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Neural networks and uncertainties

Neural networks
- nothing but numerically evaluated functions

regression x — f(x)
classification x — p(x) € [0, 1]
generation x — px(x) with sampled x ~ N

- constructed through minimization of loss function
- nothing like a Minut fit
- Error bars x — f(x) £ Af(x)?
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Neural networks and uncertainties

Neural networks
- nothing but numerically evaluated functions

regression x — f(x)
classification x — p(x) € [0, 1]
generation x — px(x) with sampled x ~ N

- constructed through minimization of loss function
- nothing like a Minut fit
- Error bars x — f(x) £ Af(x)?

NN with uncertainties

- regression: pr of jet from constituents, error bar?
classification: probability of Higgs event, error bar?
generation: phase space density for large pr, error bar?

- standard LHC approach

train black box on Monte Carlo
calibrate with reference data

— Try to do better?




A tale of four theses

David MacKay (1991)

- Bayesian methods  [posterior=likelinood*prior/evidence]
P(D|M)P(M)

P(D)
Bayesian networks for inference
data modelling through parameters w
P(D|w, M)P(w|M)
P(D|M)
Occam factor for model evidence [posterioriprior volume]

- technically: Gaussian weight distributions?

P(M|D) =

P(w|D, M) =

Since the 1960’s, the Bayesian minority has been steadily growing, especially in the fields
of economics [89] and pattern processing [20]. At this time, the state of the art for the
problem of speech recognition is a Bayesian technique (Hidden Markov Models), and the best
image reconstruction algorithms are also based on Bayesian probability theory (Maximum
Entropy), but Bayesian methods are still viewed with mistrust by the orthodox statistics
community; the framework for model comparison is especially poorly known, even to most
people who call themselves Bayesians. This thesis therefore takes some time to thoroughly
review the flavour of Bayesianism that I am using. To some, the word Bayesian denotes
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A tale of four theses for Adaptive Models
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P(D) In Partial lVII|!‘I,.IrlI:I;:,..":):;,‘,,':‘“‘;“q"i"y""\“b

. . Doctor of Philosophy
- Bayesian networks for inference '

data modelling through parameters w
P(Dw, M)P(w|M)

P(DIM)

- technically: Gaussian weight distributions?

P(M|D) =

P(w|D, M) =
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A Practical Bayesian Framework
for Backpropagation Networks

Abstract

A quantitative and practical Bayesian framework is described for learning of map-
pings in feedforward networks. The framework makes possible: (1) objective compar-
isons between solutions using alternative network architectures; (2) objective stopping
rules for network pruning or growing procedures

) objective choice of magnitude
and type of weight decay terms or additive regularisers (for penalising large weights,
etc.); (4) a measure of the effective number of well-determined parameters in a model;
(5) quantified estimates of the error bars on network parameters and on network out-
put; (6) objective with al

learning and i ion models such
as splines and radial basis functions. The Bayesian ‘evidence’ automatically embod-

ies ‘Occam’s razor’, penalising over—flexible and over-complex models. The Bayesian
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A tale of four theses

David MacKay (1991)

. Bayesian methods [posterior=likelihood*prior/evidence]
P(Dl M)P(M) BAYESIAN LEARNING FOR NEURAL NETWORKS

P(D)
- Bayesian networks for inference ”
data modelling through parameters w
P(D|w, M)P(w|M) Radford M. Neal
P(DIM)
- technically: Gaussian weight distributions?

