
invariant masses

— batch-wise comparison of distributions, MMD loss with kernel k
MMD® (P, Pa) = (k(x, X)), o + (K.Y D)y = 2(K(x, )

Lg — Lg + Ag MMD?

{r}, {m} H Generator @ @
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Chemistry of loss functions

Pointing GANs to specific features

— low-dimensional sharp features

phase space boundaries
kinematic cuts
invariant masses

— batch-wise comparison of distributions, MMD loss with kernel k
MMD® (P, Pa) = (k(x, X)), o + (kYD) = 2(K(x, )

Lg — Lg + Ag MMD?

XT:¥G

= It works...
x10~!
— True
40 —— Breit-Wigner
— Gauss
= 30 —— No MMD
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GANplification

Gain beyond training data

— true function known
compare sampling vs GAN vs fit

— quantiles with x2-values

— start with 100 sampled points
fit like 700 sampled points
GAN like 500 sampled points ...
... but requiring 10,000 GANned events
— interpolation and resolution key  [impiicit bias]

= Generative networks beyond training data

10 quantiles === truth
61 GAN trained on 100 data points — fit
1 Sample

GAN

50 quantiles
GAN 100 data points

w

#

= sample
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< 300 )
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Statistical bonus: unweighting

Gaining beyond GANpliflication
— phase space sampling: PS weight x \/\/t|2
density information in weights  ffor uniform grid]

— experiment: observed configurations
density information in density

= information in mix of density and weights



Statistical bonus: unweighting

Gaining beyond GANpliflication
— phase space sampling: PS weight x \/\/t|2
density information in weights  ffor uniform grid]

— experiment: observed configurations
density information in density

= information in mix of density and weights
— weak spot: hit-and-miss unweighting
relative event weights w;/wmax € [0, 1]
random number r € [0, 1] < w;/wmax means keep event



Statistical bonus: unweighting

Gaining beyond GANpliflication
— phase space sampling: PS weight x| M ?
density information in weights fior unitorm gria]

— experiment: observed configurations
density information in density

= information in mix of density and weights
— weak spot: hit-and-miss unweighting

relative event weights w;/Wmax € [0, 1]
random number r € [0, 1] < w;/wmax means keep event

— learn from weighted, generate unweighted events
( — w(x)log D(x))XT
<W(X)>XT
Lg = ( —log D(x))

D= + ( — log(1 — D(X))>XG

Train

XG

Unweighted
uwGAN

= GANs can unweight
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Statistical bonus: subtraction

Subtract samples without binning

Ap_s = /A% + AZ > max(AB, AS)

— GAN setup: differential class label, sample normalization

@
Dp LDB

3
CECB_SUCS/ J Seel-t

— statistical uncertainty

;




Statistical bonus: subtraction
Subtract samples without binning

Ap_s = /B3 + A% > max(AB, AS)

— GAN setup: differential class label, sample normalization
— toy example
1 1
PB(X) = ; + 0.1 Ps(X) = ; = Pg_s=0.1

— statistical uncertainty

0’ 0.13
: — (B-S)aav
0.12 == (B-S)mmtlo
107!
G
11,
1072
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Statistical bonus: subtraction
Subtract samples without binning

Ap_s = /A% + AZ > max(AB, AS)

— GAN setup: differential class label, sample normalization
— toy example
1 1
PB(X) = ; + 0.1 Ps(X) = ; = Pg_s=0.1

— statistical uncertainty

— event-based background subtraction  weird notation, sorry]
pp—e'e” (B) pp—oy—ete” (S) = pp—Z—ee” (BS)

x10!

GAN vs Truth

7= [pb/GeV]

d
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Statistical bonus: subtraction

Subtract samples without binning

Ap_s = /A% + AZ > max(AB, AS)

— GAN setup: differential class label, sample normalization

— statistical uncertainty

toy example
Pg(x) = } + 0.1 Ps(x) = % = Pg_g=0.1
— event-based background subtraction  fweird notation, sorry]
pp—ee (B) pp—oy—etes (S) = pp—Z—ee (BS)
— collinear subtraction  (assumed non-local]
pp — Zg (B: matrix element, S: collinear approximation)

= GANSs can subtract samples

0 20 40 6  s0 100
pry [GeV]




Variational autoencoder

Alternative generative architecture
— reconstruction 10Ss ik autoencoder]

