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LHC physics vs data scientist

LHC questions

- How to trigger from 3 PB/s to 300 MB/s?
Data compression  [Netfix]

- How to analyze events with 4-vectors?
Graph neural networks [cars]

- How to incorporate symmetries?
Contrastive learning  (Google]

- How to combine tracker and calorimeter?
Super-resolution  (Gaming]

- How to remove pile-up?
Data denoising (cars]

- How to look for BSM physics?
Autoencoders  [sap]

- How to analyse LHC data?
Simulation-based inference  (Edinburgh Ultra-Mini 2007]

- How to treat uncertatinties??




Shortest ML-intro ever

Fit-like approximation  [ask NNPDF]
- approximate known f(x) using fy(x)
- no parametrization, just very many values 6
- new representation/latent space 6

Construction and contol
- define loss function
- minimize loss to find best 6
- compare x — fy(x) for training/test data

LHC applications
- regression X — fo(x)
- classification x — fy(x) € [0, 1]
- generation re~N —fy(r)
- conditional generation r ~ N — fy(r|x)

— Transforming numerical science




Networks with error bar

Training-related uncertainties

- different trainings
different initalizations
different data sets

- histogram network output: fy(x) = Af(x)
— Bayesian network: Afy(x) from A6 (varin Gal (2016)]

Energy measurement with NN
- expectation value from probability distribution
(Ey = /dE E p(E) — /dE E po(E)

- energy p(E|0) encoded in network parameters
parameters p(0|T) trained on data T

po(E) = [ do p(EI6) p(6IT)
— Prediction by sampling weights

(Ey = /dE do E p(E|9) p(8|T) = /dE do E p(E|6) q(0)



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Constructing the loss function

Training means encoding p(¢|T)
- so-called variational approximation ftink g(6) as Gaussian with mean and width]
p(E) = [ 06 p(El6) poIT) L [ do p(EI6) a(6)
- similarity through minimized KL-divergence

q(0)
p(0|T)

Duufa(6).p(61T)] = [ o q(6) log
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- so-called variational approximation ftink g(6) as Gaussian with mean and width]
p(E) = [ 06 p(El6) poIT) L [ do p(EI6) a(6)

- similarity through minimized KL-divergence
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Constructing the loss function

Training means encoding p(6|T)
- so-called variational approximation ftink g(6) as Gaussian with mean and width]
p(E) = [ 06 p(El6) poIT) L [ do p(EI6) a(6)

- similarity through minimized KL-divergence

_ q(6)
Dila(6), p(0IT)) = | db a(0) tog T
- Bayes’ theorem to replace p(0|T)
_ q(0)p(T)
Daala(#).p(01 T = [ 60 a(0) 1og T8 0

= Dla(0). p(®)] ~ [ db q(6) log p(T16) + logp(T) [ b q(6)
- normalize distributions, ignore irrelevant terms, so minimize
D [a(0), p(0] T)] ~ D[q(6), p(6)] — /d9 q(0) log p(T10)
— Loss combining likelihood and regularization

L=— / do q(0) log p(T|0) + DxL[a(6), p(0)]




ML-applications for analysis

Top tagging  [supervised classification] :
- ‘hello world’ of LHC-ML = 1§
- end of QCD-taggers
- different NN-architectures
— Non-NN left in the dust...
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ML-applications for analysis

Top tagging  [supervised classification]
- ‘hello world’ of LHC-ML

- end of QCD-taggers
- different NN-architectures
—» Non-NN leftin the dust... =

10t

00 01 02 03 04 05 06 07 08 09 10
Signa ficiency

Sy mmetric networks [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings
- learn symmetries/augmentations
— Symmetric latent representation .

