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First-principle simulations

- start with Lagrangian

- calculate scattering using QF T
- simulate events

- simulate detectors

— LHC events in virtual worlds

Dual goal of HL-LHC

- avoid modeling
- compare simulations and data
- analyze data systematically (smerT)

— understand LHC data completely
— find new particles

- travel extra dimensions
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More than off-the-shelf solutions?
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LHC-specific Al challenges

- vast datasets

- precision

- uncertainties

- simulation-based inference
— LHC-specific ML




Event generation

ML-goals in event generation

- general goals Machine Learning and LHC Event Generation
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ML-Pythia/Madgraph/Sherpa/Herwig
- phase space sampling
- fast loop amplitudes
- fast loop integrals
- optimal multi-channeling
- data-driven parton shower
- precision parton densities
- precision hadronization/fragmentation
- fast detector simulation ...

forward

scattering decay QcD

shower
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detectors
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ML-Generators
- fast events at parton and reco level
- comparison VAE-GAN-NF-INN
- amplification through implicit bias
- control of learned features
- precision of learned density
— Generative network benchmark

Challenges and applications
- shipping large datasets
- combined training on data and simulations
- subtraction/unweighting of event samples
- step towards detector simulations
- step towards inverted simulations
— Trigger of new ideas?

forward

scattering decay Qcp shower detectors
et I B G 2 I ) g g 935

o




Inverse Simulation and Inference

Inference
- particle reconstruction
- ML-particle flow
- likelihood/score extraction
- enhanced bump hunt
- symbolic regression
— Playground for ML-ideas




Inverse Simulation and Inference

Inference
- particle reconstruction
- ML-particle flow
- likelihood/score extraction
- enhanced bump hunt
- symbolic regression
— Playground for ML-ideas

Inverted simulation
- detector unfolding
- unfolding to parton level
- matrix element method
— Inference at optimal simulation stage

forward
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Outlook

Short ML-story  faiso see Claudius Krause's talk]

- just a fit, but much better

- transforming all numerical science

- LHC physics unique in many ways

- LHC event generation obvious case

- excitement and progress everywhere in ML

- check out ML4Jets at Rutgers in November
— hep-ml key part of our future
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