Ideas Part 1 Tilman Plehn Symmetries

Symmetries and anomalies

Tilman Plehn

Universität Heidelberg

Stuttgart 7/2022

Symmetries

Symmetries and invariances

Symmetries in particle physics

· analyze & learn symmetries

Ideas Part 1 Tilman Plehn Symmetries

Symmetries Anomalies

Symmetries and invariances

Symmetries in particle physics

- · analyze & learn symmetries
- · learn symmetries
- · equivariant network

$$\begin{aligned} &f_{\theta}(S(x)) = S(f_{\theta}(x)) \\ \text{or} \quad &f_{\theta}(x_1) = f_{\theta}(x_2) \implies f_{\theta}(S(x_1)) = S(f_{\theta}(x_1)) = S(f_{\theta}(x_2)) = f_{\theta}(S(x_2)) \end{aligned}$$

· invariant network

$$f_{\theta}(S(x)) = f_{\theta}(x)$$

 \rightarrow Matter of taste, style, sophistication

Symmetries and invariances

Symmetries in particle physics

- · analyze & learn symmetries
- · learn symmetries
- · equivariant network

$$\begin{aligned} &f_{\theta}(S(x)) = S(f_{\theta}(x)) \\ \text{or} \quad &f_{\theta}(x_1) = f_{\theta}(x_2) \implies f_{\theta}(S(x_1)) = S(f_{\theta}(x_1)) = S(f_{\theta}(x_2)) = f_{\theta}(S(x_2)) \end{aligned}$$

· invariant network

$$f_{\theta}(S(x)) = f_{\theta}(x)$$

 \rightarrow Matter of taste, style, sophistication

Invariant classifiers

- Lorentz symmetries, permutation symmetries, theory invariances
- · symmetry-related jets in same latent point
- $\cdot\,$ improved training, resilience, anomaly searches
- \rightarrow Put latent space to use

Symmetries Anomalies

Contrastive learning

Self-supervised JetCLR

- original dataset {x_i}
 symmetry-augmented dataset {x'_i}
- · 'positive' pairs $\{(x_i, x_i')\}$ 'negative' pairs $\{(x_i, x_j)\} \cup \{(x_i, x_i')\}$
- · compact latent sphere with angular separation

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_j|} \in [-1, 1],$$

training

positive pairs aligned $s(z_i, z'_i) \rightarrow 1$ negative pairs uniformly distributed

$$\begin{split} \mathcal{L}_{\mathsf{CLR}} &= -\sum_{i \in \mathsf{batch}} \frac{s(z_i, z_i')}{\tau} + \sum_{i \in \mathsf{batch}} \log \sum_{j \neq i \in \mathsf{batch}} \left[e^{s(z_i, z_j')/\tau} + e^{s(z_i, z_j')/\tau} \right] \\ &= -\sum_{i \in \mathsf{batch}} \log \frac{e^{s(z_i, z_j')/\tau}}{\sum_{j \neq i \in \mathsf{batch}} \left[e^{s(z_i, z_j)/\tau} + e^{s(z_i, z_j')/\tau} \right]} \,, \end{split}$$

Symmetries Anomalies

Contrastive learning

Self-supervised JetCLR

- original dataset {x_i}
 symmetry-augmented dataset {x'_i}
- · 'positive' pairs $\{(x_i, x_i')\}$ 'negative' pairs $\{(x_i, x_j)\} \cup \{(x_i, x_j')\}$
- $\cdot \,$ compact latent sphere with angular separation

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_j|} \in [-1, 1]$$

Particle-physics application

· jet symmetries rotation, translation, permutation

Symmetries Anomalies

Contrastive learning

Self-supervised JetCLR

- original dataset {x_i}
 symmetry-augmented dataset {x'_i}
- 'positive' pairs $\{(x_i, x_i')\}$ 'negative' pairs $\{(x_i, x_j)\} \cup \{(x_i, x_i')\}$
- · compact latent sphere with angular separation

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_j|} \in [-1, 1],$$

Particle-physics application

- · jet symmetries rotation, translation, permutation
- · jet augmentations collinear merging, soft noise
- · linear classifier test [top vs QCD]

augmentation	$ \epsilon_b^{-1}(\epsilon_s = 0.5)$	AUC
none	15	0.905
translations	19	0.916
rotations	21	0.930
soft+collinear	89	0.970
all combined (default)	181	0.980

Symmetries Anomalies

Contrastive learning

Self-supervised JetCLR

- original dataset {x_i}
 symmetry-augmented dataset {x'_i}
- · 'positive' pairs $\{(x_i, x_i')\}$ 'negative' pairs $\{(x_i, x_j)\} \cup \{(x_i, x_j')\}$
- $\cdot \,$ compact latent sphere with angular separation

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_j|} \in [-1, 1]$$

Particle-physics application

- · jet symmetries rotation, translation, permutation
- $\cdot\,$ jet augmentations $\,$ collinear merging, soft noise
- · linear classifier test [top vs QCD]
- · benchmarked with other methods
- $\rightarrow\,$ Symmetries putting theory into ML-tools

Symmetries Anomalies

Autoencoders

Unsupervised classification

- train on background only extract unknown signal from reconstruction error
- $\cdot \,$ reconstruct QCD jets $\, \rightarrow \,$ top jets hard to describe
- $\cdot \;$ reconstruct top jets \; \rightarrow \; QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

