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Modern LHC physics

Classic motivation

· dark matter?

· baryogenesis?

· origin of Higgs field?

LHC physics

· fundamental questions

· huge data set

· first-principle, precision simulations

· complete uncertainty control

Successful past

· measurements of event counts

· model-driven analyses

· Higgs discovery
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Classic motivation

· dark matter?

· baryogenesis?

· origin of Higgs field?

LHC physics

· fundamental questions

· huge data set

· first-principle, precision simulations

· complete uncertainty control

Successful past

· measurements of event counts

· model-driven analyses

· Higgs discovery

First-principle, precision simulations

· start with Lagrangian

· calculate scattering using QFT

· simulate collisions

· simulate detectors

→ LHC collisions in virtual worlds

BSM searches

· compare simulations and data

· understand LHC dataset
systematically

· infer underlying theory [SM or BSM]

· publish useable results

→ Lots of data science...

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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First-principle simulations
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· start with Lagrangian
generate Feynman diagrams

· compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [ISR/FSR]

· add parton shower [still QCD]

push fragmentation towards QCD

· all theory, except for detectors

→ Simulations, not modeling!
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Role of theory

First-principle simulations
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· start with Lagrangian
generate Feynman diagrams

· compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [ISR/FSR]

· add parton shower [still QCD]

push fragmentation towards QCD

· all theory, except for detectors

→ Simulations, not modeling!

Pythia/Madgraph/Sherpa... for HL-LHC

· factor 10 more expected (= simulated) data

· more complex final states
higher-orders precision

· parameter coverage for signals

· enable analysis reinterpretation?
enable global LHC analyses?

→ Theory challenge
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Role of theory

First-principle simulations
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· start with Lagrangian
generate Feynman diagrams

· compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [ISR/FSR]

· add parton shower [still QCD]

push fragmentation towards QCD

· all theory, except for detectors

→ Simulations, not modeling!

LHC-specific explainable AI

· SBI conditional on theory simulations

· understanding LHC data is QFT

· computing speed means precision

· control critical

· uncertainties crucial

· phase space interpretable

→ Well-defined, but non-standard AI/ML

Scienti�c simulators

9 / 36
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LHC physicist vs data scientist

LHC questions

· How to trigger from 3 PB/s to 300 MB/s?

Data compression [Netflix]

· How to analyze events with 4-vectors?

Graph neural networks [Cars]

· How to incorporate symmetries?

Contrastive learning [Google]

· How to combine tracker and calorimeter?

Super-resolution [Gaming]

· How to remove pile-up?

Data denoising [Cars]

· How to look for BSM physics?

Autoencoders [SAP]

· How to analyse LHC data?

Simulation-based inference

· How to treat uncertatinties??
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Shortest ML-intro ever

Fit-like approximation

· approximate known f (x) using fθ(x)

· no parametrization, just very many values θ

· new representation/latent space θ

Construction and contol

· define loss function

· minimize loss to find best θ

· compare x → fθ(x) for training/test data

LHC applications

· regression x → fθ(x)

· classification x → fθ(x) ∈ [0, 1]

· generation r ∼ N → fθ(r)

· conditional generation r ∼ N → fθ(r |x)

· · · ·
→ Transforming numerical science
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ML-applications in experiment

Top tagging [supervised classification]

· ‘hello world’ of LHC-ML

· end of QCD-taggers

· different NN-architectures

→ Non-NN left in the dust...
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ML-applications in experiment

Top tagging [supervised classification]

· ‘hello world’ of LHC-ML

· end of QCD-taggers

· different NN-architectures

→ Non-NN left in the dust...

