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Classic motivation
- dark matter?
- baryogenesis?
- origin of Higgs field?

LHC physics
- fundamental questions
- huge data set
- first-principle, precision simulations
- complete uncertainty control

Successful past
- measurements of event counts
- model-driven analyses
- Higgs discovery

forward

First-principle, precision simulations
- start with Lagrangian
- calculate scattering using QF T
- simulate collisions
- simulate detectors
— LHC collisions in virtual worlds

BSM searches
- compare simulations and data

- understand LHC dataset
systematically

- infer underlying theory [smorBsw)
- publish useable results
— Lots of data science...
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Role of theory

First-principle simulations

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation psriFsR]

- add parton shower [stit acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling!
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First-principle simulations @ @

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [sriFsR)

- add parton shower [stit acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling!

Pythia/Madgraph/Sherpa... for HL-LHC

- factor 10 more expected (= simulated) data
ATLAS Preliminary

- more CompleX final states 2020 Computing Model 'C:EJ,,: 2030: Aggressive R&D
2% 1
higher-orders precision o

- parameter coverage for signals

- enable analysis reinterpretation?
enable global LHC analyses?

— Theory challenge

12%

== Data Proc
79 == MC-Full(Sim)
MC-Full(Rec)

- MC-Fast(Sim)
= MC-Fast(Rec)
= EvGen

6% Heavy lons

== Data Deriv

= MC Deriv
Analysis




Role of theory

_N:a:ednv decay Qo ‘shower — detectors.
First-principle simulations @ @

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [sriFsR)

- add parton shower [stil acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling!

LHC-specific explainable Al

- SBI conditional on theory simulations
- understanding LHC data is QFT
- computing speed means precision Scientific simulators
- control critical
- uncertainties crucial
- phase space interpretable

— Well-defined, but non-standard Al/ML




LHC physicist vs data scientist

LHC questions
- How to trigger from 3 PB/s to 300 MB/s?
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LHC physicist vs data scientist

LHC questions

- How to trigger from 3 PB/s to 300 MB/s?
Data compression  [Netfix]

- How to analyze events with 4-vectors?
Graph neural networks [cars]

- How to incorporate symmetries?
Contrastive learning  (Google]

- How to combine tracker and calorimeter?
Super-resolution  (Gaming]

- How to remove pile-up?
Data denoising (cars]

- How to look for BSM physics?
Autoencoders  [sap]

- How to analyse LHC data?
Simulation-based inference

- How to treat uncertatinties??




Shortest ML-intro ever

Fit-like approximation
- approximate known f(x) using fy(x)
- no parametrization, just very many values 6
- new representation/latent space 6

Construction and contol
- define loss function
- minimize loss to find best 6
- compare x — fy(x) for training/test data

LHC applications
- regression X — fo(x)
- classification x — fy(x) € [0, 1]
- generation re~N —fy(r)
- conditional generation r ~ N — fy(r|x)

— Transforming numerical science




ML-applications in experiment

Top tagging  [supervised classification] :
- ‘hello world’ of LHC-ML = 1§
- end of QCD-taggers
- different NN-architectures
— Non-NN left in the dust...
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ML-applications in experiment

Top tagging  [supervised classification]
- ‘hello world’ of LHC-ML
- end of QCD-taggers
- different NN-architectures:
— Non-NN left in the dust...

100

8X8 Layer Truth

Particle flow [classification, super-resolution] : f z
- mother of jet tools € uan K
. combined detector channels N S E s
- similar studies in CMS
_, Beyond just concepts Tt
e AT B gl .
25 2 zsé 2§
Towards a Computer Vision Particle Flow * o ¢ e ®
B—— ity
g i st e e S o s

o Mo,
“Caiveté Pas Sl CRRSINSFS, UCLin 51405, Oy, Feoce

", yyis resolved by a 3 layer.




Jets and parton densities

Anomaly searches  [unsupervised training]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Autoencoders == )




Jets and parton densities

Anomaly searches [unsupervised training]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Autoencoders = ==

NNPDF/N3PDF parton densities il blast
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory N 3""‘ B

of parton distribution functions




Symmetries

Sy mmetric networks [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetric latent representation

= =

Symmetries, Safety, and Self:Supervision

Abstract

[y Ty




Symmetries

Sy mmetric networks [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetric latent representation 3

Symmetries, Safety, and Self:Supervision

Abstract

[y Ty

Learning symmetries [representation, visualization]

- (particle) physics is all symmetries
- identify symmetries in 2D systems  [paintings]
— Networks representing structure

PCA dataset

Wbt abeiz [0 > _ symmetry
5 .