Lue =y |x = X'+ 8D

— Gaussian latent space via KL-divergence

p(x)
D, 1 q) = / dx p(x) log
kL (p; ) P(x)log o
1+logo? — p? — o2
DAL (N i Noy) = — 21— T
encode sampling decode
YOV
P(x)/{:\/{ \\q(X) //\‘x DM(PHQ)
/ // \ -» // uz\\
SN\ - /
[ Ju \ \ —» % . \_ﬂ_ﬁv__




Variational autoencoder

Alternative generative architecture

reconstruction 10ss [iie autoencoder]
Le = > Ix = x'[> + 8D«

Gaussian latent space via KL-divergence

X
Da(pia) = | o plx) g £
1+logo? — p? — o2
Dt (Nu.oi Not) = %
— VAE-GAN replacing reconstruction loss encode  sampling  decode

Lvae-aan = Laan + BDxL
application to detector simulations  {ask Gregor]

Input Intermediate Output

Sampling \7[“(‘[;;":(““ Leviienis s
| —| Post Processor| |
N Network .
- ! ) ’-

-
‘ — | = -j
T —

I\II\ID




Calomplification

Gain for fast detector simulation

— photon shower in 3D-calorimeter
energy deposition in 302 cells

1k showers for training, 218k showers as truth
downsized VAE-GAN architecture

= how many generated events make sense?

a.u. a.u.
218k Geant4 g
0.15 1~ 1k Geantd 18*3 ]
4= VAE-GAN )
0.10 10-4
0.05 10-5 4
2 2
s Ba c W
214 £11 % ?' -
04— ~ 0

600 800 1000 10! 102
Eyis [MeV] Bpixel > 5MeV [MeV]




Calomplification

Gain for fast detector simulation

— photon shower in 3D-calorimeter
energy deposition in 302 cells

1k showers for training, 218k showers as truth
downsized VAE-GAN architecture

= how many generated events make sense?

— benchmarking as function of quantiles  in resolution]
comparison using Dys(p; q) = DkL(p; q) + DwL(a; p)

= Generative networks really amplify data sets

o _ Epixel > 5MeV

k—1000k

218k validation
showers 10-5
Geantd

—— VAE-GAN 106

4 16 64 256 1k 4k 16k 4 16 64 256 1k 4k 16k

Nquant Tquant




Normalizing flows — invertible networks

Looking for stable networks

— mapping physics space «— latent space
— INN: bijective mapping
symmetric training and evaluation
Gaussian latent space

— structural element: coupling block (afine, spline]
- Iog-likelihood loss [moved into Gaussian latent space]

/1o Pe¥)
& Prix) .

= 7< PO g s(x) — tog Pr(x)>

Linn

2
-

i(2i-1) fis1(2i)
C '@ - ©F @ o )

Zg ~ Pu(zu) 2; ~ pi(2i) 2k ~ Pk (2K)




Generative networks with error bars

Ensemble of networks

Bayesian generative network

02

— data: event sample [points in 2D space] BN N !H output
\o
learn phase space density “ N 5 =130,
Gaus§|an in Iat_ent space ,‘,,. o] —— [7] .% o) i,
mapping bijective A

Ot = NZ((:»,) ()l

sample from latent space
— Bayesian version

allow weight distributions
learn uncertainty map

ey




Generative networks with error bars

Bayesian generative network

— data: event sample [points in 2D space]

learn phase space density

Gaussian in latent space

mapping bijective

sample from latent space
— Bayesian version

allow weight distributions

learn uncertainty map

0.2 0.4 0.6 0.8

— 2D wedge ramp «

a(y2 2
p(x) = ax+b=ax+ M 0071 —— Fit: Aa = 0.09, Ay = 0.01

— Opa

Xmax — Xmi
2 min 0.06{ B +d0p

0.05

(2p)" = (- ;)2 (Bay’

+ (1 + g>2 (Axma)? + (1 - 2)2 (Axrin)?

