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Modern LHC physics

Classic motivation First-principle simulations
- dark matter - start with Lagrangian
- baryogenesis - calculate scattering using QF T
- Higgs VEV - simulate events

- simulate detectors
LHC physics
- fundamental questions
- huge data set
- complete uncertainty control
- first-principle precision simulations

— LHC events in virtual worlds
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Modern LHC physics

Classic motivation
- dark matter
- baryogenesis
- Higgs VEV

LHC physics
- fundamental questions
- huge data set
- complete uncertainty control
- first-principle precision simulations

Traditional methods
- discover in rates
- unveil little black holes
- find supersymmetry
- travel extra dimensions
- measure couplings o

First-principle simulations
- start with Lagrangian
- calculate scattering using QF T
- simulate events
- simulate detectors
— LHC events in virtual worlds

New physics searches
- compare simulations and data
- analyze data systematically
- understand LHC dataset
- publish useable results
— With a little help from data science...
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LHC data

Data from ATLAS & CMS
- protons on protons at £ ~ 13000 x mp — relativistic kinematics
- crossing every 25 ns, 40 MHz, 1.6 MB per event — 1 PB/s

- frequency vs size 1om

—  ~3x10%s=30ns
3 x 108 m/s

— Big and fast data
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Data from ATLAS & CMS

- protons on protons at £ ~ 13000 x mp — relativistic kinematics
- crossing every 25 ns, 40 MHz, 1.6 MB per event — 1 PB/s

- frequency vs size

3 x 108 m/s

— Big and fast data

Triggering

- 10~ suppression physics-loss-less
- L1 hardware 40 MHz — 100 kHz

- L2/HL software — 3 kHz

- L3 software  — 200 Hz, 320 MB/s
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LHC data

Data from ATLAS & CMS

- protons on protons at £ ~ 13000 x mp — relativistic kinematics
- crossing every 25 ns, 40 MHz, 1.6 MB per event — 1 PB/s

- frequency vs size 10m

3 x 108 m/s

— Big and fast data

Triggering

- 10~ suppression physics-loss-less
- L1 hardware 40 MHz — 100 kHz
- L2/HL software — 3 kHz

- L3 software — 200 Hz, 320 MB/s

ML-questions

- identification of interesting events?
- identification unexpected events?
- data compression for analyses?
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Jets

Partons as QCD jets
- most interactions qg, 99 — 9q, 99
Opp—sjj X LR 10%fb x % ~ 10'° events

- quarks/gluon visible as jets
splittings described by QCD
hadronization and hadron decays in jets

- jets as decay products
67% W —jj 70%Z —j 60%H-—j 67%t—jj 60%T—j..
- new physics in ‘dark jets’
- typical process pp — ttH + jets — bjj bjj bb + jets
— Everywhere in LHC physics
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splittings described by QCD
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- jets as decay products
67% W —jj 70%Z—jj 60%H-—jj 67%t—jj 60%T—j..
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Dealing with jets

- 50-200 constituents per jet
40 pile-up events on top

- calorimeter + tracking = particle-flow
- jet algorithms returning parton 4-momentum
- sub-jet physics new for LHC




Jets

Partons as QCD jets
- most interactions qg, 99 — 9q, 99
Opp—sjj X LR 10%fb x % ~ 10'° events

- quarks/gluon visible as jets
splittings described by QCD
hadronization and hadron decays in jets

- jets as decay products
67% W —jj 70%Z —j 60%H-—j 67%t—jj 60%T—j..
- new physics in ‘dark jets’
- typical process pp — ttH + jets — bjj bjj bb + jets
— Everywhere in LHC physics

ML-questions
- fast particle/parton identification?
- data denoising against jet radiation and pileup?
- combination of calorimeter and tracking resolution?
- combination of low-level and high-level observables?




ML-tagging: nothing is ever new

LHC visionaries
- 1991: NN-based quark-gluon tagger

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD*, Carsten PETERSON ** and Thorsteinn ROGNVALDSSON ***
Department of Theoretical Physics, University of Lund, Solvegatan 144, S-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e” events with ~85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to siudy the so-called string
effect.

In addition, heavy quarks (b and c) in e*e™ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.