Symmeteies, Safety,

SclbSupervision

Abstract




Events and amplitudes

Speeding up Sherpa and MadNIS  [sampiing]
- precision simulations limiting factor for Runs 3&4
- unweighting critical
— Phase space sampling

de/dm (56 GV




Events and amplitudes

Speeding up Sherpa and MadNIS  [sampiing] B ey
- precision simulations limiting factor for Runs 3&4

de/dm [pb Gov-1)

- unweighting critical e emm P ]
— Phase space sampling """
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Speeding up amplitudes [precision regression]

[e—— e

- loop-amplitudes expensive
- interpolation standard Optimising simulations for diphoton production at

hadron colliders using amplitude neural networks

— Precision NN-amplitudes

Targest 100% A
120] ggn .
o largest 1% Au H
process.boosted o B
100{ process boost egestoram | 1
T Fro
o
" #
2
i
. i

o001 o0z 000 ooz 00d
2+ overflow bin




Invertible event generation

Precision NN-generators [Bayesian discriminator-flows]
- control through discriminator [GAN-iike]

- uncertainties through Bayesian networks
— Discussed later

~— —— Reweighted
Train

7+ 1 jet exclusive

ae0,6,12)

2 50

B 100
Pry, [GeV]




Invertible event generation

Precision NN-generators  [Bayesian discriminator-flows]

- control through discriminator  jcan-iie] ool T s

. Train

- uncertainties through Bayesian networks é
— Discussed later
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=10 | !
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- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently

- Variational Autoencoder
— low-dimensional physics, high-dimensional objects

- Generative Adversarial Network
— generator trained by classifier

- Normalizing Flow/Diffusion Model
— stable bijective mapping

- Generative Pre-trained Transformer
— learning all structures

— Pick best model for purpose

forward

scattering decay QCco shower
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Modern generative networks

Generative networks
- generate new images, text blocks, etc

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently

- Variational Autoencoder
— low-dimensional physics, high-dimensional objects

- Generative Adversarial Network
— generator trained by classifier

- Normalizing Flow/Diffusion Model
— stable bijective mapping

- Generative Pre-trained Transformer
— learning all structures

— Pick best model for purpose

Fundamental question: GANplification

- first generated instances reproducing structures
- too many generated instances reproducing noise?




Modern generative networks

Normalizing flows — INN
- Gaussian latent space
- bijective mapping
- known Jacobian
- likelihood loss
- variety of coupling layers
— Perfect for speed and precision




Modern generative networks

Normalizing flows — INN

- Gaussian latent space
- bijective mapping
- known Jacobian
- likelihood loss
- variety of coupling layers
— Perfect for speed and precision

Normalized

INNs with uncertainties 0.12
- Bayesian NN for density estimation

3

- events with error bars
- density & uncertainty maps cross-talking
— Bayesian INNs just fits with error bars

Absolute Uncertainty

I
o

0.02

0.00

0.2 04 0.6 0.8




Precision generator

ML-event generators

- useful ML-playground

- training from event samples
no momentum conservation
no detector effects [sharper structures]

1- top-quark pairs ft—6 jets  [resonance peaks]
2- ZF‘P« + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]
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no momentum conservation
no detector effects [sharper structures]

1- top-quark pairs ft—6 jets  [resonance peaks]
2- ZF‘P« + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

INN—generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

- challenging ARj; features o0
- opposite of importance sampling true

7500 distribution
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Precision generator

ML-event generators

- useful ML-playground

- training from event samples
no momentum conservation
no detector effects [sharper structures]

1- top-quark pairs ft—6 jets  [resonance peaks]

2- ZF‘P« + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

INN—generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

- challenging ARj; features

7 + 1 jet exclusive

- opposite of importance sampling g 1077 i
w30 — 4 E 108 —— INN
Wi _ (AR, L) &

W = (AR AR, (AR, )
f(AR) = ART_% (AR € [R—, Ry

— Per-cent precision in reach




Controlled precision generator

Discriminator: training vs generated
- probability output D = 0(generator), 1(truth)
- decent generator D =~ 0.5
- additional event weight wp = D/(1 — D)
— Dual use — control & reweight