P(M|D) =

P(w|D, M) =

Radford Neal (1995)

- deep Bayesian networks  [regression, classification]

- beyond Gaussian approximation

- hybrid Monte Carlo sampling

- technically: avoid overtraining for large BNNs
— Deep BNNs for inference

A thesis submitted in conformity with the requirements

© Copyright 1995 by Radford M. Neal




A tale of four theses CAMBRIDGE
Yarin Gal (201 6) Uncertainty in Deep Learning
deep learning and uncertainties
active learning/reinforcement learning
technically: variational inference
technically: stochastic regularization
— BNNSs for uncertainty

Yarin Gal

Department of Enginecring
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Gonville and Caius College September 2016
Otbher situations that can lead to uncertainty include

« noisy data (our observed labels might be noisy, for example as a result of measure-

ment imprecision, leading to aleatoric uncertainty),

uncertainty in model parameters that best explain the observed data (a large
number of possible models might be able to explain a given dataset, in which case
we might be uncertain which model parameters to choose to predict with),

« and structure uncertainty (what model structure should we use? how do we specify
our model to extrapolate / interpolate well?).

The latter two uncertainties can be grouped under model uncertainty (also referred to
as epistemic uncertainty). Aleatoric uncertainty and epistemic uncertainty can then be
used to induce predictive uncertainty, the confidence we have in a prediction.




UNIVERSITY OF
A tale of four theses CAMBRIDGE

Yarin Gal (201 6) Uncertainty in Deep Learning
deep learning and uncertainties
active learning/reinforcement learning
technically: variational inference
technically: stochastic regularization

Yarin Gal
— BNNSs for uncertainty Department of Bagincering

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy
But fitting the posterior over the weights of a Bayesian NN with a unimodal
approximating distribution does not mean the predictive distribution would be
dal! imagine for simplicity that the i liate feature output from the first
Gonville and Caius College September 2016

layer is a unimodal distribution (a uniform for example) and let’s say, for the sake
of argument, that the layers following that are modelled with delta distributions (or
Gaussians with very small variances). Given enough follow-up layers we can capture

any function to arbitrary precision—including the inverse cumulative distribution
function (CDF) of any multimodal distribution. Passing our uniform output from
the first layer through the rest of the layers—in effect transforming the uniform
with this inverse CDF—would give a multimodal predictive distribution.




A tale of four theses

Yarin Gal (2016)
- deep learning and uncertainties
- active learning/reinforcement learning
- technically: variational inference
- technically: stochastic regularization
— BNNSs for uncertainty

Manuel HauBmann (2021)
- many proper derivations
- active learning, reinforcement learning
- stochastic differential equations
- technically: BNN variational inference
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Jet regression

Jet properties with uncertainties

- train many networks
different architectures/hyperparameters
different trainings
different initalizations
different data sets

- histogram network output f(x), use f(x) £ Af(x)
- remember NN function fy(x) described by weights 6
— Bayesian network  Afy(x) from A6;

Energy measurement for jet j
- expectation value from probability distribution

= / dE E p(E)
- weighted by reproduced training date Ensemble of networks
/—. N\ @ Output
= [ d6 p(E|0) p(6]T) BNN AP0
/ N % \g/ u=%2yi
¢-distributions means BNN - \/\ 7 / NI I
- S — B ryZie
\ o Z(ﬂ w?
N | TN
P\jgé/( )




Likelihood loss

Replacing the MSE
- start from variational approximation (inink g(6) as Gaussian with mean and width]

p(E) = [ 06 p(EI6) p(oIT) ~ [ 0B p(EIS) q(0)

. similarity thl’OUgh minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

Ducla(6).p(6|T)] = [ b q(6) 1og ‘(’gf’;)
qOp(T).
- /d6‘ q(6) log p(T\o)p(e)

= Dla(0). p(O)] ~ [ db q(6) log p(T16) + log p(T) [ b q(0)
= Dla(0). p(O)] — [ d6 q(6) log p(T16) + log p(T)
- meaning of constant (ELBO)
log P(T) = D [a(6), P8I )] ~ Dic[a(6). p(&)] + [ b q(6) log p(TI6)
> [ 06 q(6) 1ogp(TI6) — Dic[a(6), p(©)]
— loss with likelihood p(T|@) and prior p(6)

