Precison Simulations Using Machine Learning

Tilman Plehn

Universität Heidelberg

Glasgow, April 2023

LHC physics vs data scientist

LHC questions

· How to trigger from 3 PB/s to 300 MB/s?

LHC questions

How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- · How to analyze events with 4-vectors?

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors?
 Graph neural networks [Cars]

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors?
 Graph neural networks [Cars]
- · How to incorporate symmetries?

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- · How to incorporate symmetries?
 - Contrastive learning [Google]

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- · How to incorporate symmetries?
 - Contrastive learning [Google]
- · How to combine tracker and calorimeter?

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- · How to remove pile-up?

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- $\cdot\,$ How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- · How to remove pile-up?
 - Data denoising [Cars]

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- How to remove pile-up?
 - Data denoising [Cars]
- · How to look for BSM physics?

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- How to remove pile-up?
- Data denoising [Cars]
- How to look for BSM physics?
 - Autoencoders [SAP]

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- How to remove pile-up?
- Data denoising [Cars]
- How to look for BSM physics?
 Autoencoders [SAP]
- · How to analyse LHC data?

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- · How to remove pile-up?
- Data denoising [Cars]
- How to look for BSM physics?
- Autoencoders [SAP]
- · How to analyse LHC data?
 - Simulation-based inference [Edinburgh Ultra-Mini 2007]

- How to trigger from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events with 4-vectors? Graph neural networks [Cars]
- How to incorporate symmetries?
 - Contrastive learning [Google]
- How to combine tracker and calorimeter?
 Super-resolution [Gaming]
- · How to remove pile-up?
- Data denoising [Cars]
- How to look for BSM physics?
 - Autoencoders [SAP]
- · How to analyse LHC data?
- Simulation-based inference [Edinburgh Ultra-Mini 2007]
- · How to treat uncertatinties??

Shortest ML-intro ever

Fit-like approximation [ask NNPDF]

- · approximate known f(x) using $f_{\theta}(x)$
- $\cdot\,$ no parametrization, just very many values θ
- · new representation/latent space θ

Construction and contol

- · define loss function
- · minimize loss to find best θ
- · compare $x o f_{ heta}(x)$ for training/test data

LHC applications

. . . .

- · regression $x \to f_{\theta}(x)$
- · classification $x \to f_{\theta}(x) \in [0, 1]$
- · generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r)$
- · conditional generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r|x)$
- \rightarrow Transforming numerical science

Networks with error bar

Training-related uncertainties

- different trainings different initalizations different data sets
- · histogram network output: $f_{ heta}(x) \pm \Delta f(x)$
- \rightarrow Bayesian network: $\Delta f_{\theta}(x)$ from $\Delta \theta$ [Yarin Gal (2016)]

Energy measurement with NN

· expectation value from probability distribution

$$\langle E \rangle = \int dE \ E \ p(E)
ightarrow \int dE \ E \ p_{ heta}(E)$$

• energy $p(E|\theta)$ encoded in network parameters parameters $p(\theta|T)$ trained on data T

$$p_{ heta}(E) = \int d heta \ p(E| heta) \ p(heta|T)$$

 \rightarrow Prediction by sampling weights

$$\langle E \rangle = \int dE \ d\theta \ E \ p(E|\theta) \ p(\theta|T) = \int dE \ d\theta \ E \ p(E|\theta) \ q(\theta)$$

Constructing the loss function

Training means encoding $p(\theta|T)$

· so-called variational approximation [think $q(\theta)$ as Gaussian with mean and width]

$$p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T) \stackrel{!}{=} \int d\theta \ p(E|\theta) \ q(\theta)$$

· similarity through minimized KL-divergence

$$D_{\mathsf{KL}}[q(heta), p(heta | T)] = \int d heta \ q(heta) \ \log rac{q(heta)}{p(heta | T)}$$

Constructing the loss function

Training means encoding $p(\theta|T)$

· so-called variational approximation [think $q(\theta)$ as Gaussian with mean and width]

$$p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T) \stackrel{!}{=} \int d\theta \ p(E|\theta) \ q(\theta)$$

· similarity through minimized KL-divergence

$$\mathcal{D}_{\mathsf{KL}}[q(heta), p(heta | \mathcal{T})] = \int d heta \; q(heta) \; \log rac{q(heta)}{p(heta | \mathcal{T})}$$