0.04

Absolute Uncertainty

0.03

explaining minimum in opreq(X) 002

0.2 0.4 0.6 0.8




Generative networks with error bars

Bayesian generative network

— data: event sample [points in 2D space]

learn phase space density

Gaussian in latent space

mapping bijective

sample from latent space
— Bayesian version

allow weight distributions

learn uncertainty map 3 ; 5 8

— Gaussianring [u=4,w=1) 1220
0 2 2 N — Rt Ap=008  — oy
G(r) w—=r 2 (r - H) 2 3.0 B 60y
Ap = ’7 | (Ap)" +|=—5— — —| (Aw) %
r w w w gz) /
laining dip i E20 //,,///

explaining dip in opreq(X) : 2y, /

= Generative networks just (non-parametric) fits ]
1.0

=

=
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Precision generator

Challenging an INN-generator

- ZMH —+ {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]
— training on 5.4M Z+jets events

truth defined as high-stats training data
goal: 1% precision relative to truth

7 + 1 jet exclusive

—— Truth
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2250 el il
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Precision generator

Challenging an INN-generator

- Z/,L[.L —+ {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]
— training on 5.4M Z+jets events
truth defined as high-stats training data
goal: 1% precision relative to truth
— holes in geometric distance ARj;  [QFT problem 3]
— magic transformation
monotouous function with weights [opposite of importance sampling]

(1-jet) _
wi =1 10000
(2-jet) _ o true
w = f(A:“-l'/1 ’12) = 7500 distribution
W — (AR, VAR, (AR, ) :
k2 J2 13 i3 S 5000
with g Treighted
0 for AR < R_ © 2500 distribution
AR — R_
f(AR) =4 22" "= torAR € [R_, Ryl =1
Ry — R_ <05 _/—
1 for AR > Ry §0'0
0.0 05 1.0 15 2.0

AR,

12




Precision generator

Challenging an INN-generator
- ZMH —+ {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]
— training on 5.4M Z+jets events
truth defined as high-stats training data
goal: 1% precision relative to truth
— holes in geometric distance ARj;  [QFT problem 3]

— magic transformation
monotouous function with weights [opposite of importance sampling]

wtde) _ 4
(2-jet) _ o
w - I(ARH *12) 04 7 + 3 jet exclusive
(3-jet) _ o o o =
v N f(ARh ’Iz)f(ARjz 13 )f(ARh ’13) .g —— Truth
with 202 — INN
0 for AR < R_ é —— Train
AR - R_
f(AR)={ =——— forAR € [R_,R,]
Ry — R_
1 for AR > Ry
= Per-cent precision possible




Control & precision

Additional discriminator: training vs generated
- inpUt {pTﬂ% ?, M7 M,U«I.L:AR}
output D =0G),1T — 0.5
— decent generator training D ~ 0.5
— additional event weight
_ b

wp(X) = 3 o)

= 1. control and 2. reweight

7 + 1 jet exclusive

—— Reweighted

M, [GeV]



Control & precision

Additional discriminator: training vs generated
—input  {pr,n, ¢, M, M,..., AR}
output D =0G),1T — 0.5
— decent generator training D ~ 0.5
— additional event weight
D(x)
1 - D(x)

wp(x) =

= 1. control and 2. reweight

Joint DiscFlow training  GAN-inspired] T
— GAN-like training unstable mashequibiumsy "] T M
— coupling through weights Zoos

L i wo(x)* log %)
DiscFlow = — D\ AXi og
IsCHlow — ! Pref(xi) 2%08
5 =05
~ _/dx Pt (X) log P(x) =00
P (x) Pret(X)




Control & precision

Additional discriminator: training vs generated
- inpUt {pT77I7 é, M7 MﬂuaAR}
output D =0G),1T — 0.5
— decent generator training D =~ 0.5
— additional event weight

wp(x) = 1_D(7;ZX)

= 1. control and 2. reweight

Joint DiscFlow training (@AN-inspired]

— GAN:-like training unstable  [Nash equilibrium?]
— coupling through weights

Z + 1 jet exclusive

g 102 — Truth
= —— DiscFlow
B <
P(xi) 210
Lpi = — wp (X)) | g
DiscFlow ; p(Xi)" log Prot(xi) 2
Par 00 |, PUx e 7R
z—/dx ref()Iog (x) PR TR
Pa(x) Pref(x) L':r

= Controlled unweighted events

50 75 100 125 150
P [GeV]




Control & precision

Additional discriminator: training vs generated
- inpUt {pT77I7 é, M7 M/L/LaAR}
output D =0G),1T — 0.5
— decent generator training D =~ 0.5
— additional event weight
_ b
wp(x) = 1—7D(X)

= 1. control and 2. reweight

Joint DiscFlow training (@AN-inspired]

— GAN:-like training unstable  [Nash equilibrium?]

