Tilman Plehn

Motivatio

A41 1

MI -even

Machine Learning for LHC Simulations

Tilman Plehn

Universität Heidelberg

Snowmass, July 2022

Tilman Plehn

Modern LHC physics

Motivation

.....

. . .

Classic motivation

- · dark matter
- · baryogenesis
- · Higgs VEV

Tilman Plehn

Motivation

Classic motivation

- dark matter
 - baryogenesis

Modern LHC physics

· Higgs VEV

LHC physics

- · fundamental questions
- · huge data set
- · complete uncertainty control
- · first-principle precision simulations

Tilman Plehn

Motivation

Classic motivation

- dark matter
- baryogenesis

Modern LHC physics

· Higgs VEV

LHC physics

- · fundamental questions
- · huge data set
- · complete uncertainty control
- · first-principle precision simulations

Time to kiss good-bye

- · discover in rates
- · unveil little black holes
- find supersymmetry
- · travel extra dimensions
- measure couplings

Modern LHC physics

Motivation

Classic motivation

- dark matter
 - baryogenesis
- · Higgs VEV

LHC physics

- · fundamental questions
- · huge data set
- complete uncertainty control
- · first-principle precision simulations

Time to kiss good-bye

- discover in rates
- unveil little black holes
- find supersymmetry
- travel extra dimensions
- · measure couplings

First-principle simulations

- · start with Lagrangian
- · calculate scattering using QFT
- · simulate events
- simulate detectors
- → LHC events in virtual worlds

Modern LHC physics

Motivation

Classic motivation

- dark matter
 - baryogenesis
 - Higgs VEV

LHC physics

- · fundamental questions
- · huge data set
- complete uncertainty control
- · first-principle precision simulations

Time to kiss good-bye

- discover in rates
- unveil little black holes
- find supersymmetry
- travel extra dimensions
- measure couplings

First-principle simulations

- · start with Lagrangian
- · calculate scattering using QFT
- simulate events
- simulate detectors
- → LHC events in virtual worlds

Dual goal of HL-LHC

- avoid modeling
- · compare simulations and data
- · analyze data systematically [SMEFT]
- → understand LHC data completely
- → find new particles

Tilman Plehn

ML basics

Ask a data scientist

LHC questions

 \cdot How to get from 3 \cdot 10 15 Bytes/s to 3 \cdot 10 8 Bytes/s?

Tilman Plehn

iviolivatioi

ML basics

Ask a data scientist

LHC questions

 \cdot How to get from 3 \cdot 10 15 Bytes/s to 3 \cdot 10 8 Bytes/s? Data compression $_{[Netflix]}$

Tilman Plehn

ML basics

. 41

Ask a data scientist

- \cdot How to get from 3 \cdot 10 15 Bytes/s to 3 \cdot 10 8 Bytes/s? Data compression $_{[\text{Netflix}]}$
- · How to analyze events with 4-vectors?

Tilman Plehn

ML basics

Ask a data scientist

- \cdot How to get from 3 \cdot 10 15 Bytes/s to 3 \cdot 10 8 Bytes/s? Data compression $_{[\text{Netflix}]}$
- How to analyze events with 4-vectors?
 Graph neural networks [Car cameras]

Tilman Plehn

Motivation

ML basics

Ask a data scientist

- How to get from 3 · 10¹⁵ Bytes/s to 3 · 10⁸ Bytes/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors?
 Graph neural networks [Car cameras]
- · How to incorporate symmetries?

Tilman Plehn

Motivation

ML basics

Ask a data scientist

- How to get from 3 · 10¹⁵ Bytes/s to 3 · 10⁸ Bytes/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors?
 Graph neural networks [Car cameras]
- How to incorporate symmetries?
 Contrastive learning [Google, Max Welling]

Tilman Plehn

Motivation

ML basics

Ask a data scientist

- How to get from 3 · 10¹⁵ Bytes/s to 3 · 10⁸ Bytes/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors?
 Graph neural networks [Car cameras]
- How to incorporate symmetries?
 Contrastive learning [Google, Max Welling]
- · How to combine tracker and calorimeter?