(_label3  labeld )




Integrals and perturbative QFT

Learning integrands and integrals (differentiable networks] BHEP

- learn integrand through differiable network
- evaluate integrated NN-structures
— Novel ML-integrator

1L tanh

2L sigm
2L anh

Multi-variable integration with a neural network

00

“ 2000

1000




Integrals and perturbative QFT

Learning integrands and integrals (differentiable networks] BHEP

- learn integrand through differiable network
- evaluate integrated NN-structures
— Novel ML-integrator

1L tanh

2L sigm

00
2L anh

3000

“ 2000

1000

Learning integration paths f(invertivle networks]
scilpos | s s 12,120 202)

‘Targeting multi-loop integrals with neural networks

- find optimal integration paths
- learn variable transformation ‘

— Theory-integrator




Event generation

Speeding up Sherpa and MadNIS  [INNs for sampling]
- precision simulations limiting factor for HL-LHC
- unweighting measure
— Phase space sampling "

Ne=1)

FullSherpa ——
Surrogae Sherpa ——

de/dm (56 GV

Ratio

Deviaton (0]



Event generation

Speeding up

- precision simulations limiting factor for HL-LHC
- unweighting measure
— Phase space sampling

Sherpa and MadNIS NN for sampling]

de/dm [pb Gev-1)

e =

MoNELaL13

Accelerating Monte Carlo event goncration — rejoction
Sampling using neural network event-weight estimates

o o fows | ot i
= =
a2 | e Pt
am | o 019
w16 an | mw
a2 | B 12

Fast amplitudes [precision regression]

e

- loop-amplitudes expensive

- interpolation standard
— Precision NN-amplitudes

120

normalized

Optimising simulations for diphoton production at
hadron colliders using amplitude neural networks

Torgest T00% &

aa=ne largest 1% A R
‘process-boosted arpost - £3
e oo a | §

001

001 0oz 000 o002
¥+ overflow bin



Invertible event generation

Precision NN-generators [Bayesian generative models]

7+ 1 jet exclusive
.

- control through discriminator  [cAn-ike] g Reveghed
- uncertainties through Bayesian networks E

“Train
o \
— Flow, diffusion, transformer e - i

e @ =

Generative Networks for Precision Enthusiasts




Invertible event generation

Precision NN-generators [Bayesian generative models]

. 7+ 1 jet exclusive

- control through discriminator [GAN-iike] . Reveighed
“Train
- uncertainties through Bayesian networks

‘normalized

107

— Flow, diffusion, transformer pmm =00 0@

‘Generative Networks for Precision Enthusists

A

g .

Unfolding and inversion [conditional normalizing flows]

- detector/decays/QCD unfolded
- calibrated inverse sampling

P . = 2 jet inc
— Publishing analysis results e e e 21 —

PR

relm n
sl

N, e sl i 70 7 85 90 9%

&
e pebabioi ehrpetain o parion vl e e, Mitreco [GeV]




Proper theory

Navigating string landscape  (reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstract
B

Figure I L Cluter siructure i dimensionaly reduced lux samplesfor RL and 25 GA runs (FCA e v ent S 1 o of s v, e 1

on all samples of GA and RL). The runs. Right:

(input)values (Ns and N respecively)in relaion t principa components for a PCA 1t of the
individual output of GA and RL. Vhich e ags Pt o o ng sl i,




Proper theory

Navigating string Iandscape [reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model space Samp“nq Genetic Algorithms and Reinforcement Learning

R

o .
o e R . Y ae
R 7 3 . B
¢ } 1&" } \ :
S0 L L Abstract.
Figure 1: Lot Clusterstucue i dimcosionsly educed . samples for RL and 25 GA uns (°CA P e e e
I sampics of G and R T col
(input) values (N3 and N'; respectively) in relation to principal components for a PCA fit of the
individual output of GA and RL. which we argac i imperativ for roducing sampling bias.