Particle flow [classification, super-resolution]

· mother of jet tools

· combined detector channels

· similar studies in CMS

→ Beyond just concepts
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Jets and parton densities

Anomaly searches [unsupervised training]

· train on QCD-jets, SM-events

· look for non-QCD jets, non-SM events

→ Autoencoders
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Jets and parton densities

Anomaly searches [unsupervised training]

· train on QCD-jets, SM-events

· look for non-QCD jets, non-SM events

→ Autoencoders

NNPDF/N3PDF parton densities [full blast]

· starting point: pdfs without functional ansatz

· moving on: cutting-edge ML everywhere

→ Leaders in ML-theory
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Symmetries

Symmetric networks [contrastive learning, transformer network]

· rotations, translations, permutations, soft splittings, collinear splittings

· learn symmetries/augmentations

→ Symmetric latent representation
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Symmetries

Symmetric networks [contrastive learning, transformer network]

· rotations, translations, permutations, soft splittings, collinear splittings

· learn symmetries/augmentations

→ Symmetric latent representation

Learning symmetries [representation, visualization]

· (particle) physics is all symmetries

· identify symmetries in 2D systems [paintings]

→ Networks representing structure4

PART II:  CNN CLASSIFICATION

label 1 label 2

label 3 label 4

PCA dataset

Symmetry 
Classification

FIG. 3. Part II: CNN Classification. The PCAs collected in Part I and labelled are used to train an algorithm to classify
symmetries.

Hoping that a CNN would perform better than our
eye at distinguishing between PCAs coming from FCNNs
trained on di↵erent symmetry classes, we then turn to
Part 2 of our workflow, which is to train a single CNN
to classify hundreds of PCAs. If the CNN succeeds, it
means that there is a common pattern in the various
PCAs produced by FCNNs trained on di↵erent decoy
tasks belonging to the same symmetry class. We would
therefore conclude that the FCNNs have encoded some
information about the symmetry class of the problem it
has been learning.

Looking for a good accuracy in our image classification
task, we perform transfer learning using a Resnet net-
work, but select the smallest one (i.e. ResNet18 [9]) for
speed, as implemented in the fastai package [7]. From
a training sample of 1240 PCAs, we achieve a validation
accuracy of 73% on the 5-class problem, and an 80%-
95% error for each of the four di↵erent binary problems
of identifying the presence or absence of each symmetry
separately.

We checked how our results were a↵ected by varying
the hyperparameters of the FCNN, in particular as they
allow a more precise or looser fit. The most obvious is-
sue is when the FCNNs do not perform so well at their
binary classification task: the CNN then has a hard time
reaching a good accuracy. For instance, with the same
hyperparameters, but only 100 epochs instead of 300, the
FCNNs typically reach an accuracy below 99.8% on the
whole training plus validation dataset. CNNs trained on
the resulting PCAs barely reach 60% accuracy on the
5-class task.

Perhaps less obvious is the fact that it is counterpro-
ductive to train the FCNNs until they learn their task
perfectly: we have tested this by training FCNNs with
the same hyperparameters (including in particular 300
epochs), but without defining a validation set. The best
model is then selected by minimizing the (training) loss

instead of the validation error as was the case before.
Such models typically reach an average error rate be-
low 1/10,000 on the whole dataset, i.e. so small that
most of them did not make a single mistake in their bi-
nary classification task (involving several thousands of
points). Here again, the CNNs trained on the result-
ing PCAs barely reach 60% accuracy on the 5-class task,
possibly because the FCNN has overfit to the location
of the individual pixels that have been selected in the
random-ssampling process instead of relying on simplify-
ing assumptions such as the symmetry.

III. APPLICATION TO ART

Since the very beginning of times, symmetry has been
studied not only by scientists but also by artists. Most
people are familiar with the broader concept of symme-
try. The notions of beauty, proportion, or harmony im-
mediately cross our minds when talking about symmetry,
abstract or concrete.

The Merriam Webster Dictionary in its first entry for
the term symmetry says: beauty of form arising from bal-
anced proportions while the Cambridge dictionary states
that symmetry is the quality of having parts that match
each other, especially in a way that is attractive, or sim-
ilarity of shape or contents.

Symmetry has been the guiding principle to construct
the Physics theories that describe Nature. Even before
we developed our first Physics theory, ancient Greeks
were captivated by the symmetries of the world around
them and believed that these would be reproduced in the
underlying principles of Nature itself.