· Bayes' theorem to replace $p(\theta|T)$

$$\begin{split} D_{\mathsf{KL}}[q(\theta), p(\theta|T)] &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(T)}{p(T|\theta)p(\theta)} \\ &= D_{\mathsf{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta) + \log p(T) \int d\theta \ q(\theta) \end{split}$$

 $\cdot\,$ normalize distributions, ignore irrelevant terms, so minimize

$$D_{\mathsf{KL}}[q(heta), p(heta | T)] pprox D_{\mathsf{KL}}[q(heta), p(heta)] - \int d heta \ q(heta) \ \log p(T| heta)$$

Constructing the loss function

Training means encoding $p(\theta|T)$

· so-called variational approximation [think $q(\theta)$ as Gaussian with mean and width]

$$p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T) \stackrel{!}{=} \int d\theta \ p(E|\theta) \ q(\theta)$$

· similarity through minimized KL-divergence

$$\mathcal{D}_{\mathsf{KL}}[q(heta), p(heta | \mathcal{T})] = \int d heta \; q(heta) \; \log rac{q(heta)}{p(heta | \mathcal{T})}$$

· Bayes' theorem to replace $p(\theta|T)$

$$\begin{split} D_{\mathsf{KL}}[q(\theta), p(\theta|T)] &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(T)}{p(T|\theta)p(\theta)} \\ &= D_{\mathsf{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta) + \log p(T) \int d\theta \ q(\theta) \end{split}$$

 $\cdot\,$ normalize distributions, ignore irrelevant terms, so minimize

$$D_{\mathsf{KL}}[q(\theta), p(\theta|T)] pprox D_{\mathsf{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta)$$

 $\rightarrow\,$ Loss combining likelihood and regularization

$$L = -\int d heta \ q(heta) \ \log p(T| heta) + D_{\mathsf{KL}}[q(heta), p(heta)]$$

ML-applications for analysis

Top tagging [supervised classification]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · different NN-architectures
- \rightarrow Non-NN left in the dust...

SciPost Physics

15 LPTHE, CNBS & Subsure University, Paris, France 16 III. Physics Institute A, HWTH Aathen University, Germany

ML-applications for analysis

Top tagging [supervised classification]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · different NN-architectures
- → Non-NN left in the dust...

The Machine Learning Landscape of Top Taggers

G. Kasieszka (ed)¹, T. Pielza (ed)², A. Butter², K. Crassner³, D. Dokand⁴, B. M. Dicko², M. Birtshar⁴, D. A. Foreqgle¹, W. Foldel¹, C. Gar⁴, L. Cossko¹, J. F. Kasmell^{3,5}, P. T. Kasiad^{3,5}, S. Leiss¹, A. Litzer¹, S. Machado^{1,4}, B. M. Metedle^{1,4}, J. Morel¹, B. Nachman, ^{20,10}, K. Neisterisch^{1,10}, J. Paulor², H. Qe¹, Y. Enh², M. Roger³, D. Shit¹, J. M. Tampee², and S. Warne²

 Handra für Diperstenktadyok Liverskik Handrag, Grossen Handra für Desenter Hinds, Kunssel Handrag, Honsen Handrag, Handrag, Hang, Handrag, Ha

Symmetric networks [contrastive learning, transformer network]

· rotations, translations, permutations, soft splittings, collinear splittings

No.

 \mathcal{R}

-1.0

0.0

- · learn symmetries/augmentations
- \rightarrow Symmetric latent representation

Abstract

CdSite matches due the dullarge of dulting a regressration of high-flowards data with the physical protocols and the duplic duration of the duplic duration of the duplic duplic

Events and amplitudes

Speeding up Sherpa and MadNIS [sampling]

- · precision simulations limiting factor for Runs 3&4
- unweighting critical
- \rightarrow Phase space sampling

	$gg \rightarrow t\bar{t}ggg$	$ug \rightarrow t\bar{t}ggu$	$su \rightarrow t\bar{t}gss$	$u\bar{u} \rightarrow t\bar{t}gd\bar{d}$
461	1.1e-2	7.3e-3	6.5e-3	6.6e-4
Ortean	6.7e-3	5.8e-3	4.7e-3	3.6e-4
(feet)/(feers)	39312	2417	199	64
20.00	52.03	32.52	63.76	325.19
Contany .	2.4:-2	3.8e-2	2.1e-2	5.6e-3
0 ^{p.m.}	0.9969	0.9984	0.9994	0.9951
for	2.21	4.89	1.47	0.29
Print	30.40	19.14	27.78	25.34
e mod 2ml.eur	4.3e-2	6.4e-2	5.1e - 2	7.1e-2
amed	0.9963	0.9966	0.9943	0.9921
5374	3.90	8.26	3.91	2.22

Table 6: Performance measures for parionic channels contributing to $\vec{n}{+}3$ jets production at the LHC.