Learning formulas [genetic algorithm, symbolic regression]

- approximate numerical function through formula

- example: score/optimal observables
— PySR EEZm 0 Ez=m

Back to the Formula — LHC Edition

3 1
i .
501 o |
6 1 |
T g1
s | »
"2 LN
153 LSRN Abstract
4
P s18.105

+ f) sin(A6 + g))

Table 8: Score hall of fame for simplificd WBF Higgs production with f 7
optimization fit

cduction, W then vldate it o the knows ase of CPovaton 1
s production, ncladng detctor et




Generative-network revolution

Generative networks
- generate new images, text blocks, LHC events

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density (Bayesian NN]




Generative-network revolution

Generative networks
- generate new images, text blocks, LHC events

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density (Bayesian NN]

- Variational Autoencoder
— low-dimensional physics, high-dimensional representation

- Generative Adversarial Network
— generator trained by discriminator

- Normalizing Flow/Diffusion Model
— stable (bijective) mapping

- Generative Transformer
— learning correlations successively

— Pick model for purpose

forward

Y

scattering decay Qco shower i detectors




GAN algorithm

Generating events  [phase space positions, possibly with weights]

— training:  true events {Xqata }
output: generated events r — Xmodel
— discriminator constructing D(x) by minimizing (classifier D(x) = 1, 0 true/generator]

Lp={(—log D(X)>Xdata + ( —log(1 — D(x)))
— generator constructing r — Xmodel By mMinimizing (b needed
La= < ~log D(X)>Xmodel
— Nash equilibrium D = 0.5
= statistically independent copy of training events

Xmodel




How to GAN LHC events

General task: encode ME over phase space
— medium-complex final state tf — 6 jets

t/tand W* on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
parton level, because it is harder

— flat observables flat [phase space coverage okay]

— standard observables with tails [statistical error indicated]
x10~%

— True
—— GAN

T~
ﬁ_fFFF

0 50 100 150 200 250 300 350 400
pre [GeV]




How to GAN LHC events

W
General task: encode ME over phase space

— w
— medium-complex final state ft — 6 jets

t/tand W* on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
parton level, because it is harder

— flat observables flat [phase space coverage okay]
— standard observables with tails [statistical error indicated]

- improved resolution [1M training events]
M true events x 10!

4.0

3.0

b5

2.0



How to GAN LHC events

w
General task: encode ME over phase space
. ) - . w
— medium-complex final state ft — 6 jets ;
t/tand W* on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
parton level, because it is harder
— flat observables flat [phase space coverage okay]
— standard observables with tails (statistical error indicated]
- improved resolution [10M generated events]

10M generated events x10%



How to GAN LHC events

w
General task: encode ME over phase space
. ) - . w
— medium-complex final state ft — 6 jets ;
t/tand W* on-shell with BW 6 x 4 = 18 dof
on-shell external states — 12 dof [constants hard to learn]
parton level, because it is harder
— flat observables flat [phase space coverage okay]
— standard observables with tails (statistical error indicated]
- improved resolution [50M generated events]

50M generated events x10?

Looks like GANplification

3 2 -1 0 1 2 3
@i




GANplification

Gain beyond training data [Butter, Diefenbacher, Kasieczka, Nachman, TP]

— true function known osg| e ~—
. . . trained on jata points — fil
compare GAN vs sampling vs fit - = Sampe
— quantiles with x2-values oz
;0.10
— fit like 500-1000 sampled points “oze
GAN like 500 Sampled points [amplifictation factor 5] 0.06 {
requiring 10,000 GANned events 004 ) )
— interpolation and resolution the key —nnPoF oo

= GANs beyond training data

50 quantiles
GAN 100 data points

sample

=

2
~
N
=}
s}

quantile vMSE

101 107 10° 10* 10° 10
number GANed




Precision generator

Phase-space generators  ypical LHC task]

- training from event samples
no energy-momentum conservation
- every correlation counts

. ZMH + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]




Precision generator

Phase-space generators  iypical LHC task]

- training from event samples
no energy-momentum conservation

- every correlation counts

. ZMH + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

INN-generator

- stable bijective mapping

Go(n—
latent r ~ Paent ————— phase space x ~ Pyata
«— Go(x)
- tractable Jacobian
Z + 1 jet exclusive
AX Prodel(X) = dr Pratent(r) < 10-2
QE) —— Truth
BGg(x) | -
Prmodel (X) = platent(Go (X)) Z107° INN

- likelihood loss

LiNnn = —< log pmodeI(X)>
Pdata

= Per-cent precision possible

prj, [GeV]




Inverse simulation

Invertible ML-simulation
- forward: r — events
- inverse: r — anything, conditioned on event

forward

Y

scattering decay QCD shower detectors

I [T | g |2 | 0| [

<
« .
inverse




Inverse simulation

Invertible ML-simulation
- forward: r — events
- inverse: r — anything, conditioned on event
- individual steps known problems

detector unfolding

unfolding to QCD parton means jet algorithm

unfolding jet radiation known combinatorics problem

unfolding to hard process standard in top groups  ineeded for global analyses]
matrix element method an old dream

