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Modern LHC physics

Classic motivation

· dark matter?

· baryogenesis?

· origin of Higgs field?

Defining LHC physics

· fundamental motivation

· huge data set

· complete uncertainty control

· first-principle simulations

Successful past

· measurements of event counts

· analyses inspired by simulation

· model-driven Higgs discovery
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Modern LHC physics

Classic motivation

· dark matter?

· baryogenesis?

· origin of Higgs field?

Defining LHC physics

· fundamental motivation

· huge data set

· complete uncertainty control

· first-principle simulations

Successful past

· measurements of event counts

· analyses inspired by simulation

· model-driven Higgs discovery

First-principle simulations

· start with Lagrangian/Hamiltonian

· calculate using quantum field theory

· simulate collisions

· simulate detectors

→ LHC collisions in virtual worlds

Future analyses

· compare simulations and data

· analyze data systematically

· infer underlying theory

· understand LHC dataset completely

→ Just data science...

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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· international collaborations
3000 scientists per experiment

LHC detectors

· built around pp interaction point

· measuring outgoing particles

· really complex...



LHC Data
Science

Tilman Plehn

LHC physics

ML introduction

Jet classification

Anomalies

Generation

ML examples

LHC data structure

LHC collaborations

· ATLAS & CMS general purpose
LHCb, ALICE, FASER specialized

· international collaborations
3000 scientists per experiment

LHC detectors

· built around pp interaction point

· measuring outgoing particles

· really complex...

LHC Event

· colliding two protons at 40 MHz

· producing anything light enough

· most particles decaying

· measure energy, momentum,
charge

· electrons, muons easy
quarks, gluons as jets [20-50 particles]

· event: 100+ ntuples (E , ~p,Q)

→ ATLAS output 3 PB/s
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Ask a data scientist

LHC questions

· How to get from 3 PB/s to 300 MB/s?

Data compression [Netflix]

· How to analyze events as ntuples?

Graph neural networks [Cars]

· How to incorporate symmetries?

Contrastive learning [Google]

· How to combine different detectors?

Super-resolution [Gaming]

· How to remove overlapping scatterings?

Data denoising [Cars]

· How to look for new physics?

Autoencoders [SAP]

· How to compare simulations and data?

· How to treat uncertatinties?

· · ·
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Ask a data scientist

LHC questions

· How to get from 3 PB/s to 300 MB/s?

Data compression [Netflix]

· How to analyze events as ntuples?

Graph neural networks [Cars]

· How to incorporate symmetries?

Contrastive learning [Google]

· How to combine different detectors?

Super-resolution [Gaming]

· How to remove overlapping scatterings?

Data denoising [Cars]

· How to look for new physics?

Autoencoders [SAP]

· How to compare simulations and data?

· How to treat uncertatinties?

· · ·
→ xAI: Can we explain what we are doing?
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Shortest ML-intro ever

Fit-like approximation

· approximate known f (x) ≈ fθ(x)

· no parametrization, just very many values θ

· new representation/latent space θ

Construction and contol

· define training procedure

· minimize loss to find best θ

Applications

· regression x → fθ(x)

· classification x → fθ(x) ∈ [0, 1]

· generation r ∼ N → fθ(r)

Architecture

· adjust input and structure to data format

· assume structures, like symmetries or locality

· mostly, images vs language

→ Transforming numerical science and everything
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Regression with error bar

Network output with uncertainties

· train many networks:
different trainings
different initalizations
different data sets

· histogram network output fθ(x)
obtain fθ(x)±∆f (x)

→ So-called Bayesian network with ∆fθ(x) from ∆θ

Energy measurement with NN

· expectation value from probability distribution

〈E〉 =

∫
dE E p(E)

· energy p(E |θ) encoded in network parameters
parameters p(θ|T ) trained on data T

pθ(E) =

∫
dθ p(E|θ) p(θ|T )

· prediction by sampling once we know p(θ|T )

〈E〉 =

∫
dE dθ E p(E|θ) p(θ|T ) .
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Constructing the loss function

Training means encoding p(θ|T )

· so-called variational approximation [think q(θ) as Gaussian with mean and width]

p(E) =

∫
dθ p(E|θ) p(θ|T ) ≈

∫
dθ p(E|θ) q(θ)