MCNET-21-33

Accelerating Monte Carlo event generation – rejection sampling using neural network event-weight estimates

K. Damiger¹, T. Janbes², S. Schumann², F. Siegert¹

Institut für Kers- und Telkhenphysik, TU Dresden, Deesden, Germany
 Institut für Theoretische Physik, George August-Universität Göttingen, Göttingen,

September 27, 2021

Abstract

The generation of unde-weight counts for complex control regressions presents a source schedules on toosed Mucht Cole access quarantees. How we have have been as a source schedules on the source of the source of

ML-Simulations ïlman Plehn

Events and amplitudes

Speeding up Sherpa and MadNIS [sampling]

- · precision simulations limiting factor for Runs 3&4
- unweighting critical
- \rightarrow Phase space sampling

	$gg \rightarrow t\bar{t}ggg$	$ug \rightarrow t\bar{t}ggu$	$su \rightarrow t\bar{t}gss$	$u\bar{u} \rightarrow t\bar{t}gd\bar{d}$
461	1.1e-2	7.3e-3	6.5e-3	6.6e-4
Colour	6.7e-3	5.8e-3	4.7e-3	3.6e-4
(fast)/(fase)	39312	2417	199	64
x2.10	52.03	32.52	03.75	325.19
entany.	2.4:-2	3.8e-2	2.1e-2	5.6e-3
opm.	0.0669	0.9984	0.9994	0.9951
Let.	2.21	4.89	1.47	0.19
Print	30.40	19.14	27.58	25.34
e mod	4.3e-2	6.4e-2	5.1e-2	7.1e-2
amed	0.9963	0.9966	0.9943	0.5921
£374	3.90	8.26	3.91	2.22

Table 6: Performance measures for parionic channels contributing to δ^2 +3 jets production at the LHC.

Accelerating Monte Carlo event generation – rejection sampling using neural network event-weight estimates

K. Damiger¹, T. Janfen², S. Schumann², F. Siegert¹

Institut für Kern- und Telikhenphysik, TU Dresden, Deesden, Germany
 Institut für Theoretische Physik, George-August-Universität Göttingen, Göttingen,

September 27, 2021

Abstract

MCNET-21-13

The generation of unit-weight events for complex contributing processes presents as sover chalting to motion Matter Cale to any garaxies. How we have ming associated the stress of the stress of the stress stress stress and the stress stres

Speeding up amplitudes [precision regression]

- · loop-amplitudes expensive
- interpolation standard
- → Precision NN-amplitudes

PRESIDENT FOR STRAINING TO JHEP

IPPP/20/135

Optimising simulations for diphoton production at hadron colliders using amplitude neural networks

Joseph Aylott-Bullock^{1,2} Simon Badger' Ryan Moodie'

Institute for Particle Physics Phenomenology, Department of Physics, Darham University, Durham, DNI 3247, United Kingdom

³Instituté for Data Science, Darkam University, Darkam, DHI IEE, United Einplem ⁴Dpartiments de Paise and Arsold-Pappe Centre, Université de Tavina, and JMPN, Science de Tortes. Na F. Centra J. - Patrill Tortes. Bach.

E-wait j.p. billockBdurham.ac.uk, minendavid hadger@mite.it, rjan.i.medieOdurham.ac.uk

Attracts: Madras learning technology has the potential to demandially optimise comparison and singulations. We consist so integrating the use of anomy strends are presented as the independent of the present system of the second strends of the strends of the second strends of the secon

ML

Invertible event generation

Precision NN-generators [Bayesian discriminator-flows]

- · control through discriminator [GAN-like]
- · uncertainties through Bayesian networks
- \rightarrow Discussed later

bacama, and usery total or bandpaindy was downmanned, and now take momentum improves the generation. Our joint training relies on a novel coupling of the two networks which does not require a Nash equilibrium. We then estimate the generation uncertaintion through a Boyolan network setup and through conditional data suggestation, while

the discriminator ensures that there are no systematic inconsistencies compared to the

training data.