7 + 1 jet exclusive Z + 1 jet exclusive
1072 — Reweighted g 0.2
% —— INN TE —— Reweighted
g 1079 g 0.1
107 0.0
st — s
0.9 0.9
e I T I L I Wt TETHERT) tieidsiiyit
oot HRITI = syt AT
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Controlled precision generator

Discriminator: training vs generated
- probability output D = 0(generator), 1(truth)
- decent generator D =~ 0.5
- additional event weight wp = D/(1 — D)
— Dual use — control & reweight

7 + 1 jet exclusive
Uncertainties gL
- training uncertainties from BINN g .
c e . g0 —— Reweighted
- low statistics challenging e
- systematics from data augmentation 100{ T ey {i“
- adjust data in tails a-o...30 £ 10 il ‘»fﬁ '71-‘[ J
o o | SRR T TR
we14a [Pra_15GeV <1 ]
= 100 GeV S8 AT
- train conditionally on smeared a Z2 1.0 s palaall
EE b oo prgnanndl
- error bar from sampling a 10 R A | [T
— INNs for LHC standards N
L

Prow [GeV]




Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event

forward

Y

scattering decay QCD shower detectors

I [T | g |2 | 0| [

<
« .
inverse




Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known problems

detector unfolding
unfolding to QCD parton means jet algorithm
unfolding jet radiation known combinatorics problem
unfolding to hard process standard in top groups  ineeded for global analyses]
matrix element method an old dream
- improved through coherent ML-method

— Free choice of data-theory inference point

forward

N
>

scattering decay QCD shower detectors
S [T e |2 o[

inverse

<
«




Inverting to hard process

Conditional INN
- partonic events x, from {r}, given reco-event x;

- loss based on likelihood
L= — (log p(0]xp, xr))

Xp\Xr
= — (log p(%p|xr, 0) + log p(6|xr) — log p(Xp| X)), ,,
= — (log p(xp|r, 0)),,, . — log p(6) + const.
09(Xp|X;
= - <|ogp(g(xp|x,)) + log % > — log p(8) + const.
P

Xp s Xr

— Stable and statistically calibrated

Condition

= o} @]
¢INN ». .......................................................... E




Inverting to hard process

Conditional INN
- partonic events xp from {r}, given reco-event x,
- loss based on likelihood

L= — (log p(01xp, X)), ,

9g(Xp|Xr)

= — (loBplo(p 1)) + tog | 222!

> — log p(6) + const.
Xp,Xr

— Stable and statistically calibrated

Undo detector and QCD jet radiation in pp — ZW+jets

- hard process given X102
- detector and reconstruction universal 25 2 jet excl.
F 1 Parton Truth
- jet radiation (approximately) universal -~ 20 —— Parton cINN
. O Detector Truth
- model-independence: Butter-Malaescu 3 15
— Stable and statistically calibrated &g 10
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Inverting to hard process

Conditional INN
- partonic events x, from {r}, given reco-event x;
- loss based on likelihood
L= — (log p(6]xp, Xr)>xp,x,

99(Xp|Xr)
OXxp

)

= <Iog P(g(xp|x)) + log

Xp s Xr

— Stable and statistically calibrated

Undo detector and QCD jet radiation in pp — ZW+jets

- hard process given x10~?

— log p(0) + const.

- detector and reconstruction universal -

- jet radiation (approximately) universal =
- model-independence: Butter-Malaescu z: e
— Stable and statistically calibrated o107
* 05
0.01

4 jet excl.

Parton Truth

—— Parton cINN
Detector Truth
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Inverting to hard process

Conditional INN
- partonic events xp from {r}, given reco-event x,
- loss based on likelihood
L= —(log p(01Xp, Xr)) , x,

9g(Xp|Xr)

= — (loBplo(p 1)) + tog | 222!