The concept of symmetry is also ubiquitous in the
artistic world. The question therefore is whether a con-
cept that crosses scientific and artistic boundaries can be

Symmetry meets AI

Gabriela Barenboima, Johannes Hirna, and Verónica Sanza,b

a Departament de F́ısica Teòrica and IFIC, Universitat de València-CSIC, E-46100, Burjassot, Spain and

bDepartment of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn
to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics
templates, where no information on symmetry is provided. We use the output from the last hidden
layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task,
and show that information on symmetry had indeed been identified by the original NN without
guidance. As an interdisciplinary application of this procedure, we identify the presence and level of
symmetry in artistic paintings from di↵erent styles such as those of Picasso, Pollock and Van Gogh.

I. INTRODUCTION

Symmetries are central to the underlying structure of
Nature. The discovery of a symmetry signifies the exis-
tence of a fundamental principle and manifests itself in
the form of physical laws and selection rules. Indeed, all
known fundamental laws of Physics can be derived from
an axiom of invariance under a transformation. This is
exemplified in Galilean relativity, Maxwell’s equations for
electromagnetism, Einstein’s special and general relativ-
ity as well as the gauge theories of the fundamental forces
in Particle Physics.

On a more pragmatic note, symmetries have lots of ap-
plications, such as those in crystallography or the simpli-
fications they confer to the study of a problem: a sym-
metry is an organizing structure underlying the infor-
mation at hand. Discovering such a pattern thus leads
to a deeper understanding, as in the simple case of a
Rohrschach test: noticing the reflection symmetry of an
inkblot helps a child guess how the drawings were made,
i.e. by folding a blotted paper onto itself.

This understanding allows for simplifications in the
way we handle the data and, at a deeper level, can indi-
cate the presence of a higher-level principle. This connec-
tion between symmetry and simplicity or even elegance
appears frequently in Theoretical Physics.

In Art, symmetry is also often linked to the concept of
elegance. This is not to say that symmetric artworks are
more beautiful, as it is known that most humans prefer
faces, musical pieces, paintings and photographs where
the symmetry is not exact, but slightly imperfect or bro-
ken [1]. In Physics as well, deviations around a symmetric
situations are often considered as a useful approximation
technique, since perfect symmetries are seldom found in
Nature.

A Physics example of the the discovery of a symmetry
is given by the motion of the planet Mars. Before his
death in 1601, the astronomer Tycho Brahe had gath-
ered the most accurate records of its position in the night
sky. Within these data was an underlying structure that
took many years for Johannes Kepler to tease out in the

shape of ellipses 1. From this simpler representation of
the data, Isaac Newton was able to deduce the laws of
gravity, which exhibit a central symmetry, no doubt a
simpler, deeper and thus more general description of the
motion of celestial bodies than the original collection of
observations. Fast-forwarding many years, we now un-
derstand that Newton’s laws can be obtained from im-
posing a symmetry on an abstract object called the Ac-
tion.

Our idea in this paper is to lay the foundations for an
automated, or artificial intelligence (AI), version of the
Kepler intermediate step between Brahe and Newton.

A functional task-oriented implementation of the gen-
eral concept of AI is called Machine Learning (ML). It in-
volves algorithms that give general prescriptions for com-
puters to progressively approximate (or learn) the appro-
priate rules to reproduce specific observations. This is in
contrast with traditional programs, which lack the level
of expressivity needed here.

Currently, Science in general and Physics in particular
are undergoing a revolution of sorts [2], as the ML meth-
ods that have been employed in experimental fields with
large datasets are applied to more formal areas and even
for symbolic mathematics [3].

ML is indeed particularly good at pattern recognition,
and we thus ask the question: as these methods are used
to extract information from the data, can they also detect
the presence of symmetries in the data they are exposed
to? And if they can, do they do so automatically, i.e.
do they naturally organize the information according to
symmetry patterns?

In this paper we walk the first steps to answer the
above questions. Beyond our curiosity and our desire to
understand not only the laws of nature but the way ML
proceeds, we apply our method to study a deep connec-
tion between Physics and Art.

