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Classic motivation
- dark matter?
- baryogenesis?
- origin of Higgs field?

Defining LHC physics
- fundamental motivation
- huge data set
- complete uncertainty control
- first-principle simulations

Successful past
- measurements of event counts
- analyses inspired by simulation
- model-driven Higgs discovery

First-principle simulations
- start with Lagrangian/Hamiltonian
- calculate using quantum field theory
- simulate collisions
- simulate detectors
— LHC collisions in virtual worlds




Modern LHC physics

Classic motivation First-principle simulations
- dark matter? - start with Lagrangian/Hamiltonian
- baryogenesis? - calculate using quantum field theory
- origin of Higgs field? - simulate collisions

- simulate detectors

Defining LHC physics — LHC collisions in virtual worlds

- fundamental motivation

- huge data set Future analyses
- complete uncertainty control - compare simulations and data
- first-principle simulations - analyze data systematically
- infer underlying theory
Successful past - understand LHC dataset completely
- measurements of event counts — Just data science...

- analyses inspired by simulation
- model-driven Higgs discovery
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LHC data structure

LHC collaborations

- ATLAS & CMS general purpose
LHCb, ALICE, FASER specialized

- international collaborations
3000 scientists per experiment

LHC detectors
- built around pp interaction point
- measuring outgoing particles
- really complex...

Muon detector

Electromagnetic

calorimeters End-cap toroid

Solenoid

Hadronic calorimeters



LHC data structure

LHC collaborations LHC Event

- ATLAS & CMS general purpose
LHCb, ALICE, FASER specialized

- international collaborations
3000 scientists per experiment

LHC detectors
- built around pp interaction point TLAS
EXPERIMENT

- measuring outgoing particles
- really complex...

colliding two protons at 40 MHz

- producing anything light enough
r— - most particles decaying

ranapa - measure energy, momentum,
e End-cap toroid
2 charge

- electrons, muons easy
quarks, gluons as jets  [20-50 particles]
- event: 100+ ntuples (E, B, Q)
— ATLAS output 3 PB/s




Ask a data scientist

LHC questions
- How to get from 3 PB/s to 300 MB/s?
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Ask a data scientist

LHC questions

- How to get from 3 PB/s to 300 MB/s?
Data compression  Netfiix]

- How to analyze events as ntuples?
Graph neural networks [cars]

- How to incorporate symmetries?
Contrastive learning (Googlel

- How to combine different detectors?
Super-resolution  [Gaming]

- How to remove overlapping scatterings?
Data denoising (cars]

- How to look for new physics?
Autoencoders [sap|

- How to compare simulations and data?

- How to treat uncertatinties?

— XAl: Can we explain what we are doing?




Shortest ML-intro ever

Fit-like approximation
- approximate known f(x) ~ fy(x)
- no parametrization, just very many values 6
- new representation/latent space 6

Construction and contol
- define training procedure
- minimize loss to find best 6

Applications
- regression X — fy(x)
- classification x — fy(x) € [0, 1]
- generation r~N — fy(r)

Architecture
- adjust input and structure to data format
- assume structures, like symmetries or locality
- mostly, images vs language
— Transforming numerical science and everything




Regression with error bar

Network output with uncertainties

- train many networks:
different trainings
different initalizations
different data sets

- histogram network output fy(x)
obtain fy(x) + Af(x)

— So-called Bayesian network with Afy(x) from A6
Energy measurement with NN
- expectation value from probability distribution
€)= [ dEEpE)

- energy p(E|0) encoded in network parameters
parameters p(6|T) trained on data T

po(E) = [ a0 p(EI6) p(6IT)
- prediction by sampling once we know p(6|T)

(E) :/dE do E p(E|6) p(0|T) .