> — log p(6) + const.
Xp,Xr
— Stable and statistically calibrated

Undo detector and QCD jet radiation in pp — ZW+jets

- hard process given

x10~2
. . 2.5 - I
- detector and reconstruction universal jat jot incl.
. . . . 2.0 dy Parton Truth
- jet radiation (approximately) universal - ~ Al —— Parton cINN
. > t Detector Truth
- model-independence: Butter-Malaescu 3 1 4 1
— Stable and statistically calibrated fs10
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Optimal observables

Measure model parameter 6 optimally

- single-event likelihood

1 d"o(x|0)
p(x|0) = (@) dxm
- expanded in 6 around 6, define score
p(xlo) . o ooy opt
o8 10 ~ (6 — 6p) Vo logp(x|0)| = (6 — 6o) t(x|60) = (6 — 60) 6 (x)

K]
- leading order parton level
|ME,

p(x10) & M3+ OIME = t(x]6p) ~ 1
M2




Optimal observables

Measure model parameter 6 optimally

- single-event likelihood
1 d"o(x|6)

p(x|0) = (@) o™

- expanded in 6 around 6, define score

og 5((;";;)) ~ (0 — 6p) Vg log p(x|0) . = (0 — 6o) t(x|60) = (0 — 6p) 6°(x)
- leading order parton level ,
PO ~ IMB+OIME, = ton) ~ (T
CP-violating Higgs production q
- unique CP-observable W
t o< cpvpo ki Ky GF 6F sign [(ki — ke) - (G1 — G2)] "2 sin Agy A
- CP-effect in Ag;; ¢

Dé-effect in pr;
= Established LHC task




PySR

Analytic formula for score
- function to approximate  t(x|0)
- phase space parameters  xp = pr/my, An, A¢  [node]
- operators  sinX, X2, X3, X4+ y,X — y, X% y,X/y [node]
- represent formula as tree  [complexity = number of nodes]
= Figures of merit

1 2 ) )
MSE=-—>" [g,v(x) — t(x, 2\9)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

compl dof |function MSE
3 1 |aAg 1.30-1071
4 1 |sin(aA¢) 2.75-107! -
5 1 |aAga,, 9.93-102 1°
6 1 |—zp,1sin(A¢+a) 1.90-1071
7 1 |(~zp1 — a)sin(sin(A¢)) 5.63-1072 2
8 1 |(a—mp1)zp2sin(Ag) 1.61-1072
14 2 |zp1(aA¢ —sin(sin(A¢)))(zp2 +b)  1.44-1072
15 3 |—(zp2(aln®+2p1) +b)sin(Ag +c) 1.30-1072
16 4 |—zp1(a—bAn)(zp2 +c)sin(Ap+d) 8.50-10-3 107
(@p.2 + @) (bzp,1(c — Ag) -3 5 10 15 20 25 30
BT —p1(dAn + exp o + f) sin(A¢ + g)) 8.18-10 complexity




PySR

Analytic formula for score
- function to approximate  t(x|6)
- phase space parameters  xp = pr/my, An, A¢  node]
- operators  sin X, X2, X3, X 4+ y,X — Y, X % Yy, X/y [node]
. represent formula as tree [complexity = number of nodes]
= Figures of merit

12 2 ) )
MSE=-—>" [g,-(x) — t(x, 2\9)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

- expected limits: 1.0{cPvin weF
very wrong formula 08
wrong formula o aprpr,
right formula Sos
; 2
MadMiner 2
e . g . . © 0.4
- same within statistical limitation §
= New optimal observables next 0.2
0.0 =" """ TTSayTi """ ————

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

wiw




ML for LHC Theory

ML-applications
- just another numerical tool for a numerical field
- driven by money from data science and medical research
- goals are...

...improve established tasks
...develop new tools for established tasks
...transform through new ideas

- XAl through...