· similarity through minimal KL-divergence

DKL[q(θ), p(θ|T )] =

∫
dθ q(θ) log

q(θ)

p(θ|T )
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Constructing the loss function

Training means encoding p(θ|T )

· so-called variational approximation [think q(θ) as Gaussian with mean and width]

p(E) =

∫
dθ p(E|θ) p(θ|T ) ≈

∫
dθ p(E|θ) q(θ)

· similarity through minimal KL-divergence

DKL[q(θ), p(θ|T )] =

∫
dθ q(θ) log

q(θ)

p(θ|T )

· Bayes’ theorem to replace p(θ|T )

DKL[q(θ), p(θ|T )] =

∫
dθ q(θ) log

q(θ)p(T )

p(T |θ)p(θ)

= DKL[q(θ), p(θ)]−
∫

dθ q(θ) log p(T |θ) + log p(T )

∫
dθ q(θ)

· normalize distributions, ignore irrelevant terms, so minimize

DKL[q(θ), p(θ|T )] = DKL[q(θ), p(θ)]−
∫

dθ q(θ) log p(T |θ)
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Constructing the loss function

Training means encoding p(θ|T )

· so-called variational approximation [think q(θ) as Gaussian with mean and width]

p(E) =

∫
dθ p(E|θ) p(θ|T ) ≈

∫
dθ p(E|θ) q(θ)

· similarity through minimal KL-divergence

DKL[q(θ), p(θ|T )] =

∫
dθ q(θ) log

q(θ)

p(θ|T )

· Bayes’ theorem to replace p(θ|T )

DKL[q(θ), p(θ|T )] =

∫
dθ q(θ) log

q(θ)p(T )

p(T |θ)p(θ)

= DKL[q(θ), p(θ)]−
∫

dθ q(θ) log p(T |θ) + log p(T )

∫
dθ q(θ)

· normalize distributions, ignore irrelevant terms, so minimize

DKL[q(θ), p(θ|T )] = DKL[q(θ), p(θ)]−
∫

dθ q(θ) log p(T |θ)

→ Loss combining likelihood and regularization

L = −
∫

dθ q(θ) log p(T |θ) + DKL[q(θ), p(θ)]
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Jet classification

Partons as QCD jets

· most interactions just qq̄, gg → qq̄, gg

· quarks/gluon visible as jets
splittings described by QCD
hadronization and hadron decays in jets

· jets as decay products
67% W → jj 70% Z → jj 60% H → jj 67% t → jjj 60% τ → j ...

· new physics in ‘dark jets’

→ Everywhere in LHC physics
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Jet classification

Partons as QCD jets

· most interactions just qq̄, gg → qq̄, gg

· quarks/gluon visible as jets
splittings described by QCD
hadronization and hadron decays in jets

· jets as decay products
67% W → jj 70% Z → jj 60% H → jj 67% t → jjj 60% τ → j ...

· new physics in ‘dark jets’

→ Everywhere in LHC physics

ML-classification since 1991

· low-level or high-level observables?

· combination of detector outputs?

· uncertainties?

· data denoising against pileup?

· resilience to training uncertainties?

→ ML-LHC research program
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Hello World of LHC-ML

History of modern jet tagging

· 2014/15: first jet image papers

· 2017: first (working) ML top tagger

· ML4Jets 2017: What architecture works best?

· ML4Jets 2018: Lots of architectures work

→ Jet classification established
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Hello World of LHC-ML

History of modern jet tagging

· 2014/15: first jet image papers

· 2017: first (working) ML top tagger

· ML4Jets 2017: What architecture works best?

· ML4Jets 2018: Lots of architectures work

→ Jet classification established
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Learning background only

Penalize anomalous features
· key feature: bottleneck

unsupervised training on background
minimize reconstruction-MSE
extract (unknown) signal through MSE

· reconstruct QCD jets → top jets hard to describe

· reconstruct top jets → QCD jets just simple top-like jet

→ Symmetric performance S ↔ B?
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Learning background only

Penalize anomalous features
· key feature: bottleneck

unsupervised training on background
minimize reconstruction-MSE
extract (unknown) signal through MSE

· reconstruct QCD jets → top jets hard to describe

· reconstruct top jets → QCD jets just simple top-like jet

→ Symmetric performance S ↔ B?