Constructing the loss function

Training means encoding p(6|T)
- so-called variational approximation ik q(6) as Gaussian with mean and width]
p(E) = [ 06 p(EI6) p(oIT) ~ [ ob p(EIS) q(0)
- similarity through minimal KL-divergence

q(0)
p(0IT)

Daula(6).p(61T)] = [ b a(6) tog



Constructing the loss function

Training means encoding p(6|T)
- so-called variational approximation ik q(6) as Gaussian with mean and width]
p(E) = [ 06 p(EI6) p(oIT) ~ [ ob p(EIS) q(0)

- similarity through minimal KL-divergence

- q(6)
Daula(6).p(61T)] = [ b a(6) tog a0,
- Bayes’ theorem to replace p(6|T)
Dr[q(6), p(0] T)] = /da q(0) log -90IP(T)_
’ p(T(0)p(6)

= Dla(0). p(O)] - [ 06 a(6) logp(T16) + logp(T) [ b q(6)
- normalize distributions, ignore irrelevant terms, so minimize

Duc[a(6), p(61 )] = Dic[a(6). p(®)] ~ [ d0 (6) log p(T10)




Constructing the loss function

Training means encoding p(6|T)
- so-called variational approximation ik q(6) as Gaussian with mean and width]
p(E) = [ 06 p(EI6) p(oIT) ~ [ ob p(EIS) q(0)

- similarity through minimal KL-divergence

- q(6)
Daula(6).p(61T)] = [ b a(6) tog a0,
- Bayes’ theorem to replace p(6|T)
Dr[q(6), p(0] T)] = /da q(0) log -90IP(T)_
’ p(T(0)p(6)

= Dla(0). p(O)] - [ 06 a(6) logp(T16) + logp(T) [ b q(6)
- normalize distributions, ignore irrelevant terms, so minimize
Du[a(6), p(01T)] = Dr[a(8), p(6)] — /d9 q(0) log p(T10)
— Loss combining likelihood and regularization

L:—/ﬁommkgmnm+ommmmw»




Jet classification

Partons as QCD jets

- most interactions just 99, g9 — qq, g9

- quarks/gluon visible as jets
splittings described by QCD
hadronization and hadron decays in jets

- jets as decay products
67% W —jj 70%Z—j 60%H—j 67%t—jj 60%T—j..
- new physics in ‘dark jets’
— Everywhere in LHC physics




Jet classification

Partons as QCD jets

- most interactions just qq, g9 — qq, g9

- quarks/gluon visible as jets
splittings described by QCD
hadronization and hadron decays in jets

- jets as decay products
67% W —jj 70%Z—j 60%H—j 67%t—jj 60%T—j..

- new physics in ‘dark jets’
— Everywhere in LHC physics

ML-classification since 1991
- low-level or high-level observables?
- combination of detector outputs?
- uncertainties?
- data denoising against pileup?
- resilience to training uncertainties?
— ML-LHC research program




Hello World of LHC-ML

History of modern jet tagging

—

2014/15: first jet image papers
2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work

Jet classification established

The Machine Learning Landscape of Top Taggers

A. Butter?, K. Cranmer?, D. Debnath!,
puskos”, P. T. Komiske®, S. Leiss!, A. Lister”
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April 12, 2019

Abstract

Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
We find that they are extremely powerful and great fun.

Content
L Introduction
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Hello World of LHC-ML

History of modern jet tagging

2014/15: first jet image papers
2017: first (working) ML top tagger

ML4Jets 2017: What architecture works best?
ML4Jets 2018: Lots of architectures work
— Jet classification established
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Abstract

Based on the established task of identifying boosted, hadronically decaying
top quarks, we compare a wide range of modern machine learning approaches.
We find that they are extremely powerful and great fun.
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Learning background only ... o s s w0 wose  soromo soson somior s

Penalize anomalous features

- key feature: bottleneck
unsupervised training on background
minimize reconstruction-MSE
extract (unknown) signal through MSE

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B?
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Penalize anomalous features

- key feature: bottleneck
unsupervised training on background
minimize reconstruction-MSE
extract (unknown) signal through MSE

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like iet
— Symmetric performance S <+ B?