ML-tagging: nothing is ever new

LHC visionaries
- 1991: NN-based q

uark-gluon tagger

- 1994: jet-algorithm W/top-tagger

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LONNBLAD*, Carsten PETERSON ** and Thorsteinn ROGNVALDSSON ***
Department of Theoretical Physics, University of Lund, Solvegatan 144, S-22362 Lund, Sweden

Received 29 June 1990

A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal

functions using a gradient descen
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Searches for new particles using cone and cluster jet algorithms:

a comparative study

Michael H. Seymour

Department of Theoretical Physics, University of Lund, Sélvegatan 144, 5-22362 Lund, Sweden

Received 18 June 1993; in reviscd form 16 September 1993

Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
to reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
examples considered are the _semileptonic decays of
a heavy Higgs boson at_\/s=16TeV, and of top
quark-antiquark pairs at \/s= 1.8 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons [5], and a longitudinally-
invariant k,-clustering_algorithm for hadron-hadron
collisions was proposed [6]. This algorithm has
compared with the more commonly used cone algorithm
from the viewpoints of @ parton-shower Monte Carlo
program [6, 7], and a fixed-order matrix-clement calcu-
lation (8], and advantages of the cluster algorithm were
reported in both cases. This paper is concerned with
a comparison between the algorithms for the task of
reconstructing the hadronic decays of heavy particles,
which was also studied in a preliminary way in [9].

‘The only as-yet unobserved particles of the minimal
Standard Model are the top quark and Higes boson. The
search for, and study of, these particles are among the
most important soals of current and plansed hadron-



QCD jet representation

Jet constituents
- historically

only hard parton 4-momentum interesting
parton content from ‘tagging’
QCD tests from theory observables
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data-driven jet analyses
include as much data as possible

avoid intermediate high-level variables
calorimeter output as image

-100

100,

75
50 [
25
0| :.'

25 ] .
-50

-75

2 -15 -1 -05 0 05 1.0 15
n

Alotimeter E [GeV]

1000



QCD jet representation

Jet constituents
- historically

only hard parton 4-momentum interesting
parton content from ‘tagging’
QCD tests from theory observables
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data-driven jet analyses

include as much data as possible
avoid intermediate high-level variables
calorimeter output as image

— Deep learning = modern networks on low-level observables




QCD jet representation

Jet constituents
- historically

only hard parton 4-momentum interesting
parton content from ‘tagging’
QCD tests from theory observables

- ML-excitement phase [since 2015]

data-driven jet analyses

include as much data as possible
avoid intermediate high-level variables
calorimeter output as image

— Deep learning = modern networks on low-level observables

Convolutional network
- image recognition standard ML task
- top tagging on 2D jet images
- 40 x 40 bins with calorimeter resolution

Feature Feature Feature Feature

Inputs maps maps maps maps
1@40x40 8@39x39 8@38x38 8@18x18 8@17x17

Convolution  Convolution Convolution Convolution
4x4 kernel 4x4 kernel 4x4 kernel 4x4 kernel

Hidden
units
64

Hidden  Hidden
units. units
64

Outputs
2

AN

Flatten

Fully Fully Fi
connected connected

ully
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Physics representation

Networks with 4-vector input

- sparsely filled picture: graph CNN
- physics objects from calorimeter and tracker
- distance measure known from e&m

ML-jet algorithm — combination layer

- input 4-vectors ’;0,1 ’;o,e - kko,N
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Physics representation

Networks with 4-vector input

- sparsely filled picture: graph CNN

- physics objects from calorimeter and tracker

- distance measure known from e&m

ML-jet algorithm — combination layer

- input 4-vectors  (k,, ;)

. combining them  k, ; 8k, =k, C;
Invariants — Lorentz layer
- DNN on Lorentz scalars m?(k;)
ke k= pr(kj)

— Learn Minkowski metric

g =diag(0.9940.02,
—1.01£0.01, —1.0140.02, —0.99+0.02)

1/ False Positive Rate

10°

low pr calo
—— low pr PF
--- high pr calo
— high pr PF
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Meet the professionals

A brief history of achievement

2014/15: first jet image papers
2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work

— Jet classification understood and done

The Machine Learning Landscape of Top Taggers

G- Kasicerko (ed), T. Plen (ed)?, A Butter, K rr.mmm D. Debnath
M. Fairbai miske®, S A. Lister®,
facaluso®, . M. Metodiev®, L. Moore?, 1011, K. Nordstrém 219,
J. Pearkes Y. Rath', M. Rieger%, D. Shili, ) 2, and S. Vamn
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April 12, 2019

Abstract

Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
We find that they are extremely powerful and great fun.