Penalize missing features

· compact latent space: sphere

· energy-based model
normalized Boltzmann mapping [Eθ =MSE]

pθ(x) =
e−Eθ (x)

Zθ

L = −
〈

log pθ(x)
〉

=
〈
Eθ(x) + log Zθ

〉
· inducing background metric

· Zθ from Markov Chain
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Learning background only

Penalize anomalous features
· key feature: bottleneck

unsupervised training on background
minimize reconstruction-MSE
extract (unknown) signal through MSE

· reconstruct QCD jets → top jets hard to describe

· reconstruct top jets → QCD jets just simple top-like jet

→ Symmetric performance S ↔ B?

Penalize missing features

· compact latent space: sphere

· energy-based model
normalized Boltzmann mapping [Eθ =MSE]

pθ(x) =
e−Eθ (x)

Zθ

L = −
〈

log pθ(x)
〉

=
〈
Eθ(x) + log Zθ

〉
· inducing background metric

· Zθ from Markov Chain

→ Proper anomaly search, at last
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Modern generative networks

Generative networks

· generate new images, text blocks, etc

· encode density in target space
sample Gaussian into target space

· reproduce training data, statistically independently
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Modern generative networks

Generative networks

· generate new images, text blocks, etc

· encode density in target space
sample Gaussian into target space

· reproduce training data, statistically independently

· Variational Autoencoder
→ low-dimensional physics, high-dimensional objects

· Generative Adversarial Network
→ generator trained by classifier

· Normalizing Flow/Diffusion Model
→ bijective mapping

· Generative Pre-trained Transformer
→ learning all structures

→ Pick best model for purpose
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Modern generative networks

Generative networks

· generate new images, text blocks, etc

· encode density in target space
sample Gaussian into target space

· reproduce training data, statistically independently

· Variational Autoencoder
→ low-dimensional physics, high-dimensional objects

· Generative Adversarial Network
→ generator trained by classifier

· Normalizing Flow/Diffusion Model
→ bijective mapping

· Generative Pre-trained Transformer
→ learning all structures

→ Pick best model for purpose

Fundamental question

· generative models and training-data multiplier

· first generated instances reproducing structures

· too many generated instances reproducing noise?
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Generative networks for LHC

Normalizing flows/INN for LHC

· trained on samples of energy-momentum ntuples

· limited dimensionality

· bijective mapping, stable training

· likelihood loss

· different coupling-layer structures

→ Best-suited for LHC applications

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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Generative networks for LHC

Normalizing flows/INN for LHC

· trained on samples of energy-momentum ntuples

· limited dimensionality

· bijective mapping, stable training

· likelihood loss

· different coupling-layer structures

→ Best-suited for LHC applications

Generative networks with uncertainties

· network weight distributions for density

· sampling for output
events with error bars

· learned density & uncertainty maps
information on how networks learn?

· 2D: wedge ramp, kicker ramp, Gaussian sphere

→ B-INNs just constrained fits with error bars
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Generative networks for LHC

Normalizing flows/INN for LHC

· trained on samples of energy-momentum ntuples

· limited dimensionality

· bijective mapping, stable training

· likelihood loss

· different coupling-layer structures

→ Best-suited for LHC applications

LHC events with uncertainties

· ntuples for two muons and 1-3 jets

· check through ML-classifier wD
reweight through ML-classifier

· statistical training limitation
encoded in B-INN uncertainty

· systematic training limitation
encoded in data augmentation a
sampled through conditional INN

→ Precision and uncertainty control
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ML for LHC Theory

ML-applications

· just another numerical tool for a numerical field

· driven by money from data science and medical research

· goals are...
...improve established tasks
...develop new tools for established tasks
...transform through new ideas

· xAI through...
...precision control
...uncertainties
...symmetries
...formulas

→ New theme in LHC physics

http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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Generative networks

GANGogh [2017]

· create new pieces of art

· generation r → pθ(r) sampled r ∼ N
· train on 80,000 pictures

· generate flowers
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Generative networks