After training algorithms on a Physics-based set-up
in Sec. II, we apply them to artworks in Sec. III and

1 In this example, there are small perturbations to the heliocentric
potential acting on Mars, due to the presence of other planets:
the symmetry is realized only approximately in Nature.
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Integrals and perturbative QFT

Learning integrands and integrals [differentiable networks]

· learn integrand through differiable network

· evaluate integrated NN-structures

→ Novel ML-integrator

1.3 Regression 29

As an afterthought, let us briefly think about the difference between interpolation and extrapolation. If we want to encode
f✓(x) ⇡ f(x) as a neutral network over x 2 RD, as defined in Eq.(1.26), we rely on the fact that our training data consists
of a sufficiently dense set of training data point in the space RD. Compared to a functional fit, the implicit bias or the
assumptions about the functional form of f(x) are minimal, which means that the network training works best if for a
given point x0 the network can rely on x-values in all directions. This is an assumption, but fairly obvious. Now we can
ask the question how likely it is that we indeed cover the neighborhood of x0 in D dimensions, and the probability of
finding points in the this neighborhood scales like the volume of the D-dimensional sphere with radius r,

VD(r) =
⇡D/2

�
�

D
2 + 1

� rD with �(n) = (n� 1)! . (1.77)

It grows rapidly with D, which means that with increasing dimensionality we are less and less likely to cover the
neighborhood of a given x0. This is a version of the so-called curse of dimensionality. It is especially true because the
relevant dimensionality is that of the data representation, not of the underlying physics. The only problem with the
general statement that network training always turns from an interpolation to an extrapolation problem is that in our
language we do not consider a network an interpolation, but a fit-like approximation.

1.3.3 Numerical integration

The last application of a regression network is the numerical calculation of a D-dimensional phase space integral

I(s) =

Z 1

0

dx1· · ·
Z 1

0

dxD f(s; x) , (1.78)

where xi are the integration valiables and s is a vector of additional parameters, not integrated over. Because the values of
the integrand can span a wide numerical range is useful to normalize the integrand, for example by its value at the center
of the x-hypercube,

f(x; s)! f(s; x)

f(s; 1
2 , 1

2 , , ..., 1
2 )

, I(s)! I(s)

f(s; 1
2 , 1

2 , ..., 1
2 )

. (1.79)

Without going into details, it is also useful to transform the integrand into a form which vanishes at the integration
boundaries. Analytically, we would compute the primitive F ,

dDF (s; x)

dx1 . . . dxD
= f(s; x) , (1.80)

and then the integral by evaluating the integration boundaries

I(s) =

Z 1

0

dx1· · ·
Z 1

0

dxD
dDF (s; x)

dx1 . . . dxD

=

Z 1

0

dx1· · ·
Z 1

0

dxD�1
dD�1F (s; x)

dx1 . . . dxD�1

�����

xD=1

xD=0

=
X

x1,...,xD=0,1

(�1)D�P xiF (s; x) . (1.81)

In particle physics we really never know the primitive of a phase space integrand, but we can try to construct it and
encode it in a neural network,

F✓(s; x) ⇡ F (s; x) . (1.82)

On the other hand, we do not have data to train a surrogate network for F directly. The idea is to instead train an
integrand surrogate, such that its D-th derivative matches f ,
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Learning integrands and integrals [differentiable networks]

· learn integrand through differiable network

· evaluate integrated NN-structures

→ Novel ML-integrator

1.3 Regression 29

As an afterthought, let us briefly think about the difference between interpolation and extrapolation. If we want to encode
f✓(x) ⇡ f(x) as a neutral network over x 2 RD, as defined in Eq.(1.26), we rely on the fact that our training data consists
of a sufficiently dense set of training data point in the space RD. Compared to a functional fit, the implicit bias or the
assumptions about the functional form of f(x) are minimal, which means that the network training works best if for a
given point x0 the network can rely on x-values in all directions. This is an assumption, but fairly obvious. Now we can
ask the question how likely it is that we indeed cover the neighborhood of x0 in D dimensions, and the probability of
finding points in the this neighborhood scales like the volume of the D-dimensional sphere with radius r,

VD(r) =
⇡D/2

�
�

D
2 + 1

� rD with �(n) = (n� 1)! . (1.77)

It grows rapidly with D, which means that with increasing dimensionality we are less and less likely to cover the
neighborhood of a given x0. This is a version of the so-called curse of dimensionality. It is especially true because the
relevant dimensionality is that of the data representation, not of the underlying physics. The only problem with the
general statement that network training always turns from an interpolation to an extrapolation problem is that in our
language we do not consider a network an interpolation, but a fit-like approximation.