Content.
[1__Introduction
2 Data set/

[3_ Taggers
3.1 Imaged-based taggers
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321 TopoDNN
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Meet the professionals

A brief history of achievement
2014/15: first jet image papers
2017: first (working) ML top tagger
ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work
— Jet classification understood and done
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Meet the professionals

A brief history of achievement
- 2014/15: first jet image papers
- 2017: first (working) ML top tagger
- ML4Jets 2017: What architecture works best?
- ML4Jets 2018: Lots of architectures work
— Jet classification understood and done

Path to LHC reality
- application in analyses?
- beyond top and QCD jets?
- uncertainties?
- resilience in experimental reality?
- beyond fully supervised learning?
- from jets to events?
- analyses only ML will allow us to do?
etc




State of the art [Huilin Qu, CMS]

THE NEED FOR A LARGE DATASET 220103957

https://github.com/jet-universe/

article_transformer/

JetClass: a new large-scale public jet dataset
100M jets for training: ~ two orders of magnitude larger than existing public datasets
10 classes: several unexplored scenarios, e.g., H->WW*>4q, H->WW™*>2vqq, etc. Simulated w/ MadGraph +

P N . . N . . hia + Delph
comprehensive information per particle: kinematics, particle ID, track displacement Frth clphes

oo H = bb of H—ce o« H - gg | H - 4q | H — lvgq'
o - - - . w
e e
o1t — bgq' 1t — blv W = qq 1 Z—qq “1 a/g
“ w . “ “ N "
2o - 2 o o $




State of the art [Huilin Qu, CMS]

PARTICLENET

ParticleNet: jet tagging via particle clouds

treating a jet as an unordered set of particles, distributed in the n

H. Qu and L. Gouskos
Phys.Rev.D 101 (2020) 5,056019

— ¢ space

graph neural network architecture, adapted from Dynamic Graph CNN [arXiv:1801.07829]

treating a point cloud as a graph: each point is a vertex

for each point,a local patch is defined by finding its k-nearest neighbors

designing a permutation-invariant “convolution” function
define “edge feature” for each center-neighbor pair: ej; = he(xi, x)

aggregate the edge features in a symmetric way: x = mean; ej;

o X X
e o o e, ©,®"
® ° 7S EdgeConv  Xjp Stz U2
C
e / T e
X X, x® G fe
" Jia

X
s it

X

ParticleNet architecture

EdgaCom Bk
loba Avrsge Pocing

Fuly Comnocted
256, Pt Dropan = 0.1

- ®
¢ ‘o

f PT Komiske, .M. Metodiev and | Thaler,JHEP 01 (2019) 12
V. Mikuni and F Canell Eur Phys. | Pls 135,46 Tech 2 2021)3.035027 |16




State of the art

[Huilin Qu, CMS]

LUNDNET: PERFORMANCE

LundNet achieves very high performance at significant lower computational cost than ParticleNet

due to fewer number of neighbors in a binary tree & static graph structure

Dreyer and
HEP 03 (2021) 052

u,

Moreover, LundNet provides a systematic way to control the robustness of the tagger
the non-perturbative region can be effectively rejected by applying a k: cut on the Lund plane

QCD rejection v. Top tagging efficiency

10000

1000

Pyinia 8.223 simulation
sl p -, backoround: pp-j
ik, R =1 jes, = 500 GeV.