GANGogh [2017]

· create new pieces of art

· generation r → pθ(r) sampled r ∼ N
· train on 80,000 pictures

· generate portraits

→ LHC?
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Optimal observables

Measure model parameter θ optimally

· single-event likelihood

p(x|θ) =
1

σtot(θ)

dmσ(x|θ)

dxm

· expanded in θ around θ0, define score

log
p(x|θ)

p(x|θ0)
≈ (θ − θ0) ∇θ log p(x|θ)

∣∣∣∣∣
θ0

≡ (θ − θ0) t(x|θ0) ≡ (θ − θ0) Oopt(x)

· leading order parton level

p(x|θ) ≈ |M|20 + θ|M|2int ⇒ t(x|θ0) ∼ |M|
2
int

|M|20
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Optimal observables

Measure model parameter θ optimally

· single-event likelihood

p(x|θ) =
1

σtot(θ)

dmσ(x|θ)

dxm

· expanded in θ around θ0, define score

log
p(x|θ)

p(x|θ0)
≈ (θ − θ0) ∇θ log p(x|θ)

∣∣∣∣∣
θ0

≡ (θ − θ0) t(x|θ0) ≡ (θ − θ0) Oopt(x)

· leading order parton level

p(x|θ) ≈ |M|20 + θ|M|2int ⇒ t(x|θ0) ∼ |M|
2
int

|M|20

CP-violating Higgs production

· unique CP-observable

t ∝ εµνρσ kµ
1 kν

2 qρ
1 qσ

2 sign [(k1 − k2) · (q1 − q2)]
lab frame−→ sin ∆φjj

· CP-effect in ∆φjj
D6-effect in pT ,j

⇒ Key LHC observable
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PySR

Analytic formula for score

· function to approximate t(x |θ)

· phase space parameters xp = pT /mH ,∆η,∆φ [node]

· operators sin x , x2, x3, x + y , x − y , x ∗ y , x/y [node]

· represent formula as tree [complexity = number of nodes]

⇒ Figures of merit

MSE =
1
n

n∑
i=1

[
gi (x)− t(x, z|θ)

]2
→ MSE + parsimony · complexity

Score around Standard Model
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PySR

Analytic formula for score

· function to approximate t(x |θ)

· phase space parameters xp = pT /mH ,∆η,∆φ [node]

· operators sin x , x2, x3, x + y , x − y , x ∗ y , x/y [node]

· represent formula as tree [complexity = number of nodes]

⇒ Figures of merit

MSE =
1
n

n∑
i=1

[
gi (x)− t(x, z|θ)

]2
→ MSE + parsimony · complexity

Score around Standard Model

· expected limits:
very wrong formula
wrong formula
right formula
MadMiner

· same within statistical limitation

⇒ New optimal observables next
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ML-applications for analysis

Top tagging [supervised classification]

· ‘hello world’ of LHC-ML

· the end of QCD

· different NN-architectures

→ Non-NN left in the dust...



LHC Data
Science

Tilman Plehn

LHC physics

ML introduction

Jet classification

Anomalies

Generation

ML examples

ML-applications for analysis

Top tagging [supervised classification]

· ‘hello world’ of LHC-ML

· the end of QCD

· different NN-architectures

→ Non-NN left in the dust...

Particle flow [classification, super-resolution]

· mother of jet tools

· combined detector channels

· similar studies in CMS

→ Seriously impressive
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Symmetries

Learning symmetries [representation, visualization]

· (particle) physics is all symmetries

· identify symmetries in 2D systems [paintings]

· CNN on PCAs of penultimate network layers

→ Networks represent data patterns4

PART II:  CNN CLASSIFICATION

label 1 label 2

label 3 label 4

PCA dataset

Symmetry 
Classification

FIG. 3. Part II: CNN Classification. The PCAs collected in Part I and labelled are used to train an algorithm to classify
symmetries.

Hoping that a CNN would perform better than our
eye at distinguishing between PCAs coming from FCNNs
trained on di↵erent symmetry classes, we then turn to
Part 2 of our workflow, which is to train a single CNN
to classify hundreds of PCAs. If the CNN succeeds, it
means that there is a common pattern in the various
PCAs produced by FCNNs trained on di↵erent decoy
tasks belonging to the same symmetry class. We would
therefore conclude that the FCNNs have encoded some
information about the symmetry class of the problem it
has been learning.