Invertible event generation

Precision NN-generators [Bayesian discriminator-flows]

- · control through discriminator [GAN-like]
- · uncertainties through Bayesian networks
- → Discussed later

Unfolding and inversion [conditional normalizing flows]

- shower/hadronization unfolded by jet algorithm
- · detector/decays unfolded e.g. in tops
- · calibrated inverse sampling
- → Discussed later

For simulation where the forward and the lowers directions have a physics maxing, lowerble neural networks are expecting used A. conditional DNN con inverte 4 shorter a matching in terms of high-level observables, specificarly for 2W production at the HIC: It allows for a per-west starbiditical interpretations. Next, we allow for a workels maxing effect of QCD joints. We maind detector effects and QCD radiation to a pro-dational persons, again with a per-west probabilitic interpretations or particularly plane space.

Generative networks

- · generate new images, text blocks, etc
- encode density in target space sample from Gaussian into target space
- · reproduce training data, statistically independently

Generative networks

- · generate new images, text blocks, etc
- encode density in target space sample from Gaussian into target space
- · reproduce training data, statistically independently
- · Variational Autoencoder
 - \rightarrow low-dimensional physics, high-dimensional objects
- \cdot Generative Adversarial Network \rightarrow generator trained by classifier
- · Generative Pre-trained Transformer \rightarrow learning all structures
- → Pick best model for purpose

Generative networks

- · generate new images, text blocks, etc
- encode density in target space sample from Gaussian into target space
- $\cdot\,$ reproduce training data, statistically independently
- · Variational Autoencoder
 - \rightarrow low-dimensional physics, high-dimensional objects
- \cdot Generative Adversarial Network \rightarrow generator trained by classifier
- · Normalizing Flow/Diffusion Model \rightarrow stable bijective mapping
- · Generative Pre-trained Transformer \rightarrow learning all structures
- \rightarrow Pick best model for purpose

Fundamental question: GANplification

- · first generated instances reproducing structures
- · too many generated instances reproducing noise?

Normalizing flows - INN

- · Gaussian latent space
- · bijective mapping
- known Jacobian
- · likelihood loss
- · variety of coupling layers
- $\rightarrow\,$ Perfect for speed and precision

Normalizing flows - INN

- · Gaussian latent space
- bijective mapping
- known Jacobian
- likelihood loss
- · variety of coupling layers
- \rightarrow Perfect for speed and precision

INNs with uncertainties

- · Bayesian NN for density estimation
- · events with error bars
- · density & uncertainty maps cross-talking
- \rightarrow Bayesian INNs just fits with error bars

Precision generator

ML-event generators

- · useful ML-playground
- training from event samples no momentum conservation no detector effects [sharper structures]
- 1- top-quark pairs $t\overline{t}
 ightarrow$ 6 jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1,2,3\}$ jets [Z-peak, variable jet number, jet-jet topology]

Precision generator

ML-event generators

- · useful ML-playground
- training from event samples no momentum conservation no detector effects [sharper structures]
- 1- top-quark pairs $tar{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1,2,3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

· challenging ΔR_{jj} features

opposite of importance sampling

$$\begin{split} w^{(1-jet)} &= 1 \\ w^{(2-jet)} &= f(\Delta R_{j_1,j_2}) \\ w^{(3-jet)} &= f(\Delta R_{j_1,j_2}) f(\Delta R_{j_2,j_3}) f(\Delta R_{j_1,j_3}) \\ f(\Delta R) &= \frac{\Delta R - R_-}{R_+ - R_-} \quad (\Delta R \in [R_-, R_+]) \end{split}$$

Precision generator

ML-event generators

- · useful ML-playground
- training from event samples no momentum conservation no detector effects [sharper structures]
- 1- top-quark pairs $t\overline{t}
 ightarrow 6$ jets [resonance peaks]
- 2- $Z_{\mu\mu} + \{1, 2, 3\}$ jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [Butter, Heimel, Hummerich, Krebs, TP, Rousselot, Vent]