1.3.3 Numerical integration

The last application of a regression network is the numerical calculation of a D-dimensional phase space integral

I(s) =

Z 1

0

dx1· · ·
Z 1

0

dxD f(s; x) , (1.78)

where xi are the integration valiables and s is a vector of additional parameters, not integrated over. Because the values of
the integrand can span a wide numerical range is useful to normalize the integrand, for example by its value at the center
of the x-hypercube,

f(x; s)! f(s; x)

f(s; 1
2 , 1

2 , , ..., 1
2 )

, I(s)! I(s)

f(s; 1
2 , 1

2 , ..., 1
2 )

. (1.79)

Without going into details, it is also useful to transform the integrand into a form which vanishes at the integration
boundaries. Analytically, we would compute the primitive F ,

dDF (s; x)

dx1 . . . dxD
= f(s; x) , (1.80)

and then the integral by evaluating the integration boundaries
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In particle physics we really never know the primitive of a phase space integrand, but we can try to construct it and
encode it in a neural network,

F✓(s; x) ⇡ F (s; x) . (1.82)

On the other hand, we do not have data to train a surrogate network for F directly. The idea is to instead train an
integrand surrogate, such that its D-th derivative matches f ,
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Learning integration paths [invertible networks]

· find optimal integration paths

· learn variable transformation

→ Theory-integrator
SciPost Phys. 12, 129 (2022)
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Figure 1: Feynman diagrams for our four example integrals, which we call pen-
tagon1L, ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines
denote massive lines, green lines denote massive or off-shell external legs (with a
mass different from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in Fig-
ure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production of a
top quark pair in association with another massive particle and depends on four independent
Mandelstam invariants as well as the top quark mass and the invariant mass of p5. Analyti-
cally it depends on logarithms and dilogarithms of ratios of kinematic invariants, leading to a
complicated branch-cut structure. After Feynman parametrization the corresponding integral
is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and one
off-shell leg. This diagram is a topology occurring for example in t t̄V production at two loops,
where the boson V is radiated off an external top quark. It is close to the configuration of a
2-loop gluon ladder diagram where the exchange of gluons between two top quark lines gives
rise to a Coulomb singularity. The analytic expression for this type of diagram is not known,
but it is anticipated that it will contain elliptic functions. This integral depends on 6 Feynman
parameters and is the most complicated example we consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with a massive
sub-triangle occurring, for instance, in NLO corrections to Higgs production in gluon fusion.
It is the easiest 2-loop diagram we consider and serves as a stepping stone towards more
complicated 2-loop diagrams. Analytic results for this diagram can be found in Refs. [49–51].
Depending on 5 Feynman parameters this integral is in between the previous two examples in
terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in gluon
fusion at two loops. Its analytic expression contains elliptic functions and therefore is cut-
ting edge for integrals that are currently accessible analytically. It has been calculated (semi-
)analytically in Refs. [52, 53] and also served as a benchmark for the development of the
program pySECDEC [45], where it is contained in the list of examples. This integral is 5-
dimensional, so it has the same number of Feynman parameters as the triangle diagram, but
it depends on four kinematic invariants rather than two.
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Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the
integration contour into the complex plane. While valid contours are easy to construct,
the numerical precision for a multi-loop integral can depend critically on the chosen
contour. We present methods to optimize this contour using a combination of optimized,
global complex shifts and a normalizing flow. They can lead to a significant gain in
precision.
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Event generation

Speeding up Sherpa and MadNIS [INNs for sampling]

· precision simulations limiting factor for HL-LHC

· unweighting measure

→ Phase space sampling

Fast amplitudes [precision regression]

· loop-amplitudes expensive

· interpolation standard

→ Precision NN-amplitudes
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→ Flow, diffusion, transformer
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Invertible event generation