Looking for a good accuracy in our image classification
task, we perform transfer learning using a Resnet net-
work, but select the smallest one (i.e. ResNet18 [9]) for
speed, as implemented in the fastai package [7]. From
a training sample of 1240 PCAs, we achieve a validation
accuracy of 73% on the 5-class problem, and an 80%-
95% error for each of the four di↵erent binary problems
of identifying the presence or absence of each symmetry
separately.

We checked how our results were a↵ected by varying
the hyperparameters of the FCNN, in particular as they
allow a more precise or looser fit. The most obvious is-
sue is when the FCNNs do not perform so well at their
binary classification task: the CNN then has a hard time
reaching a good accuracy. For instance, with the same
hyperparameters, but only 100 epochs instead of 300, the
FCNNs typically reach an accuracy below 99.8% on the
whole training plus validation dataset. CNNs trained on
the resulting PCAs barely reach 60% accuracy on the
5-class task.

Perhaps less obvious is the fact that it is counterpro-
ductive to train the FCNNs until they learn their task
perfectly: we have tested this by training FCNNs with
the same hyperparameters (including in particular 300
epochs), but without defining a validation set. The best
model is then selected by minimizing the (training) loss

instead of the validation error as was the case before.
Such models typically reach an average error rate be-
low 1/10,000 on the whole dataset, i.e. so small that
most of them did not make a single mistake in their bi-
nary classification task (involving several thousands of
points). Here again, the CNNs trained on the result-
ing PCAs barely reach 60% accuracy on the 5-class task,
possibly because the FCNN has overfit to the location
of the individual pixels that have been selected in the
random-ssampling process instead of relying on simplify-
ing assumptions such as the symmetry.

III. APPLICATION TO ART

Since the very beginning of times, symmetry has been
studied not only by scientists but also by artists. Most
people are familiar with the broader concept of symme-
try. The notions of beauty, proportion, or harmony im-
mediately cross our minds when talking about symmetry,
abstract or concrete.

The Merriam Webster Dictionary in its first entry for
the term symmetry says: beauty of form arising from bal-
anced proportions while the Cambridge dictionary states
that symmetry is the quality of having parts that match
each other, especially in a way that is attractive, or sim-
ilarity of shape or contents.

Symmetry has been the guiding principle to construct
the Physics theories that describe Nature. Even before
we developed our first Physics theory, ancient Greeks
were captivated by the symmetries of the world around
them and believed that these would be reproduced in the
underlying principles of Nature itself.

The concept of symmetry is also ubiquitous in the
artistic world. The question therefore is whether a con-
cept that crosses scientific and artistic boundaries can be

Symmetry meets AI

Gabriela Barenboima, Johannes Hirna, and Verónica Sanza,b

a Departament de F́ısica Teòrica and IFIC, Universitat de València-CSIC, E-46100, Burjassot, Spain and

bDepartment of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn
to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics
templates, where no information on symmetry is provided. We use the output from the last hidden
layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task,
and show that information on symmetry had indeed been identified by the original NN without
guidance. As an interdisciplinary application of this procedure, we identify the presence and level of
symmetry in artistic paintings from di↵erent styles such as those of Picasso, Pollock and Van Gogh.

I. INTRODUCTION

Symmetries are central to the underlying structure of
Nature. The discovery of a symmetry signifies the exis-
tence of a fundamental principle and manifests itself in
the form of physical laws and selection rules. Indeed, all
known fundamental laws of Physics can be derived from
an axiom of invariance under a transformation. This is
exemplified in Galilean relativity, Maxwell’s equations for
electromagnetism, Einstein’s special and general relativ-
ity as well as the gauge theories of the fundamental forces
in Particle Physics.

On a more pragmatic note, symmetries have lots of ap-
plications, such as those in crystallography or the simpli-
fications they confer to the study of a problem: a sym-
metry is an organizing structure underlying the infor-
mation at hand. Discovering such a pattern thus leads
to a deeper understanding, as in the simple case of a
Rohrschach test: noticing the reflection symmetry of an
inkblot helps a child guess how the drawings were made,
i.e. by folding a blotted paper onto itself.