Tilman Plehn

/otivation

ML basics

Ask a data scientist

- \cdot How to get from 3 \cdot 10 15 Bytes/s to 3 \cdot 10 8 Bytes/s? Data compression $_{[\text{Netflix}]}$
- How to analyze events with 4-vectors?
 Graph neural networks [Car cameras]
- How to incorporate symmetries?
 Contrastive learning [Google, Max Welling]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]

Tilman Plehn

Antivotion

ML basics

Ask a data scientist

- \cdot How to get from 3 \cdot 10 15 Bytes/s to 3 \cdot 10 8 Bytes/s? Data compression $_{[\text{Netflix}]}$
- How to analyze events with 4-vectors?

 Graph neural networks [Car cameras]
- How to incorporate symmetries?
 Contrastive learning [Google, Max Welling]
- · How to combine tracker and calorimeter? Super-resolution [Gaming]
- · How to remove pile-up?

Tilman Plehn

Motivation

ML basics

LHC questions

Ask a data scientist

- \cdot How to get from 3 \cdot 10 15 Bytes/s to 3 \cdot 10 8 Bytes/s? Data compression $_{[\text{Netflix}]}$
- · How to analyze events with 4-vectors?

 Graph neural networks [Car cameras]
- How to incorporate symmetries?

 Contrastive learning [Google, Max Welling]
 - How to combine tracker and calorimeter?
 Super-resolution [Gaming]
 - How to remove pile-up?
 Data denoising [Images]

Tilman Plehn

A main amail mana

ML basics

Ask a data scientist

- How to get from 3 · 10¹⁵ Bytes/s to 3 · 10⁸ Bytes/s?
 Data compression [Netflix]
- · How to analyze events with 4-vectors?

 Graph neural networks [Car cameras]
- How to incorporate symmetries?
 Contrastive learning [Google, Max Welling]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- How to remove pile-up?
 Data denoising [Images]
- · How to look for BSM physics?

Tilman Plehn

ML basics

Ask a data scientist

- · How to get from 3 · 10¹⁵ Bytes/s to 3 · 10⁸ Bytes/s? Data compression [Netflix]
- · How to analyze events with 4-vectors? Graph neural networks [Car cameras]
- · How to incorporate symmetries? Contrastive learning [Google, Max Welling]
 - · How to combine tracker and calorimeter? Super-resolution [Gaming]
 - How to remove pile-up? Data denoising [Images]
 - · How to look for BSM physics? Autoencoders [SAP]

Motivation
ML basics

LHC questions

Ask a data scientist

How to get from 3 · 10¹⁵ Bytes/s to 3 · 10⁸ Bytes/s?
 Data compression [Netflix]

How to analyze events with 4-vectors?

Graph neural networks [Car cameras]

How to incorporate symmetries?
 Contrastive learning [Google, Max Welling]

How to combine tracker and calorimeter?
 Super-resolution [Gaming]

How to remove pile-up?
 Data denoising [Images]

· How to look for BSM physics?

Autoencoders [SAP]

. .

More than off-the-shelf solutions?

Tilman Plehn

ML basics

Shortest ML-intro ever

Turning fits into science

- · approximate f(x) using $f_{\theta}(x)$
- · no parametrization, just many θ
- · minimize loss to find best θ

Tilman Plehn

ML basics

Shortest ML-intro ever

Turning fits into science

- · approximate f(x) using $f_{\theta}(x)$
- $\cdot\,$ no parametrization, just many θ
- \cdot minimize loss to find best θ

Network types

- · regression $x o f_{\theta}(x)$
- · classification $x \rightarrow f_{\theta}(x) \in [0, 1]$
- · generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r)$
- · conditional generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r|x)$
- ightarrow One tool, many applications

Tilman Plehn

ML basics

Shortest ML-intro ever

Turning fits into science

- · approximate f(x) using $f_{\theta}(x)$
- · no parametrization, just many θ
- · minimize loss to find best θ

Network types

- · regression $x \to f_{\theta}(x)$
- · classification $x \to f_{\theta}(x) \in [0, 1]$
- · generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r)$
- · conditional generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r|x)$
- → One tool, many applications