— wondnets

— ParticieNet (06 19)

1
00 01 02 03 04 05 06 07 08 03 10
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Tundve
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Lund {1STM

) onr
0k Bass 1036

one a2 a3t

performancev. resiience

Better performance ——»

Inkycuts:0,-2,-15,1,05,0,05, 1,

Lundnets
LundNet:s —s—

RecNN(LCBC'17) &
LundsLSTM (055 '18) —a—
ParticleNet (QG"19) &

Pythia 8223 simulation
signal: pp->WW, background: pp->j
antik Re1 jes, p2 TeV, 64=0.7

Better resilience to non-pert. effects —>

In(ke/GeV)

/“'Resr;ence assessed by applying

Primary Lund-plane regions

(v 3bel) ys|

In(1/8)

the model trained on hadron-level
samples to parton-level samples
and compare the difference



State of the art [Huilin Qu, CMS]

H.Qu, C. LS. Qian,
arXiv:2202.03772

article_transformer/

PARTICLE TRANSFORMER L whmnen

Attention mechanism and Transformers: the new state-of-the-art architecture in ML

Large Language Models: BERT, GPT-3, ...
Computer Vision: ViT, Swin-T, ...
AlphaFold2 for protein structure prediction

Particles

Particle Transformer (ParT) —
Transformer-based architecture for jet tagging
injecting physics-inspired pairwise features to
“bias” the dot-product self-attention

P-MHA(Q. K, V) = SoftMax(QK T /\/d; + Y)V.

(Wa = 90)? + (6a — #)2,
kr = min(pr.q, prp) A,
2 = min(pra, pr.s)/ (P10 + Prp):
m® = (o + Bp)° — [[pa +po*,

“Interaction” features

(b) Particle Attention Block (€) Class Atention Block
39

and more...




Simulation
Event generation
- start from Lagrangian
— . 1 .
L= ("0 = m = gGu) g = 3 Guv G + ... — |6 = A"
q
- total rate for proton-proton collisions

a,m:/ dx1/ de > (x)fi(e) 8j(xixE®)

partons ij

- simulation factorized by energy Machine Learning and LHC Event Generation
Anja Butter'?, Tilman Plehn!, Steffen Schumann? (Editors),

- Monte Carlo generation, LO or NLO in QCD Sion Bdge, Sschn o’ ot Cramner’, Faneco Armands D1 Bl

Etienne Dreyer'%, Stefano Forte!", Sanmay Ganguly', Dorival Gongalves', Eilam Gross'”,
‘Theo Heimel!, Gudrun Heinrich'*, Lukas Heinrich', Alexander Held'?, Stefan Héche”,

- production process particle decays ’;’:ﬁ;ﬁk:‘:ﬁ‘z?‘,’&.f:;i‘r;:‘;:“’lz32i:::3;‘;:i::&1§‘;11*;?:; e
Claudius Krause®, Frank Krauss®, Kevin Kroninger””, Rahool Kumar Harmun“,

i iati ichel Luchmann’,Vialy Magerya™, Daniel Maire®, Bogdan Malacsc’,
QCD jet radiation

Fabio Maltoni?*?”, Till Martini*®, Olivier Mattelaer®®, Benjamin Nachman®" 52,
QCD showering et ;Mw*
fragmentation/hadronization ’
— Theory task
Pythia, Madgraph, Sherpa, Herwig

Abstract

‘They link the vast data output of multi-purpose detectors with fundamental lhwry e
dictions and i 50

ceptional developments driven by the specific requirements of particle physics. New
ideas and tools developed at the interface of partile physics and machine learning will
improve the speed and precision imulations, handle

sion data, and enhance inference as an inverse simulation problem.

Submitted to the Proceedings of the US Community Study
on the Future of Particle Physics (Snowmass)

arXiv:2203.07460v1 [hep-ph] 14 Mar 2022



Simulation

Event generation

- start from Lagrangian

L= Zd’q (i 0 — m— 9G,.) g — WGW+...—;L2|¢\2

- total rate for proton-proton collisions

Utgt:/(; dX1/ dX2 Z fX1 f(Xg) U,/(X1X2E)

partons jj

- simulation factorized by energy

— Aol

- Monte Carlo generation, LO or NLO in QCD Contents

Introduction

- production process particle decays 2 Machine Learning n event generators
. . . 2.1 Phase space sampling
QCD ]et radiation 22 :Kc‘::e‘:igg:::pleudfs
QCD showering B e s
fragmentation/hadronization 26 Frogmentaton funcions

End-to-end ML-generators
3.1 Fast generative networks

— Theory task 32 ontoland precision
Pyth|a, Madgraph‘ Sherpa, Herwig 4 Inverse simulations and inference