7 + 3 jet exclusive

— coupling through weights - 03 —— Reweighted
P —— DiscFlow
B E
LoiscFiow = — »_, Wp(X))* log P(x) 01
i Pret(X;) -

i=1
pott(y P 0.0
z—/dx o (0 PO

Pa(x) CPu(x) =02 |rH
i isi Q\TIO’O ISR ITLIEIITLY H?THZ:HI”””H”H
= Reweighted precision events S ottt Rt T T
0 2 4 6 8




Uncertainties

7 + 1 jet exclusive

Bayesian INN generator

z 1072

— uncertainty over phase space Té o e

— training statistics leading source 2

= Training-related error bars 10
F£1.25 e
2151.00 +2— S £
£ 10| DR
< 10- LA TR TA TTTT TR TSI
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Uncertainties

Bayesian INN generator
— uncertainty over phase space
— training statistics leading source
= Training-related error bars

Theory uncertainties

— BNN regression/classification:
systematics from data augmentation

— systematic uncertainties in tails

2
pva1 —15 GeV
=1 Ty — =7
welra < 100 Gev

-
<,

— augment training data [a=o0...3q

— train conditionally on smeared a
error bar from sampling a

=- Systematic/theory error bars

normalized

10°

without conditioning

20 40 60 80
Pr.[GeV]



Uncertainties

Bayesian INN generator
— uncertainty over phase space
— training statistics leading source
= Training-related error bars

Theory uncertainties

— BNN regression/classification:
systematics from data augmentation

— systematic uncertainties in tails

2
pva1 —15 GeV
=1 Ty — =7
weita < 100 Gev

— augment training data [a=o0...3q

— train conditionally on smeared a
error bar from sampling a

=- Systematic/theory error bars

Z + 1 jet exclusive

—— Reweighted

L\Tl[l):: Ti ! h"‘v-_-Tnj“m u‘ﬁ‘:ﬁ i i f ! .I
B i A
s éé JLI i oY

0 50 100 150
pry [GeV]



Inverting event simulations

Inverting LHC simulations

— unfolding QCD-shower to hard parton standard et algorithm]
unfolding detector common
unfolding top-quark decays useful
matrix element method complete unfolding

= systematic approach through generative network

forward

scattering decay QcD shower i detectors

<
<

inverse




Conditional GAN

Goal: invert standard simulation
— detector simulation typical Monte Carlo, random-number-driven
— inversion possible, in principle  put entangled convolutions]

— generative network task

DELPHES GAN
partons — — ~ detector = partons

Conditional generative networks

— random numbers to parton level
hadron level as condition
training on matched event pairs

— FCGAN the first example
D
O
@)




Conditional INN

Statistical inversion
— task: construct parton-level pdf for (single) detector-level event
1- generative network: parton-level events from {r}
2- maximum likelihood loss
L=- (logp(alxpvxu»xp,xd
= — (log p(Xa|Xp, 0) + log p(6]xp) — log P(Xqg|Xp))
— log p(9) 4+ const.

XpXg

= — (log (x5, 0)),, .,

09(Xp, Xqg)
OxXp

> ~ log p(6)

~ - <logp(g(xp, x4)) + log
Xp,Xg

Condition

3(r, f(za))
cINN
9(zp, f(za))




Conditional INN

Statistical inversion
— task: construct parton-level pdf for (single) detector-level event
1- generative network: parton-level events from {r}
2- maximum likelihood loss -

This time pp — ZW — (¢£) (jj) "

— distribution: single pair (xp, X4), 3200 unfoldings

single detector event
3200 unfoldings
FCGAN
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Conditional INN

Statistical inversion
— task: construct parton-level pdf for (single) detector-level event
1- generative network: parton-level events from {r}

2- maximum likelihood loss o
. N z o

This time pp — ZW — (££4) (jj)
w i

— distribution: single pair (xp, X4), 3200 unfoldings
— calibration: 1500 pairs (Xp, Xg), 60 unfoldings, truth in which quantile? i
= Conditional INNs solve inverse problems statistically

single detector event

B i 1.0
3200 unfoldings
14 FCGAN
el
12 4 0.8
10 = E
g ES £ 0.6
£08 = 5
z z
206 £04
5} =
£04 =
02
0.2
0.0 0.0
10 15 20 25 30 35 40 45 50 00 02 04 06 08 10
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Machine learning for LHC theory

Machine learning for the LHC

— Classification/regression standard

uncertainties?
symmetries?
experimental realities?
— GANSs the cool kid
generator producing best events
discriminator checking generator
limited in precision and uncertainty control
— INNs my work horse
flow networks for control and precision
Bayesian for error bars
condition for inversion

— All results from 3 years, clearly a field for young people!
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