Penalize missing features

- compact latent space: sphere
- energy-based model

normalized Boltzmann mapping (£, =msE]
e Eo0)

Zy

L= —(logpg(x)) = (Eo(x) + log Zp)

- inducing background metric
- Zy from Markov Chain

Po(x) =

5@20x20 5@40x40 10@40x40 1@40x40

top S
QCD B

3.69




Learning background only  eos e s semar s wmsc0  ssrman seswen 1w gson

Penalize anomalous features

- key feature: bottleneck
unsupervised training on background
minimize reconstruction-MSE
extract (unknown) signal through MSE

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QGCD jets just simple top-like jet
— Symmetric performance S «» B? —

Penalize missing features

- compact latent space: sphere

- energy-based model "
normalized Boltzmann mapping (£, =msE] 05
—Eg(x) 00 —
e o 0
Po(x) = — . -
0
QCD tagging
L= —(logpa(x)) = (Ea(x) +log Zs)

- inducing background metric
- Zy from Markov Chain
— Proper anomaly search, at last

o Qcp

107
MSE




Modern generative networks
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- generate new images, text blocks, etc

- encode density in target space
sample Gaussian into target space

- reproduce training data, statistically independently
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Modern generative networks

Generative networks
- generate new images, text blocks, etc

- encode density in target space
sample Gaussian into target space

- reproduce training data, statistically independently

- Variational Autoencoder
— low-dimensional physics, high-dimensional objects

- Generative Adversarial Network
— generator trained by classifier

- Normalizing Flow/Diffusion Model
— bijective mapping

- Generative Pre-trained Transformer
— learning all structures

— Pick best model for purpose

Fundamental question
- generative models and training-data multiplier
- first generated instances reproducing structures
- too many generated instances reproducing noise?




Generative networks for LHC

Normalizing flows/INN for LHC
- trained on samples of energy-momentum ntuples
- limited dimensionality
- bijective mapping, stable training
- likelihood loss
- different coupling-layer structures
— Best-suited for LHC applications

forward

scattering decay QCD shower i
> H—ﬁﬁﬁggaﬁa O@

detectors

&=

Y



Generative networks for LHC

Normalizing flows/INN for LHC
- trained on samples of energy-momentum ntuples
- limited dimensionality
- bijective mapping, stable training
- likelihood loss
- different coupling-layer structures
— Best-suited for LHC applications

Normalized

Generative networks with uncertainties

0.2 0.4 0.6 0.8
- network weight distributions for density
. 0.14 —— Fit: Azy = 0.04, Aty = 0.01
- sampling for output S
0.12

events with error bars B 50y

- learned density & uncertainty maps
information on how networks learn?

- 2D: wedge ramp, kicker ramp, Gaussian sphere
— B-INNSs just constrained fits with error bars




Generative networks for LHC

Normalizing flows/INN for LHC
- trained on samples of energy-momentum ntuples
- limited dimensionality
- bijective mapping, stable training
- likelihood loss
- different coupling-layer structures
— Best-suited for LHC applications

7 + 1 jet exclusive

—— Reweighted

LHC events with uncertainties —— Train

- ntuples for two muons and 1-3 jets

- check through ML-classifier wp
reweight through ML-classifier

- statistical training limitation
encoded in B-INN uncertainty

- systematic training limitation
encoded in data augmentation a
sampled through conditional INN

— Precision and uncertainty control

0 50 100 150
Py, [GeV]




ML for LHC Theory

ML-applications
- just another numerical tool for a numerical field
- driven by money from data science and medical research
- goals are...

..improve established tasks
...develop new tools for established tasks
...transform through new ideas

- XAl through...

...precision control
...uncertainties
...symmetries

formulas © Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
. » LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
“NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, USA

Modern Machine Learning for LHC Physicists

Tilman Plehn®; Anja Butter*?, Barry Dillon®, and Claudius Krause®

— New theme in LHC physics

November 2, 2022

Abstract

‘Modem machine learning is transforming particle physics, faster than we can follow, and bullying its way into our
numerical tool bos. For young researchers it is crucial t stay on top of this development, ehich means applying cutting-
edge methods and tools 1o the full range of LHC physics problems. These lecture notes are meant to lead students with
basic Knowledge of paricle physics and sigificant snthusism for machine Icaming fo relevant pplications as fust a5
possible. They start with an L anda and then cover
classification, 4 classi generative notworks, and bl mch of e
s pan o
plicons,he st il s spet of horts L phis Allcxaples st chinen fom il phy\ es
publicatic ast few years. Given that these notes will be ouldated already at the time of submission, the week of
[rimese ey will b upded oqunty:

well-defined loss hand and i netwo



http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf

Generative networks

GANGogh (2017
- create new pieces of art
- generation r — pe(r) sampled r ~ N
- train on 80,000 pictures
- generate flowers




Generative networks

GANGogh (2017
- create new pieces of art
- generation r — pe(r) sampled r ~ N
- train on 80,000 pictures
- generate portraits
— LHC?