This understanding allows for simplifications in the
way we handle the data and, at a deeper level, can indi-
cate the presence of a higher-level principle. This connec-
tion between symmetry and simplicity or even elegance
appears frequently in Theoretical Physics.

In Art, symmetry is also often linked to the concept of
elegance. This is not to say that symmetric artworks are
more beautiful, as it is known that most humans prefer
faces, musical pieces, paintings and photographs where
the symmetry is not exact, but slightly imperfect or bro-
ken [1]. In Physics as well, deviations around a symmetric
situations are often considered as a useful approximation
technique, since perfect symmetries are seldom found in
Nature.

A Physics example of the the discovery of a symmetry
is given by the motion of the planet Mars. Before his
death in 1601, the astronomer Tycho Brahe had gath-
ered the most accurate records of its position in the night
sky. Within these data was an underlying structure that
took many years for Johannes Kepler to tease out in the

shape of ellipses 1. From this simpler representation of
the data, Isaac Newton was able to deduce the laws of
gravity, which exhibit a central symmetry, no doubt a
simpler, deeper and thus more general description of the
motion of celestial bodies than the original collection of
observations. Fast-forwarding many years, we now un-
derstand that Newton’s laws can be obtained from im-
posing a symmetry on an abstract object called the Ac-
tion.

Our idea in this paper is to lay the foundations for an
automated, or artificial intelligence (AI), version of the
Kepler intermediate step between Brahe and Newton.

A functional task-oriented implementation of the gen-
eral concept of AI is called Machine Learning (ML). It in-
volves algorithms that give general prescriptions for com-
puters to progressively approximate (or learn) the appro-
priate rules to reproduce specific observations. This is in
contrast with traditional programs, which lack the level
of expressivity needed here.

Currently, Science in general and Physics in particular
are undergoing a revolution of sorts [2], as the ML meth-
ods that have been employed in experimental fields with
large datasets are applied to more formal areas and even
for symbolic mathematics [3].

ML is indeed particularly good at pattern recognition,
and we thus ask the question: as these methods are used
to extract information from the data, can they also detect
the presence of symmetries in the data they are exposed
to? And if they can, do they do so automatically, i.e.
do they naturally organize the information according to
symmetry patterns?

In this paper we walk the first steps to answer the
above questions. Beyond our curiosity and our desire to
understand not only the laws of nature but the way ML
proceeds, we apply our method to study a deep connec-
tion between Physics and Art.

After training algorithms on a Physics-based set-up
in Sec. II, we apply them to artworks in Sec. III and

1 In this example, there are small perturbations to the heliocentric
potential acting on Mars, due to the presence of other planets:
the symmetry is realized only approximately in Nature.
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FIG. 3. Part II: CNN Classification. The PCAs collected in Part I and labelled are used to train an algorithm to classify
symmetries.

Hoping that a CNN would perform better than our
eye at distinguishing between PCAs coming from FCNNs
trained on di↵erent symmetry classes, we then turn to
Part 2 of our workflow, which is to train a single CNN
to classify hundreds of PCAs. If the CNN succeeds, it
means that there is a common pattern in the various
PCAs produced by FCNNs trained on di↵erent decoy
tasks belonging to the same symmetry class. We would
therefore conclude that the FCNNs have encoded some
information about the symmetry class of the problem it
has been learning.

Looking for a good accuracy in our image classification
task, we perform transfer learning using a Resnet net-
work, but select the smallest one (i.e. ResNet18 [9]) for
speed, as implemented in the fastai package [7]. From
a training sample of 1240 PCAs, we achieve a validation
accuracy of 73% on the 5-class problem, and an 80%-
95% error for each of the four di↵erent binary problems
of identifying the presence or absence of each symmetry
separately.

We checked how our results were a↵ected by varying
the hyperparameters of the FCNN, in particular as they
allow a more precise or looser fit. The most obvious is-
sue is when the FCNNs do not perform so well at their
binary classification task: the CNN then has a hard time
reaching a good accuracy. For instance, with the same
hyperparameters, but only 100 epochs instead of 300, the
FCNNs typically reach an accuracy below 99.8% on the
whole training plus validation dataset. CNNs trained on
the resulting PCAs barely reach 60% accuracy on the
5-class task.