· challenging ΔR_{jj} features

• opposite of importance sampling
$$w^{(1-jet)} = 1$$

$$\begin{split} w^{(2\text{-jet)}} &= f(\Delta R_{j_1, j_2}) \\ w^{(3\text{-jet)}} &= f(\Delta R_{j_1, j_2}) f(\Delta R_{j_2, j_3}) f(\Delta R_{j_1, j_3}) \\ f(\Delta R) &= \frac{\Delta R - R_-}{R_+ - R_-} \qquad (\Delta R \in [R_-, R_+]) \end{split}$$

 \rightarrow Per-cent precision in reach

Controlled precision generator

Discriminator: training vs generated

- · probability output D = 0(generator), 1(truth)
- \cdot decent generator $D \approx 0.5$
- additional event weight $w_D = D/(1 D)$
- → Dual use control & reweight

Controlled precision generator

Discriminator: training vs generated

- · probability output D = 0(generator), 1(truth)
- $\cdot\,$ decent generator $D\approx 0.5$
- · additional event weight $w_D = D/(1 D)$
- → Dual use control & reweight

Uncertainties

- training uncertainties from BINN
- · low statistics challenging
- · systematics from data augmentation
- adjust data in tails $[a = 0 \dots 30]$

$$w = 1 + a \left(rac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}}
ight)^2$$

- · train conditionally on smeared a
- · error bar from sampling a
- \rightarrow INNs for LHC standards

Inverse simulation

Invertible ML-simulation

- · forward: $r \rightarrow$ events trained on model
- · inverse: $r \rightarrow$ anything trained on model, conditioned on event

ML-

Tilman Plehn

Inverse simulation

Invertible ML-simulation

- · forward: $r \rightarrow$ events trained on model
- \cdot inverse: $r \rightarrow$ anything trained on model, conditioned on event
- · individual steps known problems

detector unfolding unfolding to QCD parton means jet algorithm unfolding jet radiation known combinatorics problem unfolding to hard process standard in top groups [needed for global analyses] matrix element method an old dream

- · improved through coherent ML-method
- → Free choice of data-theory inference point

Inverting to hard process

Conditional INN

- · partonic events x_p from $\{r\}$, given reco-event x_r
- · loss based on likelihood

$$\begin{split} L &= -\left\langle \log p(\theta|x_{p}, x_{r}) \right\rangle_{x_{p}, x_{r}} \\ &= -\left\langle \log p(x_{p}|x_{r}, \theta) + \log p(\theta|x_{r}) - \log p(x_{p}|x_{r}) \right\rangle_{x_{p}, x_{r}} \\ &= -\left\langle \log p(x_{p}|x_{r}, \theta) \right\rangle_{x_{p}, x_{r}} - \log p(\theta) + \text{const.} \\ &= -\left\langle \log p(g(x_{p}|x_{r})) + \log \left| \frac{\partial g(x_{p}|x_{r})}{\partial x_{p}} \right| \right\rangle_{x_{p}, x_{r}} - \log p(\theta) + \text{const.} \end{split}$$

 $\rightarrow\,$ Stable and statistically calibrated

ML-Simulations

Inverting to hard process

Conditional INN

- · partonic events x_p from $\{r\}$, given reco-event x_r
- loss based on likelihood

$$\begin{split} L &= -\left\langle \log p(\theta | x_{p}, x_{r}) \right\rangle_{x_{p}, x_{r}} \\ &= -\left\langle \log p(g(x_{p} | x_{r})) + \log \left| \frac{\partial g(x_{p} | x_{r})}{\partial x_{p}} \right| \right\rangle_{x_{p}, x_{r}} - \log p(\theta) + \text{const} \end{split}$$

 \rightarrow Stable and statistically calibrated

Undo detector and QCD jet radiation in $pp \rightarrow ZW$ +jets

- hard process given
- · detector and reconstruction universal
- · jet radiation (approximately) universal
- model-independence: Butter-Malaescu
- \rightarrow Stable and statistically calibrated

Inverting to hard process

Conditional INN

- · partonic events x_p from $\{r\}$, given reco-event x_r
- · loss based on likelihood

$$L = -\left\langle \log p(\theta | x_{p}, x_{r}) \right\rangle_{x_{p}, x_{r}}$$

$$= -\left\langle \log p(g(x_{\rho}|x_{r})) + \log \left| \frac{\partial g(x_{\rho}|x_{r})}{\partial x_{\rho}} \right| \right\rangle_{x_{\rho}, x_{r}} - \log p(\theta) + \text{const.}$$