Optimal observables

Measure model parameter 6 optimally

- single-event likelihood

1 d"o(x]9)
p(x|0) = oo@)
- expanded in 6 around 6, define score
0
og LX) (9 60) Vo log p(x10)| = (60— o) t(x106) = (8 — 60) 6®(x)
p(x|60) %

- leading order parton level
p(x|0) = [MI§ +0lMg = H(x|fo) ~




Optimal observables

Measure model parameter 6 optimally

- single-event likelihood

1 d"o(x]9)
p(x|0) = o@) axm
- expanded in 6 around 6, define score
0
og LX) (9 60) Vo log p(x10)| = (60— o) t(x106) = (8 — 60) 6®(x)
p(x|60) 0
- leading order parton level
M2
PUIO) & IMB+ 0IME, = t(xitg) ~ X
| MIG
CP-violating Higgs production q

- unique CP-observable

SR

lab frame

t o epvpo ki k5 a7 g5 sign[(ky — ko) - (g1 — G2)] " — sin Agy
- CP-effect in Ag; q
Dé-effect in pr ;
= Key LHC observable

---



PySR

Analytic formula for score
- function to approximate  t(x|6)
- phase space parameters X, = pr/my, An, A¢  inode]
- operators  sinX, X2, X3, X+ Yy, X — y,Xxy,X/y Inode]
- represent formula as tree  [complexity = number of nodes]
= Figures of merit

1< 2 ) .
MSE=-—>" [g,v(x) — #(x, z|0)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

compl dof ‘function MSE
3 1|ade 1.30 10
4 1 |sin(aA¢) 2.75-107! \
5 1 |aA¢a,, 9.93-107> 1O
6 1 |—z,;sin(A¢d+a) 1.90-1071
7 1 |(=zp1 — a)sin(sin(Ad)) 5.63-1072 £
8 1 |(a—zp1)Tp2sin(Ag) 1.61-1072
14 2 |2p1(al¢ —sin(sin(A¢)))(zp2 +b)  1.44-1072
15 3 |—(zp2(aln? +zp1) +b)sin(A¢+c) 1.30-102
16 4 |—zp1(a— bAD)(zp2 +¢)sin(Ap+d) 850-1073 107
7

(zp2 + a)(bxp1(c — Ag) 8.18-10-3 5 10 15 20 25 30
—p,1 (AN + expn + f)sin(Ad +g)) complexity




PySR

Analytic formula for score
- function to approximate  t(x|6)
- phase space parameters  xp, = pr/my, An, A¢  (node]
- operators  sinX, X2, X3, X+ Y, X — y,X x Y, X/y Inode]
. represent formula as tree [complexity = number of nodes]
= Figures of merit

MSE*1Xn:[v t(x, 210)]° — MSE i lexit
=5 gi(x) — t(x, z| )] — + parsimony - complexity

i=1

Score around Standard Model

- expected limits: 1.0{cPvin weF
very wrong formula 08
wrong formula g aprpr,
right formula Sos
! 2
MadMiner 2
s . e . . © 0.4
- same within statistical limitation §
= New optimal observables next 0.2
0.0 =" """ TTSayTi """ ————

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

wiw




ML-applications for analysis

Top tagging  (supervised classification] !
- “hello world’ of LHG-ML
- the end of QCD
- different NN-architectureS‘g
— Non-NN left in the dust... ="

100

00 01 02 03 04 05 06 07 08 09 10
Signal fficiency 5




ML-applications for analysis

Top tagging  (supervised classification]
- ‘hello world’ of LHG-ML = |

- the end of QCD
- different NN-architectures
— Non-NN left in the dust...

H
-

00T 67 03 03 @5 06 07 a8 09 o

Particle flow [classification, super-resolution] ’ [ :’ ’ :
. % * % d 3

- mother of jet tools 2 LI ,

- combined detector channels T

- similar studies in CMS
_+ Seriously impressive e
e Y . :
= 3 = %
Towards a Computer Vision Particle Flow * o s ¥ L
Sanmay Gang wly“ Eilam Gross', Marumi Kado
e R —
e i iy

Uit Pt Sy, CNRSINGPS, ICLah 51405, Oy, e

that the iginating from a 7° 2% 32 e




Symmetries

Learning symmetries [representation, visualization]
- (particle) physics is all symmetries
- identify symmetries in 2D systems [paintings]
- CNN on PCAs of penultimate network layers
— Networks represent data patterns !




