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Surrogate loop amplitudes

Problem in precision simulation  (ramon’s talk; Danziger etal]
- NLO and NNLO with one-loop and two-loop amplitudes
- computed in terms of poly-logarithms, etc, not fast
- per-mille precision the key requirement
- control of prediction critical
— Typical for LHC, atypical for ML

Surrogate amplitudes

- benchmark dataset pp — vvg(9) iAyiett-Builock, Badger, Moodie]
- simple regression task [Bishara & Montull, Badger & Buliock]
- exact, nonstochastic training data
- wide range of amplitude values  soft-coliinear, on-shell]
- physics-informed architectures succcessful  [maitre & Truong]
- naive MSE-trained regression pointless

— ML-solution for precision training?




Likelihood loss from Bayesian networks

Bayesian networks [LHC regression, classification, generation since 2019]

- variational approximation (tink g(w) as Gaussian with mean and width]
PA) = [ du p(Ale) pw|T) ~ [ dw p(A) a(w)
- similarity through KL-divergence well-defined through ELBO]
KL[g(w), p(w|T)] = KL[g(w), p(w)] — /dw q(w) log p(T|w) + log p(T)
- loss combining likelihood p( T|w) and prior p(w)
L=~ [ dw gle) togp(Tlw) + KLlg(w). p(w)]



Likelihood loss from Bayesian networks
Bayesian networks  [LHC regression, classification, generation since 2019]
- variational approximation (ink g(w) as Gaussian with mean and widt]
PA) = [ d plAw) p(wIT) = [ d plAW) g(e)
- loss combining likelihood p( T|w) and prior p(w)

L=~ [ dwq(w) logp(Tlw) + KLig(w). Pw)]

Uncertainties
- expectation value using trained network g(w)

= [dwa@Aw) wih  Aw) = [ dAapA)
- output variance
oty = [ dAds (A= (A)? p(ALs) 4(e) = oF + o
- ‘statistical’ contribution vanishing for g(w) — §(w — wp)  [predictive unc, from w-sampling]
o = [ dw o) [Aw) - (&)
- ‘systematic’ contribution in w—space [stochasticity or model]

o = [ e a() [R(w) = Aw)] = [ d a(w) onu()?




Likelihood loss from Bayesian networks

Bayesian networks  [LHC regression, classification, generation since 2019]
- variational approximation (tink g(w) as Gaussian with mean and width]
PA) = [ du p(Ale) pw|T) ~ [ dw p(A) a(w)
- loss combining likelihood p( T|w) and prior p(w)
L=~ [ dw gle) togp(Tle) + KLlq(w). p(w)]

Likelihood loss
- focus here: network output in weight and phase space

BNN : x, w — ( Alw) )

Tsyst(w)

- Gaussian likelihood [heterostedastic loss]

L /dw () Z ‘Zj(w) — Alruth

J
points j

2

W + log ogyst,j(w) | + KL[g(w), p(w)]

— Likelihood loss with extracted uncertainty




Boosted network training

Self-consistency improvement  [Badger, Butter, Luchmann, Pitz, TP]

check weight-dependent pull _
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after boosting amplitudes with large pull
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points j
more improvement on training data than test data — controlled overtraining
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Boosted network training

Self-consistency improvement  [Badger, Butter, Luchmann, Pitz, TP]

- check weight-dependent pull _
g p p Aj(w) _ A}ruth

Umodel,j(w)

- after boosting amplitudes with large pull

Looost = /dw q(sw) Z nj X

points j 20 model ,j("")2

— 2
‘Aj(w) _ A}rulh
+ log o'model,j(w)

- more improvement on training data than test data — controlled overtraining
- but not precise enough for largest amplitudes... [a = (A - /4
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More boosting

Process-dependent improvement

- boosting amplitudes by o

Lpoost = /dw q(sw) Z nj X

points / 20 model ,j("-’)2

—_ 2
|Aj(w) _ A}rmh
+ log Umodel,/(w)

- even more controlled overtraining
- stable performance for 90k — 9k training amplitudes
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More boosting

Process-dependent improvement

- boosting amplitudes by o

Lpoost = /dw q(sw) Z nj X

points / 20 model ,j("-’)2

—_ 2
|A,-(w) _ A}rmh
+ log Umodel,/(w)

- even more controlled overtraining
- stable performance for 90k — 9k training amplitudes
- looking at kinematic distributions

— From fit to interpolation
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One more jet

From Y9 10 Y99  [Luchmann, Victor Breso]

- Bk — 600k parameters, 90k training amplitudes...
- depressing results, problem with scaling?
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One more jet

From Y9 10 Y99  [Luchmann, Victor Breso]
- Bk — 600k parameters, 90k training amplitudes...
- depressing results, problem with scaling?

- check DeepSets preprocessing as a start...
...for more ideas, let’s talk over coffee...
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Bayesian networks

Initially developed for inference they work for...

..regression with error bars

...classification with error bars

...generation with error bars

...turning fit-networks into interpolation-networks
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Abstract
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