...precision control
...uncertainties

H Tilman Plehn®; Anja Butter*", B: Dillon®, and Claudius Krause®*
...sSymmetries ! i

Modern Machine Learning for LHC Physicists

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
i fo rmu | as ® LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
. © NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, USA
— Fun with good old LHC problems

November 2, 2022

Abstract

Moder machine learning is transforming particle physics, faster than we can follow, and bullying its way into our
numerical tool box. 0 stay on top of . which
dge methods and tools 10 the full range of LHC physics problems. These lecture notes are meant o lead students with
basic knowledge of particle physics and significant enthusiasm for machine learning t relevant applications as fast as

possible. They start with an LHC-specific motivation and a non-standard i and then cover
classification, . generative networks, and o much of the
discussion are well-defined | « hand and As part of the

applications, the notes include some aspees of theoretical LHC physics. Al examples are chosen from particle physies
publications of the las few years. Given that these notes will be outdated already at the time of submission, the week of
MLJets 2022, they wil be updated frequenly.



http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf

Inverting to QCD

cINN for inference (Bieringer, Butter, Heimel, Hoche, Kothe, TP, Radev]

condition jets with QCD parameters
train model parameters — Gaussian latent space

test Gaussian sampling — parameter measurement
- beyond C4 vs Cr  [Kuthetal

D a1 2+ Gt - )

1—z(1—y)

) 2(1—y) (=20 -y - -
Pgg = 2C4 [Dgg (1 T + 1T—(1-20 7y)> + Fggz(1 — 2) + Cggyz(1 z)]
Pgg = Tg [qu (22 +(1 - 2)2)  Cgayz(t Z)]

Training

Pgq = C¢ [qu

Inference

{=}

Summary LHC Summary
net Jets net
v

z
NN [ Qe NN
measurement

g(m;h) P(2)

{zm}

QCD
model

P(ml{z}) 9(z:h)




Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

- condition jets with QCD parameters
train model parameters — Gaussian latent space
test Gaussian sampling — parameter measurement

- beyond C4 vs Cr  [Kuthetal
2z(1—y)
1T—2(1-vy)

z(1 - ) -20-y
1—z1—-y) 1-(1-2(1=-»

Pqq = C¢ [qu + Fgq(1 — 2) + Cqqyz(1 — Z)]

) + Fggz(1 —2z)+ ngyz(1 — z)}

Pgg = 2Ca [Dyg <
0.4

Pgg = Tr [qu (z2 +(1— 2)2) + Cgqyz(1 — z)] ’
- idealized shower [sherpa)
- More ML-opportunities... ’ 2

= Posterior
—— Gaussian fit
== Absolute error of 2.5

Caq fo-08 =56

-10 0 10 -10 0 10 -10 o 10




Learning background only

1@40x40  10840x40  10@20x20 5820x20 400100 100 400 5820520 5@40x40 10@40x40 1@40x40

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error
- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S <> B?




Learning background only

1@40x40  10@40x40  10@20x20 5@20x20 400100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Unsupervised classification
- train on background only
extract unknown signal from reconstruction error
- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B?

Moving to latent space

- anomaly score from latent space?

- VAE — does not work

GMVAE — does not work
Dirichlet VAE — works okay
density estimation — does not work

—— ep. 50, AUC: 0.88
ep. 100, AUC: 0.89
ep. 150, AUC: 0.89
ep. 200, AUC: 0.89

ep. 50, AUC: 0.8
ep. 100, AUC: 0.89
ep. 150, AUC: 0.89
ep. 200, AUC: 0.89

10'[DVAE, 1/Q=1.0 DVAE, t/Q=1.0
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Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B?

Normalized autoencoder [penalize missing features]
- normalized probability loss
- Boltzmann mapping (£, =Msg
e~ Eo(x)
T Z
L= —{logpg(x)) = (Eo(X) + log Zg )
- inducing background metric
- small MSE for data, large MSE for model
- Zy from (Langevin) Markov Chain
— Symmetric autoencoder, at last

Po(x) =

5@20x20 5@40x40 10@40x40 1@40x40
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Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B? e

top tagging

Normalized autoencoder [penalize missing features]

- normalized probability loss

- Boltzmann mapping (£, =Msg ] ao
—Eg(x
po(x) = ez—:” ;
L= —(logps(x)) = (Eg(x) + log Zy) 00 N
- inducing background metric - —
- small MSE for data, large MSE for model 20
- Zy from (Langevin) Markov Chain .

— Symmetric autoencoder, at last
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