Perhaps less obvious is the fact that it is counterpro-
ductive to train the FCNNs until they learn their task
perfectly: we have tested this by training FCNNs with
the same hyperparameters (including in particular 300
epochs), but without defining a validation set. The best
model is then selected by minimizing the (training) loss

instead of the validation error as was the case before.
Such models typically reach an average error rate be-
low 1/10,000 on the whole dataset, i.e. so small that
most of them did not make a single mistake in their bi-
nary classification task (involving several thousands of
points). Here again, the CNNs trained on the result-
ing PCAs barely reach 60% accuracy on the 5-class task,
possibly because the FCNN has overfit to the location
of the individual pixels that have been selected in the
random-ssampling process instead of relying on simplify-
ing assumptions such as the symmetry.

III. APPLICATION TO ART

Since the very beginning of times, symmetry has been
studied not only by scientists but also by artists. Most
people are familiar with the broader concept of symme-
try. The notions of beauty, proportion, or harmony im-
mediately cross our minds when talking about symmetry,
abstract or concrete.

The Merriam Webster Dictionary in its first entry for
the term symmetry says: beauty of form arising from bal-
anced proportions while the Cambridge dictionary states
that symmetry is the quality of having parts that match
each other, especially in a way that is attractive, or sim-
ilarity of shape or contents.

Symmetry has been the guiding principle to construct
the Physics theories that describe Nature. Even before
we developed our first Physics theory, ancient Greeks
were captivated by the symmetries of the world around
them and believed that these would be reproduced in the
underlying principles of Nature itself.

The concept of symmetry is also ubiquitous in the
artistic world. The question therefore is whether a con-
cept that crosses scientific and artistic boundaries can be
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a Departament de F́ısica Teòrica and IFIC, Universitat de València-CSIC, E-46100, Burjassot, Spain and

bDepartment of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn
to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics
templates, where no information on symmetry is provided. We use the output from the last hidden
layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task,
and show that information on symmetry had indeed been identified by the original NN without
guidance. As an interdisciplinary application of this procedure, we identify the presence and level of
symmetry in artistic paintings from di↵erent styles such as those of Picasso, Pollock and Van Gogh.

I. INTRODUCTION

Symmetries are central to the underlying structure of
Nature. The discovery of a symmetry signifies the exis-
tence of a fundamental principle and manifests itself in
the form of physical laws and selection rules. Indeed, all
known fundamental laws of Physics can be derived from
an axiom of invariance under a transformation. This is
exemplified in Galilean relativity, Maxwell’s equations for
electromagnetism, Einstein’s special and general relativ-
ity as well as the gauge theories of the fundamental forces
in Particle Physics.

On a more pragmatic note, symmetries have lots of ap-
plications, such as those in crystallography or the simpli-
fications they confer to the study of a problem: a sym-
metry is an organizing structure underlying the infor-
mation at hand. Discovering such a pattern thus leads
to a deeper understanding, as in the simple case of a
Rohrschach test: noticing the reflection symmetry of an
inkblot helps a child guess how the drawings were made,
i.e. by folding a blotted paper onto itself.

This understanding allows for simplifications in the
way we handle the data and, at a deeper level, can indi-
cate the presence of a higher-level principle. This connec-
tion between symmetry and simplicity or even elegance
appears frequently in Theoretical Physics.

In Art, symmetry is also often linked to the concept of
elegance. This is not to say that symmetric artworks are
more beautiful, as it is known that most humans prefer
faces, musical pieces, paintings and photographs where
the symmetry is not exact, but slightly imperfect or bro-
ken [1]. In Physics as well, deviations around a symmetric
situations are often considered as a useful approximation
technique, since perfect symmetries are seldom found in
Nature.