Precision NN-generators [Bayesian generative models]

· control through discriminator [GAN-like]

· uncertainties through Bayesian networks

→ Flow, diffusion, transformer

Unfolding and inversion [conditional normalizing flows]

· detector/decays/QCD unfolded

· calibrated inverse sampling

→ Publishing analysis results
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Proper theory

Navigating string landscape [reinforcement learning]

· searching for viable vacua

· high dimensions, unknown global structure

→ Model space sampling

Learning formulas [genetic algorithm, symbolic regression]

· approximate numerical function through formula

· example: score/optimal observables

→ PySR
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Generative-network revolution

Generative networks

· generate new images, text blocks, LHC events

· encode density in target space
sample from Gaussian into target space

· reproduce training data, statistically independently

· include uncertainty on estimated density [Bayesian NN]

· Variational Autoencoder
→ low-dimensional physics, high-dimensional representation

· Generative Adversarial Network
→ generator trained by discriminator

· Normalizing Flow/Diffusion Model
→ stable (bijective) mapping

· Generative Transformer
→ learning correlations successively

→ Pick model for purpose

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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GAN algorithm

Generating events [phase space positions, possibly with weights]

– training: true events {xdata}
output: generated events r → xmodel

– discriminator constructing D(x) by minimizing [classifier D(x) = 1, 0 true/generator]

LD =
〈
− log D(x)

〉
xdata

+
〈
− log(1− D(x))

〉
xmodel

– generator constructing r → xmodel by minimizing [D needed]

LG =
〈
− log D(x)

〉
xmodel

– Nash equilibrium D = 0.5

⇒ statistically independent copy of training events
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How to GAN LHC events

General task: encode ME over phase space

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]

0.0

2.0

4.0

6.0

1 �
d
�

d
p T

,t
[G

eV
�

1
]

⇥10�3

True

GAN

pT,t [GeV]
0.8
1.0
1.2

G
A

N
T
ru

e

0 50 100 150 200 250 300 350 400
pT,t [GeV]

0.1

1.0
1

p
N

cu
m



hep-ml

Tilman Plehn

LHC physics

Examples

Generation

GANplification

Inversion

How to GAN LHC events

General task: encode ME over phase space

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]

– improved resolution [1M training events]
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How to GAN LHC events

General task: encode ME over phase space

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]

– improved resolution [10M generated events]
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How to GAN LHC events

General task: encode ME over phase space

– medium-complex final state t t̄ → 6 jets
t /̄t and W± on-shell with BW 6× 4 = 18 dof
on-shell external states→ 12 dof [constants hard to learn]

parton level, because it is harder

– flat observables flat [phase space coverage okay]

– standard observables with tails [statistical error indicated]

– improved resolution [50M generated events]

– Looks like GANplification
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Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]
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– true function known
compare GAN vs sampling vs fit

– quantiles with χ2-values
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– fit like 500-1000 sampled points
GAN like 500 sampled points [amplifictation factor 5]

requiring 10,000 GANned events

– interpolation and resolution the key [NNPDF]

⇒ GANs beyond training data
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Precision generator

Phase-space generators [typical LHC task]

· training from event samples
no energy-momentum conservation

· every correlation counts

· Zµµ + {1, 2, 3} jets [Z -peak, variable jet number, jet-jet topology]

INN-generator

· stable bijective mapping

latent r ∼ platent

Gθ (r)→
←−−−−−−−−→
← Gθ (x)

phase space x ∼ pdata

· tractable Jacobian

dx pmodel(x) = dr platent(r)

pmodel(x) = platent
(
Gθ(x)

)
∣∣∣∣∣
∂Gθ(x)

∂x

∣∣∣∣∣

· likelihood loss
LINN = −

〈
log pmodel(x)

〉
pdata

⇒ Per-cent precision possible
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detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

· forward: r → events

· inverse: r → anything, conditioned on event
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Inverse simulation