4.1 Particle reconstruction
42 Detector unfolding
43 Unfolding to parton level
4.4 MadMiner
45 Matrix element method
5 Synergies, transparency and reproducibility
6 Outlook

References




Simulation

Detector simulation
- process-independent response function
millions of output channels
- full MC simulation Geant4

lepton/pion/photon shower in matter
built from detector plans

- fast detector simulation
Gaussian approximation of response




Simulation

Detector simulation

- process-independent response function
millions of output channels

- full MC simulation Geant4
lepton/pion/photon shower in matter
built from detector plans

- fast detector simulation
Gaussian approximation of response

ML-questions
- fast and precise surrogates for individual steps?
- full phase space coverage?
- full feature mapping?
- variable-dimensional and high-dimensional phase spaces?
- improved data- and theory-driven models?

forward

Y

scattering decay QCD shower detectors

O B G 7 B Ay R =2




Likelihood-based inference

Unlabeled likelihood ratio  jcwoLa)
- Neyman-Pearson lemma: LR optimal discriminator
- likelihood ratio for event samples
p(x|Hs.g) _ Pois(nls +b) N fsis(x) <s+ b)" MNifsy8(%)

LR(x) = p(x|Hg) —  Pois(n|b) M7, f5(x) b Mifa(x)

- additive log-likelihood ratio

LLR(x) = —s+ > _ log (1 +
J

sfs(x) >
bfg(x)

- LLR from simulation and/or classifier



Likelihood-based inference

Unlabeled likelihood ratio  jcwoLa)
- Neyman-Pearson lemma: LR optimal discriminator

- problem  no signal and background samples to train on
instead samples p; with signal fractions f; and background fractions 1 — f;

- phase space densities (ggg) _ (g 1 - g) (Zz%)

= (W) - (58 1) ()

- goal: train classifier to extract

ps(x) (1 —=R)pi(x) + (f — 1)p2(x)

ps(X) —hpi(x) + fip2(x)




Likelihood-based inference

Unlabeled likelihood ratio  cwoLa)
- Neyman-Pearson lemma: LR optimal discriminator

- problem  no signal and background samples to train on
instead samples p; with signal fractions f; and background fractions 1 — f;

- phase space densities (5;83) _ (g 1 - g) (Zzgg)

= (w0 - (5 ") (6)

- goal: train classifier to extract

ps(x) _ (1 = R)pr(X) + (h — 1)pa(X)
Ps(x) —hp1(x) + fip2(x)

- trick: train classifier for
ps(X)

Pix) _ s+ (1~ hpatx) _ " pg) "
pe() ~ Epst) (1~ Bpe()  Ps(0 |,
% ps(x)
ps(x) ps(x)
d pil) _ ) G Rt il = Rt _ hh
d(ps/ps) p2(x) ps(x) 2 ps(x) 2
[ 1) [+ -]

— Apply mixed instead of pure classifier




Likelihood-based inference

a.u.

Impoved bump hunts  [cwoLa, Anode, Cathode]

- bump huntin m
orthogonal information in x

1. CWola on SB and SR samples WWW
X ~ Pdata(X|M € SR) class Psi5(X) Ps(x)
X~ Paa(Xlme SB)  pa(x)  pa(x) s s s

Pdata(v|m € SB)

- but problem with correlations in m and x = mug(rfm € S5)

Paataltlm € SB)

Paata(z[m € SR) = pog(x|m € SB)




Likelihood-based inference

Impoved bump hunts  [cwoLa, Anode, Cathode]

- bump huntin m
orthogonal information in x

1. CWola on SB and SR samples WW
X ~ x|m e SR X X
Pata(X| ) clasg Ps+a(x) N ps(X) - = -
X ~ Pata(X|m € SB) pa(x) pa(x)
) ) ) Panalalm €8B) e sy Piwalelm € SB)
- but problem with correlations in m and x = mug(rfm € S5) = pug(elm € SB)
2. density estimation through normalizing flow
interpol

Pmodel (X|M € SB) "= Pmodel(x|M € SR)
- computable LR in signal regions

LR(x) = Paaa(X|m € SA) ~  Ppsia(X)
Prmodel(X|m € SR) ps(x)




Likelihood-based inference

Impoved bump hunts  (cwoLa, Anode, Cathode]