 \rightarrow Stable and statistically calibrated

Undo detector and QCD jet radiation in $pp \rightarrow ZW$ +jets

- hard process given
- · detector and reconstruction universal
- · jet radiation (approximately) universal
- · model-independence: Butter-Malaescu
- \rightarrow Stable and statistically calibrated

ML-Invitions

Inverting to hard process

Conditional INN

- · partonic events x_p from $\{r\}$, given reco-event x_r
- loss based on likelihood

$$\begin{split} L &= -\left\langle \log p(\theta | x_{p}, x_{r}) \right\rangle_{x_{p}, x_{r}} \\ &= -\left\langle \log p(g(x_{p} | x_{r})) + \log \left| \frac{\partial g(x_{p} | x_{r})}{\partial x_{p}} \right| \right\rangle_{x_{p}, x_{r}} - \log p(\theta) + \text{const} \end{split}$$

 \rightarrow Stable and statistically calibrated

Undo detector and QCD jet radiation in $pp \rightarrow ZW$ +jets

- hard process given
- · detector and reconstruction universal
- · jet radiation (approximately) universal
- · model-independence: Butter-Malaescu
- \rightarrow Stable and statistically calibrated

Optimal observables

Measure model parameter θ optimally

· single-event likelihood

$$p(x|\theta) = \frac{1}{\sigma_{\text{tot}}(\theta)} \frac{d^m \sigma(x|\theta)}{dx^m}$$

· expanded in θ around θ_0 , define score

$$\log \left. \frac{p(x|\theta)}{p(x|\theta_0)} \approx (\theta - \theta_0) \, \nabla_{\theta} \log p(x|\theta) \right|_{\theta_0} \equiv (\theta - \theta_0) \, t(x|\theta_0) \equiv (\theta - \theta_0) \, \mathcal{O}^{\mathsf{opt}}(x)$$

· leading order parton level

$$p(x|\theta) \approx |\mathcal{M}|_{0}^{2} + \theta |\mathcal{M}|_{int}^{2} \quad \Rightarrow \quad t(x|\theta_{0}) \sim \frac{|\mathcal{M}|_{int}^{2}}{|\mathcal{M}|_{0}^{2}}$$

ML-

Tilman Plehn

Optimal observables

Measure model parameter θ optimally

· single-event likelihood

$$p(x|\theta) = \frac{1}{\sigma_{\text{tot}}(\theta)} \frac{d^m \sigma(x|\theta)}{dx^m}$$

· expanded in θ around θ_0 , define score

$$\log \left. \frac{p(x|\theta)}{p(x|\theta_0)} \approx (\theta - \theta_0) \, \nabla_{\theta} \log p(x|\theta) \right|_{\theta_0} \equiv (\theta - \theta_0) \, t(x|\theta_0) \equiv (\theta - \theta_0) \, \mathscr{O}^{\mathsf{opt}}(x)$$

· leading order parton level

$$p(x|\theta) \approx |\mathcal{M}|_{0}^{2} + \theta |\mathcal{M}|_{\text{int}}^{2} \quad \Rightarrow \quad t(x|\theta_{0}) \sim \frac{|\mathcal{M}|_{\text{int}}^{2}}{|\mathcal{M}|_{0}^{2}}$$

H

CP-violating Higgs production

· unique CP-observable

 $t \propto \epsilon_{\mu\nu\rho\sigma} \ k_1^{\mu} \ k_2^{\nu} \ q_1^{\rho} \ q_2^{\sigma} \ \text{sign} \left[(k_1 - k_2) \cdot (q_1 - q_2) \right] \stackrel{\text{lab frame}}{\longrightarrow} \sin \Delta \phi_{jj}$

- · CP-effect in $\Delta \phi_{jj}$ D6-effect in $p_{T,j}$
- \Rightarrow Established LHC task

ML

Tilman Plehn

PySR

Analytic formula for score

- function to approximate $t(x|\theta)$
- \cdot phase space parameters $x_{
 m p}= p_T/m_H, \Delta\eta, \Delta\phi$ [node]
- \cdot operators $\sin x, x^2, x^3, x + y, x y, x * y, x/y$ [node]
- · represent formula as tree [complexity = number of nodes]
- \Rightarrow Figures of merit

$$\mathsf{MSE} = rac{1}{n} \sum_{i=1}^{n} \left[g_i(x) - t(x, z|\theta) \right]^2 o \mathsf{MSE} + \mathsf{parsimony} \cdot \mathsf{complexity}$$