LHC-specific AI challenges

- vast datasets
- · precision
- uncertainties
- simulation-based inference
- → LHC-specific ML

Tilmon D

A - 41 - - 41

MI basic

ML-even

Event generation

ML-goals in event generation

- · general goals
 - 1- improve established tasks
 - 2- develop new tools for established tasks
 - 3- transform through new ideas
- LHC-specific goals
- 1- ML in established generators
- 2- end-to-end ML-generators
- 3- inverse simulation and inference
- → Make best out of HL-LHC

Contents 1 Introduction 2 Machine Learning in event generators 2.1 Phase space sampling 2.2 Scatterine Amplitudes 2.3 Loop integrals 2.4 Parton shower 2.5 Parton distribution functions 2.6 Fragmentation functions 3 End-to-end ML-generators 3.1 Fast generative networks 3.2 Control and precision 4 Inverse simulations and inference 16 4.1 Particle reconstruction 17 4.2 Detector unfolding 17 4.3 Unfolding to parton level 19 4.4 MadMiner 4.5 Matrix element method 22 5 Synergies, transparency and reproducibility 23 6 Outlook References

Asja Butter². Timen Pink². Steffen Schummer? (Editors), Sisten Badge², Sanda Cami². Yigh Centre², Primaceo Armando Di Bello², and Sisten Badge², Sanda Cami². Yigh Centre², Primaceo Armando Di Bello², and Sisten Badge², Sanda Sisten Sisten

Ramon Winterhalder28, and Jure Zupan19

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory precidents and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and influsation-based inflerence, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and praction of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass)

Tilman Plehn

WOUVALIO

ML basics
ML-events

ML in Established Generators

HL-LHC generators

- · 25 times Run 2 dataset
- · increased precision
- · increased speed

T1.... DI

Motivation

ML-events

ML in Established Generators

HL-LHC generators

- · 25 times Run 2 dataset
- · increased precision
- · increased speed
- → Improvement, no revolution

ML-Pythia/Madgraph/Sherpa/Herwig

- · phase space sampling
- · fast loop amplitudes
- · fast loop integrals
- · optimal multi-channeling
- · data-driven parton shower
- · precision parton densities
- · precision hadronization/fragmentation
- · fast detector simulation ...

Tilman Plehn

ML basics
ML-events

End-to-end ML-Generators

ML-Generators

- · fast events at parton and reco level
- · comparison VAE-GAN-NF-INN
- · amplification through implicit bias
- · control of learned features
- · precision of learned density
- $\rightarrow \ \text{Generative network benchmark}$

.....

Motivation

ML-events

End-to-end ML-Generators

ML-Generators

- · fast events at parton and reco level
- · comparison VAE-GAN-NF-INN
- · amplification through implicit bias
- · control of learned features
- · precision of learned density
- → Generative network benchmark

Challenges and applications

- · shipping large datasets
- · combined training on data and simulations
- · subtraction/unweighting of event samples
- · step towards detector simulations
- · step towards inverted simulations
- → Trigger of new ideas?

Tilman Plehn

ML-events

Inverse Simulation and Inference

Inference

- · particle reconstruction
- · ML-particle flow
- · likelihood/score extraction
- · enhanced bump hunt
- · symbolic regression
- → Playground for ML-ideas

Inverse Simulation and Inference

A mail constru

ML-events

Motivation

nortiala racanatrur

Inference

particle reconstruction

· ML-particle flow

· likelihood/score extraction

 $\cdot \ \ \text{enhanced bump hunt}$

· symbolic regression

 $\rightarrow \ \, \text{Playground for ML-ideas}$

Inverted simulation

- · detector unfolding
- · unfolding to parton level
- · matrix element method
- → Inference at optimal simulation stage

Tilman Plehn

. . . .

ML basics
ML-events

Outlook

Short ML-story [also see Claudius Krause's talk]

- · just a fit, but much better
- · transforming all numerical science
- · LHC physics unique in many ways
- · LHC event generation obvious case
- · excitement and progress everywhere in ML
- · check out ML4Jets at Rutgers in November
- $\rightarrow\,$ hep-ml key part of our future