- bump huntin m
orthogonal information in x

1. CWola on SB and SR samples Wﬂmﬂﬂ
X ~ Pdata(X|M € SR) class Psi5(X) Ps(x)
X ~ Pata(X|m € SB) _) pa(x) - ps(X) S8 Sk s

Paata(x|m € SB)
= prg(alm € SB)

. . . Pdata(x|m € S‘B)
- but problem with correlations in m and x = poglalm € SB)
2. density estimation through normalizing flow

interpol

Prmodel(X|M € SB) "—" Pmodei(X|M € SR)

Paata(z[m € SR)

- computable LR in signal regions

Pdata(X|m € SR) N Ps+5(X)
Prmodel(X|m € SR) ps(x)
3. background generation using normalizing flow

I
Prodel(x|m € SB) 5 X ~ prnoge(X|m € SR)

LR(x) =

- classifier on event samples
X ~ Pmodel(X|M € SR) class Ps+8(X)
X ~ pmodel(xlm € SB) pB(X)

— Guess which works best?




Likelihood-based inference
a.u.
Impoved bump hunts  [cwoLa, Anode, Cathode]
- bump huntin m
orthogonal information in x
1. CWola on SB and SR samples WW
X ~ x|m e SR X X
Pata(X| ) clasg Ps+a(x) N ps(X) - = e
X ~ Pata(X|m € SB) pa(x) pa(x) ) .
) ) ) - Panalalm €8B) e sy Piwalelm € SB)
2. density estimation through normalizing flow = Poglalm € 55) = Poelalm € SB)
interpol
pmodel(x‘m € SB) — pmodel(x‘m € SR)
3. background generation using normalizing flow
sample
Prmodel(X|mM € SB) "—=" X ~ Pmodel(X|m € SR)
200 Signal Region
’ — Supervised
175 —— lIdealized AD
o —— CATHODE
E 15.0 CWola
g —— ANODE
812.5 - random
% 10.0
§' 5.0
25
PO Y

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency (True Positive Rate)




ML-Parton densities

Dirty LHC secret
- proton-proton collisions from parton-parton predictions  [x = Eyarton/Eproton]

Otot = / dX1 / dX2 Z f X1 f(Xz) U,!(X1X2E )
0 partons ij
- DGLAP equation, including factorization scale

aen_ > [ Z e r@ i (5) =52 % (Py@h) (o)
J

dlog 2 partonsj VX

- historic parametrization 5
f,'(X, MO) _ aoXa1 (1 _ X)az eaax+a4x

— WTF.. — lattice gauge theory?




ML-Parton densities

Dirty LHC secret

- proton-proton collisions from parton-parton predictions  [x = Eyarton /Eproton]

oot = /dx1/ de > (x)fie) 8(xixE®)
partons ij
- DGLAP equation, including factorization scale

df X, /u dZ « X o
dllogu > / 2 " ’“"(Z)”(E’“) = 32 Py 1) (00

X

partonsj
- historic parametrization )
f/(X, MO) _ aox"‘ (1 _ X)a2 ea3X+a4x
. e
— WTF.. — lattice gauge theory?

Neural Network Parametrization of Deep-Inelastic
Structure Functions

Non-parametric network fit

Stefano Forte*, Liuis Garri

- parametrizations not useful
- bias problematic
— NNPDF




ML-Parton densities

Dirty LHC secret

proton-proton collisions from parton-parton predictions  (x = Eyarton / Eoroton!

Utot:/ dX1/ dxo Z fi(x1) fi(x2) a,,(X1X2E)
0

partons ij

DGLAP equation, including factorization scale p

dfi(x, )
dlogu

partonsj VX

historic parametrization

— WTF..

fi(X, po) = aox™ (1 — x)

— lattice gauge theory?

Non-parametric network fit

parametrizations not useful
bias problematic
N NNPDF 6 Summary

We have presented a determination of the probability density in the space of structure func-
tions for the structure function Fy

for proton, deuteron and nonsinglet, as determined from
experimental data of the NMC and BCDMS collaborations. Our results, for each of the three
structure functions, take the form of a set of 1000 neural nets, each of which gives a determi-
nation of F, for given  and Q2. The distribution of these functions is a Monte Carlo sampling
of the probability density. This Monte Carlo sampling has been obtained by first, producing a
sampling of the space of data points based on the available experimental information through
& set of Monte Carlo replicas of the original data, and then. each neural net to one of
these replicas.