- improved through coherent ML-method
- free choice of data-theory inference point
— Transformative progress for HL-LHC

forward N
>

scattering decay QCD shower detectors
S [T e |2 o[

inverse

<
«




Inverting to hard process

Conditional INN

- generate partonic events Xparton from {r}, given reco-event xreco
- train on paired events

- loss based on like

L = — (log p(6|Xparton, Xreco))

= —(log P(Xpar1on|xrec07 0))

=- <Iog P(g(Xparton |Xreco)) + log

lihood

Xparton »Xreco

— (log p(Xparton|Xrec07 0) + log p(8|Xreco) — log p(Xparton [Xreco))

Xparton s Xreco

— Stable and statistically calibrated

8g()(parlcun |Xreco)

Xparton »Xreco

— log p(0) + const.

> — log p(#) + const

X,
parton Xparton Xreco

Condition

4(r, f(2a))
cINN
9(zp, f(za))




Inverting to hard process

Conditional INN

- generate partonic events Xparton from {r}, given reco-event xreco
- train on paired events
- loss based on likelihood

L = — (log p(8]Xparton s Xreco))

Xparton »Xreco

9g(Xparton | Xreco)

= — <|°g p(g(Xpar1on|Xreco)) + log Do
parton

> — log p(8) + const
Xparton s Xreco

— Stable and statistically calibrated

Undo detector and QCD jet radiation in pp — ZW+jets

- hard process given x1072
- detector and reconstruction universal 25 ) QPMYHT”
- jet radiation (approximately) universal T 2.0 — E“:‘OH%NM
- model-independence: Butter-Malaescu 5: 15
— Stable and statistically calibrated £ 10
o 0.5 e
O |
- 08

0 25 50 75 100 125 150 175 200
1, [GeV]



Inverting to hard process

Conditional INN
- generate partonic events Xparton from {r}, given reco-event Xreco
- train on paired events
- loss based on likelihood
L = — (log p(6|Xparton; Xreco)))‘panon»xreco
99 (Xparton [ Xreco)
OXparton

> — log p(6) + const

Xparton »Xreco

=- <|0€ P(9(Xparton [ Xreco)) + log

— Stable and statistically calibrated

Undo detector and QCD jet radiation in pp — ZW+jets

- hard process given x10~2
- detector and reconstruction universal ! 4 jet excl.
2.01 I Parton Truth
- jet radiation (approximately) universal - - — Parton cINN
X ‘> 1.54 L Detector Truth
- model-independence: Butter-Malaescu &
— Stable and statistically calibrated o £ 101
0
0.0

0 25 50 75 100 125 150 175 200
Pra, [GeV]



Inverting to hard process

Conditional INN
- generate partonic events Xparton from {r}, given reco-event xreco
- train on paired events
- loss based on likelihood

L = — (log p(8]Xparton s Xreco))

Xparton »Xreco

9g(Xparton | Xreco)

= — <|°g p(g(Xpar1on|Xreco)) + log Do
parton

> — log p(8) + const
Xparton s Xreco

— Stable and statistically calibrated

Undo detector and QCD jet radiation in pp — ZW+jets

- hard process given x1072

- detector and reconstruction universal 20 T e
- jet radiation (approximately) universal - 20 ik — E“:‘OH%NM
- model-independence: Butter-Malaescu 3 15 4o '
— Stable and statistically calibrated g 10
™05
0.0
g ] demluﬁﬁuﬁ Mo
o8 Hf tn

0 25 50 75 100 125 150 175 200
1, [GeV]



ML for particle physics

ML-applications

- just another numerical tool for a numerical field
- driven by money from data science and medical research

- goals are...
...improve established tasks

...develop new tools for established tasks

...transform through new ideas
- XAl through...

...precision control
...uncertainties
...symmetries
...formulas

— Lots of fun with hard LHC problems

Modern Machine Learning for LHC Physicists

Tilman Plehn®; Anja Butter*", Barry Dillon”, Claudius Krause®*, and Ramon Winterhalder!

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany

 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

 NHETC, Dept. of Physics and Astronomy. Rutgers University, Piscataway, USA
#CP3, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

July 21,2023

Abstract

Modern machine learming s transforming partcle physics, faster than we can follow, and bullying its way into our

bavc knowldse of paricle phy
possible. They siart v

irs. Given that these notes will be outdated alrcady at the time of sul
Vi aset 2023, they il Updaed frequenty.


http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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