Symmetries Anomalies

Autoencoders

Unsupervised classification

- train on background only extract unknown signal from reconstruction error
- $\cdot \;$ reconstruct QCD jets $\; \rightarrow \;$ top jets hard to describe
- $\cdot \;$ reconstruct top jets \; \rightarrow \; QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

Moving to latent space

- · anomaly score from latent space?
- $\begin{array}{rrr} \cdot \mbox{ VAE } \rightarrow \mbox{ does not work } \\ \mbox{ GMVAE } \rightarrow \mbox{ does not work } \\ \mbox{ Dirichlet VAE } \rightarrow \mbox{ works okay } \\ \mbox{ density estimation } \rightarrow \mbox{ does not work } \end{array}$

Anomalies

Normalized autoencoder

Energy-based models

- · goal penalize features away from background
- · train on normalized probability
- · Boltzmann-distribution with $x \rightarrow E_{\theta} = \mathsf{MSE}$

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}} \quad \text{with} \quad Z_{\theta} = \int_{x} dx e^{-E_{\theta}(x)}$$
$$L = -\langle \log p_{\theta}(x) \rangle_{p_{\text{data}}} = \langle E_{\theta}(x) + \log Z_{\theta} \rangle_{p_{\text{data}}}$$

 $\rightarrow~\mbox{Small}$ MSE for data, large MSE for model

Anomalies

Normalized autoencoder

Energy-based models

- · goal penalize features away from background
- · train on normalized probability
- · Boltzmann-distribution with $x \rightarrow E_{\theta} = \mathsf{MSE}$

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}} \quad \text{with} \quad Z_{\theta} = \int_{x} dx e^{-E_{\theta}(x)}$$
$$L = -\langle \log p_{\theta}(x) \rangle_{p_{\text{data}}} = \langle E_{\theta}(x) + \log Z_{\theta} \rangle_{p_{\text{data}}}$$

 $\cdot\,$ gradient of loss with normalization term

$$\begin{aligned} -\nabla_{\theta} \log p_{\theta}(x) &= \nabla_{\theta} E_{\theta}(x) + \nabla_{\theta} \log Z_{\theta} \\ &= \nabla_{\theta} E_{\theta}(x) + \frac{1}{Z_{\theta}} \nabla_{\theta} \int_{x} dx e^{-E_{\theta}(x)} \\ &= \nabla_{\theta} E_{\theta}(x) - \int_{x} dx \frac{e^{-E_{\theta}(x)}}{Z_{\theta}} \nabla_{\theta} E_{\theta}(x) \\ &= \nabla_{\theta} E_{\theta}(x) - \left\langle \nabla_{\theta} E_{\theta}(x) \right\rangle_{p_{\theta}} \end{aligned}$$

· background metric for expectation value

$$\left\langle -\nabla_{\theta} \log p_{\theta}(x) \right\rangle_{p_{\text{data}}} = \left\langle \nabla_{\theta} E_{\theta}(x) \right\rangle_{p_{\text{data}}} - \left\langle \nabla_{\theta} E_{\theta}(x) \right\rangle_{p_{\theta}}$$

- $\rightarrow\,$ Small MSE for data, large MSE for model

Anomalies

Normalized autoencoder

Energy-based models

- · goal penalize features away from background
- · train on normalized probability
- · Boltzmann-distribution with $x \rightarrow E_{\theta} = \mathsf{MSE}$

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}} \quad \text{with} \quad Z_{\theta} = \int_{x} dx e^{-E_{\theta}(x)}$$
$$L = -\langle \log p_{\theta}(x) \rangle_{p_{\text{data}}} = \langle E_{\theta}(x) + \log Z_{\theta} \rangle_{p_{\text{data}}}$$

 $\rightarrow\,$ Small MSE for data, large MSE for model

Energy-based autoencoder

- still need to compute Z_{θ} integration over phase space *x*
- · (Langevin) Markov Chain

$$x_{t+1} = x_t + \lambda_x \nabla_x \log p_{\theta}(x) + \sigma_x \epsilon_t$$
 with $\epsilon_t \sim \mathcal{N}_{0,1}$

- problem *x*-space high-dimensional and hard to model autoencoder sample in and around latent space [physics manifold]
- · MC abuse 100s of chains with 30 steps
- \rightarrow Autoencoder the perfect EBM

Symmetries Anomalies

NAE performance

Top vs QCD autoencoding

· regular autoencoder pre-training

Symmetries Anomalies

NAE performance

Top vs QCD autoencoding

· regular autoencoder pre-training

· normalized autoencoder training

Symmetries Anomalies

NAE performance

Top vs QCD autoencoding

- · regular autoencoder pre-training
- · normalized autoencoder training
- $\cdot\,$ MSE distributions for background and (unknown) signal

Symmetries Anomalies

NAE performance

Top vs QCD autoencoding

- · regular autoencoder pre-training
- · normalized autoencoder training
- $\cdot\,$ MSE distributions for background and (unknown) signal

- \rightarrow Performance optimization next
- \rightarrow Still simple autoencoder with better training

Anomalies

Outlook

ML and LHC

- · big and fast dataset
- $\cdot \,$ combined with precision simulations
- · advanced inference with focus on uncertainties
- · fundamental theory questions
- · rich symmetry structure

Specific architectures we covered

- · Bayesian regression and classification networks
- · self-supervision
- · autoencoders
- · Bayesian INNs
- · conditional INNs
- · symbolic regression