In practice, all functions
neural network (described in
function is then specified by f values for these parameters. Our results are available at
the web page hutp://sophia. ac. ub. o8/ 2neural. The ful et of FORTRAN routines and
parameters can be downloaded from this page. On-line plotting and computation facilities for

by a FORTRAN routine which reproduces a feed-forward
3 1 1 of 47 real pi

) entirely determin Each

=Y [ @i (fe) -

ST (Pici® 1) (x)
)

ap ea3x+a4x2

hep-ph/0204232
GeF/TH/302
RMBTH/02-00

Neural Network Parametrization of Deep-Inelastic
Structure Functions
Stefano Forto* , Liuis Garrido', José . Latorre’ and Andrea Piccione’

CINFY, Sezione di Romwa Tre
Via della Vasca Navale 84, 1-00146 Rome, Ttaly

Universitat de Barcelona,
pain

"Departament dEstructur

“INFN sczione i Genowa and Dipartin Universith di Genova,
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State of the art [Stefano Forte, NNPDF]

THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS <> PROBABILITY DENSITY IN FUNCTION SPACE
KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

vy ¥ ¥

¢ ¢
= >
= >
=
FINAL PDF SET: £ (2, p1);

i =up, antiup, down, antldown strange, antistrange, charm, gluon; j = 1,2, ... Nyep




State of the art [Stefano Forte, NNPDF]

THE ML METHODOLOGY

NN ARCHITECTURE
HYPEROPTIMIZED PARAMETERS x Inx

. o
Parameter NNPDF4.0 Lasin Eq (3.21) | Flavour basis Eq. (3:2)
Architecture 25208 0-50-8 726278
ion function hyperbolic tangent | hyperbolic tangent | sigmoid =25

Init

et glorot nornal | glorot uniforn | glorot normal

Optimizer Nadan Adadelta Nadan

Clipnorm, 6.0x10°6 52x10°2 23x10° W=
Learning rate 26x107 25x10° 26x1077

Maximuin # epochs 17x10° 15x10% 15x10°

Stopping patience 10% of max epochs | 12% of max epochs | 16% of max epochs < ek
Initial positivity AP | 185 106 2

| . . . . e
by ” LV NN N
(o Tty o0 Tl T Tl el )
oy @) W00 @) gy w0 ) @)

Initial integrability AO) | 10

e HYPEROPT ADAPTS TO EXTERNAL CHOICES (E.G. PARAMETRIZATION BASIS)
e SIMILAR RESULTS CAN BE OBTAINED WITH RATHER DIFFERENT SETTINGS
e ~ 800 FREE PARAMETERS




State of the art [Stefano Forte, NNPDF]

FITTING THE METHODOLOGY

HYPEROPTIMIZATION SCANS

i : B epochs.

stopping patience

HYPEROPT PARAMETERS

optimizer Iearning rate initaizer

NEURAL NETWORK FIT OPTIONS
NUMBER OF LAYERS (¥) OPTIMIZER (%)
SIZE OF EACH LAYER INITIAL LEARNING RATE (*)
DROPOUT MAXIMUM NUMBER OF EPOCHS (*)
ACTIVATION FUNCTIONS (*) STOPPING PATIENCE (*)
INITIALIZATION FUNCTIONS (¥) POSITIVITY MULTIPLIER (*)

e SCAN PARAMETER SPACE

OPTIMIZE FIGURE OF MERIT: VALIDATION X2

e BAYESIAN UPDATING



State of the art [Stefano Forte, NNPDF]

NNPDF4.0 vs. NNPDF3.1
® FULL BACKWARD COMPATIBILITY
® SUBSTANTIAL REDUCTION IN UNCERTAINTY

SINGLE GLUON
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ML-LHC introduction

Summary

- particle physics has questions

- LHC is big and fast data

- data needs regression and classification

- knowledge comes through theory and simulation
- stochastic data and uncertainty craziness

Qutlook

1.

introduction (done)

2. uncertainties and Bayesian networks [t
3. generation and inversion [agj

4.

5. favorite cool ideas (a8TP|

tutorial/hands-on fun (ag)
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