A Physics example of the the discovery of a symmetry
is given by the motion of the planet Mars. Before his
death in 1601, the astronomer Tycho Brahe had gath-
ered the most accurate records of its position in the night
sky. Within these data was an underlying structure that
took many years for Johannes Kepler to tease out in the

shape of ellipses 1. From this simpler representation of
the data, Isaac Newton was able to deduce the laws of
gravity, which exhibit a central symmetry, no doubt a
simpler, deeper and thus more general description of the
motion of celestial bodies than the original collection of
observations. Fast-forwarding many years, we now un-
derstand that Newton’s laws can be obtained from im-
posing a symmetry on an abstract object called the Ac-
tion.

Our idea in this paper is to lay the foundations for an
automated, or artificial intelligence (AI), version of the
Kepler intermediate step between Brahe and Newton.

A functional task-oriented implementation of the gen-
eral concept of AI is called Machine Learning (ML). It in-
volves algorithms that give general prescriptions for com-
puters to progressively approximate (or learn) the appro-
priate rules to reproduce specific observations. This is in
contrast with traditional programs, which lack the level
of expressivity needed here.

Currently, Science in general and Physics in particular
are undergoing a revolution of sorts [2], as the ML meth-
ods that have been employed in experimental fields with
large datasets are applied to more formal areas and even
for symbolic mathematics [3].

ML is indeed particularly good at pattern recognition,
and we thus ask the question: as these methods are used
to extract information from the data, can they also detect
the presence of symmetries in the data they are exposed
to? And if they can, do they do so automatically, i.e.
do they naturally organize the information according to
symmetry patterns?

In this paper we walk the first steps to answer the
above questions. Beyond our curiosity and our desire to
understand not only the laws of nature but the way ML
proceeds, we apply our method to study a deep connec-
tion between Physics and Art.

After training algorithms on a Physics-based set-up
in Sec. II, we apply them to artworks in Sec. III and

1 In this example, there are small perturbations to the heliocentric
potential acting on Mars, due to the presence of other planets:
the symmetry is realized only approximately in Nature.
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Symmetric networks [contrastive learning, transformer network]

· rotations, translations, permutations, soft splittings, collinear splittings

· learn symmetries/augmentations

→ Symmetry-aware latent space
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Non-QCD and parton densities

Anomaly searches [unsupervised training, see later]

· train on QCD-jets, SM-events

· look for non-QCD jets, non-SM events

→ Spirit of LHC
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Non-QCD and parton densities

Anomaly searches [unsupervised training, see later]

· train on QCD-jets, SM-events

· look for non-QCD jets, non-SM events

→ Spirit of LHC

NNPDF/N3PDF parton densities [full blast]

· starting point: pdfs without functional ansatz

· moving on: cutting-edge ML everywhere

→ Leaders in ML-theory



LHC Data
Science

Tilman Plehn

LHC physics

ML introduction

Jet classification

Anomalies

Generation

ML examples

Events and amplitudes

Speeding up Sherpa [sampling]

· precision simulations limiting factor for Runs 3&4

· unweighting critical

→ Phase space sampling
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Events and amplitudes

Speeding up Sherpa [sampling]

· precision simulations limiting factor for Runs 3&4

· unweighting critical

→ Phase space sampling

Speeding up amplitudes [precision regression]

· loop-amplitudes expensive

· interpolation standard

→ Network amplitudes
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Invertible event generation and errors

Unfolding and inversion [conditional normalizing flows, see later]

· shower/hadronization unfolded by jet algorithm

· detector/decays unfolded e.g. in tops

· calibrated inverse sampling

→ Backwards generation
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Invertible event generation and errors

Unfolding and inversion [conditional normalizing flows, see later]

· shower/hadronization unfolded by jet algorithm

· detector/decays unfolded e.g. in tops

· calibrated inverse sampling

→ Backwards generation

Generative networks with uncertainties [Bayesian discriminator-flows]

· control through discriminator [GAN-like]

· uncertainties through Bayesian networks

→ Precision & control
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String landscape and learned formulas

Navigating string landscape [reinforcement learning]

· searching for viable vacua

· high dimensions, unknown global structure

→ Model space sampling
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String landscape and learned formulas

Navigating string landscape [reinforcement learning]

· searching for viable vacua

· high dimensions, unknown global structure

→ Model space sampling

Learning formulas [genetic algorithm, symbolic regression, see later]

· approximate numerical function through formula

· example: score/optimal observables

→ Useful approximate formulas
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