Symmetries

Learning symmetries [representation, visualization]
- (particle) physics is all symmetries
- identify symmetries in 2D systems [paintings]
- CNN on PCAs of penultimate network layers
— Networks represent data patterns

PCA dataset

tabel 1 ~ Symmenry
% Classification

label3  tabeld

Symmetric networks  [contrastive learning, transformer network]
- rotations, translations, permutations, soft splittings, collinear splittings
- learn symmetries/augmentations
— Symmetry-aware latent space

Abstract




Non-QCD and parton densities

Anomaly searches  [unsupervised training, see later]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Spirit of LHC




Non-QCD and parton densities

Anomaly searches [unsupervised training, see later]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Spirit of LHC ==

Abstract

NNPDF/N3PDF parton densities i biast
- starting point: pdfs without functional ansatz

- moving on: cutting-edge ML everywhere
— Leaders in ML-theory _ neeor B----




Events and amplitudes

Speeding up Sherpa  (sampling]

do/dm b Gv-1]
A
—

¢

i

3

#

3

f

- precision simulations limiting factor for Runs 3&4 ¢
- unweighting critical e / ]

— Phase space sampling




Events and amplitudes

Speeding up Sherpa [sampling] ) ~e=1)

Emv

- precision simulations limiting factor for Runs 3&4
- unweighting critical
— Phase space sampling

Speeding up amplitudes [precision regression]

e —— werpim

- loop-amplitudes expensive
- interpolation standard Optimising smultionsfor diphoton production at

hadron colliders using amplitude neural networks
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Invertible event generation and errors o .
Unfolding and inversion  (conditional normalizing flows, see later] %?E
- shower/hadronization unfolded by jet algorithm :z £ N
- detector/decays unfolded e.g. in tops Og et SR
- calibrated inverse sampling 00 T Tl
— Backwards generation | ,;

PN
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Invertible event generation and errors . e
Unfolding and inversion [conditional normalizing flows, see later] i?g
- shower/hadronization unfolded by jet algorithm o A N
- detector/decays unfolded e.g. in tops L e
- calibrated inverse sampling “U P T

2 jet incl.

— Backwards generation - P s

Detector Truth

Abstract

.12
Ziio W’Lﬂul

08
70 ke o 9

0

Nt e s b 3 an.

80 85
e et kbt et et i e Mitreco [GeV]

Generative networks with uncertainties [Bayesian discriminator-flows]

S 7+ 1 jet exclusive

- control through discriminator  [cAN-iike] P B
- uncertainties through Bayesian networks
— Precision & control

normalized
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String landscape and learned formulas

Navigating string landscape  f[reinforcement learning]

- searching for viable vacua
- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model Space SamDIan Genetic Algorithms and Reinforcement Learning

€

Figue 1 Lf. Clustrsoutrs indimensioaly edvced fu samples fo RL and 25 GA runs (/CA
on al sampls of GA and RL) The colrs nici nividun GA rns. Righ
Ginput) al s respctiel) in elsion o principal components for 3 PCA o the

ibidoa outpn ot O o




String landscape and learned formulas

Navigating String Iandscape [reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model space Samp“nq Genetic Algorithms and Reinforcement Learning

FARY

Abstract
Figur : Lefs Clusterstucure i imensinaly educed s samples o RL and 25 GA uns (°CA

onll sample of GA an RL). The colors inicateidividual GA rs. Right:

(input) values (N and N; respecivly)in relaon to pricipal componenisfor  PCA it of the

indidoal output of GA and KL i e s g o g g i

Learning formulas [genetic algorithm, symbolic regression, see later]

- approximate numerical function through formula
- example: score/optimal observables

— Useful approximate formulas Emgm  E=m

Back to the Formula — LHC Edition
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Table 8: Score hall o fame for simplified WBF Higgs production with f i = 0, including o plx smsed &

optimization fit o sociated 2 producton. We then valdate It fr the kv cse of CP-vilation b
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