Invertible ML-simulation

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

· forward: r → events

· inverse: r → anything, conditioned on event

· individual steps known problems
detector unfolding
unfolding to QCD parton means jet algorithm
unfolding jet radiation known combinatorics problem
unfolding to hard process standard in top groups [needed for global analyses]

matrix element method an old dream

· improved through coherent ML-method

· free choice of data-theory inference point

→ Transformative progress for HL-LHC
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Inverting to hard process

Conditional INN

· generate partonic events xparton from {r}, given reco-event xreco

· train on paired events

· loss based on likelihood

L = −〈log p(θ|xparton, xreco)〉xparton,xreco

= −〈log p(xparton|xreco, θ) + log p(θ|xreco)− log p(xparton|xreco)〉xparton,xreco

= −〈log p(xparton|xreco, θ)〉xparton,xreco
− log p(θ) + const.

= −
〈

log p(g(xparton|xreco)) + log

∣∣∣∣
∂g(xparton|xreco)

∂xparton

∣∣∣∣
〉

xparton,xreco

− log p(θ) + const

→ Stable and statistically calibrated
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Inverting to hard process

Conditional INN

· generate partonic events xparton from {r}, given reco-event xreco

· train on paired events

· loss based on likelihood

L = −〈log p(θ|xparton, xreco)〉xparton,xreco

= −
〈

log p(g(xparton|xreco)) + log

∣∣∣∣
∂g(xparton|xreco)

∂xparton

∣∣∣∣
〉

xparton,xreco

− log p(θ) + const

→ Stable and statistically calibrated

Undo detector and QCD jet radiation in pp → ZW+jets

· hard process given

· detector and reconstruction universal

· jet radiation (approximately) universal

· model-independence: Butter-Malaescu

→ Stable and statistically calibrated
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Inverting to hard process

Conditional INN

· generate partonic events xparton from {r}, given reco-event xreco

· train on paired events

· loss based on likelihood

L = −〈log p(θ|xparton, xreco)〉xparton,xreco

= −
〈

log p(g(xparton|xreco)) + log

∣∣∣∣
∂g(xparton|xreco)

∂xparton

∣∣∣∣
〉

xparton,xreco

− log p(θ) + const

→ Stable and statistically calibrated

Undo detector and QCD jet radiation in pp → ZW+jets

· hard process given

· detector and reconstruction universal

· jet radiation (approximately) universal

· model-independence: Butter-Malaescu

→ Stable and statistically calibrated
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Inverting to hard process

Conditional INN

· generate partonic events xparton from {r}, given reco-event xreco

· train on paired events

· loss based on likelihood

L = −〈log p(θ|xparton, xreco)〉xparton,xreco

= −
〈

log p(g(xparton|xreco)) + log

∣∣∣∣
∂g(xparton|xreco)

∂xparton

∣∣∣∣
〉

xparton,xreco

− log p(θ) + const

→ Stable and statistically calibrated

Undo detector and QCD jet radiation in pp → ZW+jets

· hard process given

· detector and reconstruction universal

· jet radiation (approximately) universal

· model-independence: Butter-Malaescu

→ Stable and statistically calibrated
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ML for particle physics

ML-applications

· just another numerical tool for a numerical field

· driven by money from data science and medical research

· goals are...
...improve established tasks
...develop new tools for established tasks
...transform through new ideas

· xAI through...
...precision control
...uncertainties
...symmetries
...formulas

→ Lots of fun with hard LHC problems
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Abstract

Modern machine learning is transforming particle physics, faster than we can follow, and bullying its way into our
numerical tool box. For young researchers it is crucial to stay on top of this development, which means applying cutting-
edge methods and tools to the full range of LHC physics problems. These lecture notes are meant to lead students with
basic knowledge of particle physics and significant enthusiasm for machine learning to relevant applications as fast as
possible. They start with an LHC-specific motivation and a non-standard introduction to neural networks and then cover
classification, unsupervised classification, generative networks, and inverse problems. Two themes defining much of the
discussion are well-defined loss functions reflecting the problem at hand and uncertainty-aware networks. As part of the
applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from particle physics
publications of the last few years. Given that these notes will be outdated already at the time of submission, the week of
ML4Jets 2022, they will be updated frequently.

*plehn@uni-heidelberg.de

http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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