Score around Standard Model

compl	dof	function	MSE	•
3	1	$a \Delta \phi$	$1.30\cdot10^{-1}$	1 / •
4	1	$\sin(a\Delta\phi)$	$2.75\cdot10^{-1}$. • W
5	1	$a\Delta\phi x_{p,1}$	$9.93 \cdot 10^{-2}$	10-1
6	1	$-x_{p,1}\sin(\Delta\phi+a)$	$1.90\cdot 10^{-1}$	ш і 🔓
7	1	$(-x_{p,1}-a)\sin(\sin(\Delta\phi))$	$5.63 \cdot 10^{-2}$	WZ
8	1	$(a - x_{p,1})x_{p,2}\sin(\Delta\phi)$	$1.61 \cdot 10^{-2}$	
14	2	$x_{p,1}(a\Delta\phi - \sin(\sin(\Delta\phi)))(x_{p,2} + b)$	$1.44\cdot 10^{-2}$	
15	3	$-(x_{p,2}(a\Delta\eta^2 + x_{p,1}) + b)\sin(\Delta\phi + c)$	$1.30\cdot10^{-2}$	· · · · ·
16	4	$-x_{p,1}(a-b\Delta\eta)(x_{p,2}+c)\sin(\Delta\phi+d)$	$8.50\cdot10^{-3}$	10-2
28	7	$\begin{vmatrix} (x_{p,2}+a)(bx_{p,1}(c-\Delta\phi) \\ -x_{p,1}(d\Delta\eta + ex_{p,2} + f)\sin(\Delta\phi + g)) \end{vmatrix}$	$8.18\cdot 10^{-3}$	5 10 15 20 25 30 complexity

PySR

Analytic formula for score

- function to approximate $t(x|\theta)$
- \cdot phase space parameters $x_p = p_T/m_H, \Delta\eta, \Delta\phi$ [node]
- \cdot operators $\sin x, x^2, x^3, x + y, x y, x * y, x/y$ [node]
- · represent formula as tree [complexity = number of nodes]
- \Rightarrow Figures of merit

$$\mathsf{MSE} = \frac{1}{n} \sum_{i=1}^{n} \left[g_i(x) - t(x, z|\theta) \right]^2 \rightarrow \mathsf{MSE} + \mathsf{parsimony} \cdot \mathsf{complexity}$$

Score around Standard Model

· expected limits:

very wrong formula wrong formula right formula MadMiner

- · same within statistical limitation
- ⇒ New optimal observables next

ML for LHC Theory

ML-applications

- · just another numerical tool for a numerical field
- · driven by money from data science and medical research
- · goals are...
 - ...improve established tasks
 - ...develop new tools for established tasks
 - ...transform through new ideas
- · xAI through...
 - ...precision control
 - ...uncertainties
 - ...symmetries
 - ...formulas

 \rightarrow Fun with good old LHC problems

Modern Machine Learning for LHC Physicists

Tilman Plehn^a; Anja Butter^{a,b}, Barry Dillon^a, and Claudius Krause^{a,c}

^a Institut für Theoretische Physik, Universität Heidelberg, Germany
^b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
^c NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, USA

November 2, 2022

Abstract

Moder mechanic learning in transforming particle physics, faster than we can follow, and bullying its way into our mortical tool lock. Two your escaterbar its its case to have been performed. The mean applying unitary edge methods, and tools to the full image of LHZ physics problems. These lecture naises are meant to lad alloadens with possible. They native that ILL-specific materiation and a non-standard immediated intervents and the case of the classification, unsupervised classification, generative networks, and inverse problems. Two themse defining means of the discussion are well-dualed loss handows aftering the problem at land and uncertainly wave networks. As place of the applications of the lass line of the discussion of the problem of the discussion of the discussion of the set discussion of th

Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

- $\begin{array}{lll} \mbox{condition} & \mbox{jets with QCD parameters} \\ \mbox{train} & \mbox{model parameters} \rightarrow \mbox{Gaussian latent space} \\ \mbox{test} & \mbox{Gaussian sampling} \rightarrow \mbox{parameter measurement} \end{array}$
- · beyond C_A vs C_F [Kluth etal]

$$\begin{split} P_{qq} &= C_F \left[D_{qq} \frac{2z(1-y)}{1-z(1-y)} + F_{qq}(1-z) + C_{qq}yz(1-z) \right] \\ P_{gg} &= 2C_A \left[D_{gg} \left(\frac{z(1-y)}{1-z(1-y)} + \frac{(1-z)(1-y)}{1-(1-z)(1-y)} \right) + F_{gg}z(1-z) + C_{gg}yz(1-z) \right] \\ P_{gq} &= T_R \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right] \end{split}$$

Training

Inference

ML

Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

- $\begin{array}{lll} \mbox{condition} & \mbox{jets with QCD parameters} \\ \mbox{train} & \mbox{model parameters} \rightarrow \mbox{Gaussian latent space} \\ \mbox{test} & \mbox{Gaussian sampling} \rightarrow \mbox{parameter measurement} \end{array}$
- · beyond C_A vs C_F [Kluth etal]

$$P_{qq} = C_F \left[D_{qq} \frac{2z(1-y)}{1-z(1-y)} + F_{qq}(1-z) + C_{qq}yz(1-z) \right]$$

$$P_{gg} = 2C_A \left[D_{gg} \left(\frac{z(1-y)}{1-z(1-y)} + \frac{(1-z)(1-y)}{1-(1-z)(1-y)} \right) + F_{gg}z(1-z) + C_{gg}yz(1-z) \right]$$

$$P_{gq} = T_B \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right] \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$P_{gg} = T_B \left[F_{qq} \left(z^2 + (1-z)^2 \right) + C_{gq}yz(1-z) \right]$$

- idealized shower [Sherpa]
- More ML-opportunities...

ML

Learning background only

Unsupervised classification

- train on background only extract unknown signal from reconstruction error
- $\cdot \,$ reconstruct QCD jets $\, \rightarrow \,$ top jets hard to describe
- $\cdot \,$ reconstruct top jets $\, \rightarrow \,$ QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

Learning background only

Unsupervised classification

- train on background only extract unknown signal from reconstruction error
- $\cdot \,$ reconstruct QCD jets $\, \rightarrow \,$ top jets hard to describe
- $\cdot \,$ reconstruct top jets $\, \rightarrow \,$ QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

Moving to latent space

- · anomaly score from latent space?
- $\begin{array}{rrrr} \cdot \mbox{ VAE } \rightarrow \mbox{ does not work } \\ \mbox{ GMVAE } \rightarrow \mbox{ does not work } \\ \mbox{ Dirichlet VAE } \rightarrow \mbox{ works okay } \\ \mbox{ density estimation } \rightarrow \mbox{ does not work } \end{array}$

Learning background only

Unsupervised classification

- train on background only extract unknown signal from reconstruction error
- $\cdot \,$ reconstruct QCD jets $\, \rightarrow \,$ top jets hard to describe
- $\cdot \,$ reconstruct top jets $\, \rightarrow \,$ QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

Normalized autoencoder [penalize missing features]

- normalized probability loss
- · Boltzmann mapping $[E_{\theta} = MSE]$

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}}$$
$$L = -\langle \log p_{\theta}(x) \rangle = \langle E_{\theta}(x) + \log Z_{\theta} \rangle$$

- inducing background metric
- $\cdot\,$ small MSE for data, large MSE for model
- · Z_{θ} from (Langevin) Markov Chain
- \rightarrow Symmetric autoencoder, at last

Learning background only

Unsupervised classification

- train on background only extract unknown signal from reconstruction error
- $\cdot \,$ reconstruct QCD jets $\, \rightarrow \,$ top jets hard to describe
- $\cdot \,$ reconstruct top jets $\, \rightarrow \,$ QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

Normalized autoencoder [penalize missing features]

- normalized probability loss
- $\cdot \text{ Boltzmann mapping } [E_{\theta} = MSE]$

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}}$$
$$L = -\langle \log p_{\theta}(x) \rangle = \langle E_{\theta}(x) + \log Z_{\theta} \rangle$$

- · inducing background metric
- $\cdot\,$ small MSE for data, large MSE for model
- · Z_{θ} from (Langevin) Markov Chain
- \rightarrow Symmetric autoencoder, at last