£ =~ [ do.q(o) 10gp(TI6) + D [a(0), ()]




Relation to standard networks

Regularization
- Gaussian prior

o5 — ob+ (g — 1p)?
D [G10(0), P (0)) = =P G2
P

- deterministic network q(0) — §(6 — 6p)

(Np - 90)2
2

L =~ —log p(T|60) +
20

+ const
P

- tool to reduce overtraining
— L2-regularization included




Relation to standard networks
Regularization
- Gaussian prior

2 2
D [0 (6). o (0] = T2~ T2+ Uta = 1t0)

20}27
- deterministic network q(0) — §(6 — 6p)
RY
L ~ —log p(T|6o) + M + const
20

P
- tool to reduce overtraining
— L2-regularization included

Dropout

- extreme version of variational training
- remove random weights during training
loss with Bernoulli distribution  weight x6, = 0, 6,1

== [ [ =], | towp(TIx60) ~ —p logp(TI60)

- tool to reduce overtraining
— Dropout included




Weight sampling

Weight space
- expectation value using trained network g(9)

(E) = /dEd9 E p(E0) q(0)
= /da q(0)E(6)  with  E(0) = /dE E p(E|0)
- output variance
iy = /dEd@ (E — (E))* p(E|0) q(6)
= [ @0 a(6) [E¥(0) - 2(E)E(0) + (E)Y]
— [ @0 ao) [E0) ~ B0 + (E0) ~ ()] = oBen + o
Two uncertainties
- vanishing for q(6) — §(0 — 6p)
ofes = [ 90 q(0) [E©) - ()]

- vanishing for p(E|0) — 6(E — Ep)

SEoon = Thoge = [ 90 9(6) [E%(0) ~ E0)] = [ 40 (0) ceun(0)°




Implementation

Approximations and implementation
- network output in weight and phase space
BNN : x,0 — ( E(0) )

Tstoch(0)
- Gaussian weights & likelihood
‘Ej(o) _ E}ruth 2
L~ /de Q.0 (0) L 1 logosiom,(0)
* jgsj 20’sloch,/‘(0)2 stoehJ
n od — a2 + (g — pp)’

2
20}

- heteroskedastic loss, deterministic network

=y

jets j

— 2
‘E,‘(go) _ E}rmh

W + log ostoch,j(6o)
stoch,j

- supervised uncertainties

training statistics
stochastic training data
systematics from data
label augmentations
model limitations




Jet measurements with error bars

Measure pr ; of hadronically decaying top  (Kasieczka, Luchmann, Otterpohl, TP]

- BNN regression pr ;
pr of (fat) jet decent estimate for piruin
- non-Gaussian truth label

symmetric in ISR-jet ‘QCD heat bath’
without ISR jets need for correction
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Jet measurements with error bars

Measure pr ; of hadronically decaying top  [Kasieczka, Luchmann, Otterpohl, TP]

- BNN regression pr ;
pr of (fat) jet decent estimate for p‘}‘,‘}“

- non-Gaussian truth label

symmetric in ISR-jet ‘QCD heat bath’
without ISR jets need for correction

- training sample size

separate ogioch > Opred

statistics not the problem  (LHC theme]
noisy label inherent limitation
checked with deterministic networks

60

BNN pr,j = 600...620 GeV
o —
-=- MSE
¥ Otot
7 Ostoch
\\_x_apri
10° 10°

Training size

pr,j = 600...620 GeV

Frequentist
Dropout

-=- MSE
¥ Otot
7 Ostoch

7 Opred

\—\"_—‘\.

104 10°
Training size




Jet measurements with error bars

Measure pr ; of hadronically decaying top  (Kasieczka, Luchmann, Otterpohl, TP]
- BNN regression pr ;
pr of (fat) jet decent estimate for piruin
- non-Gaussian truth label

symmetric in ISR-jet ‘QCD heat bath’
without ISR jets need for correction

- training sample size

separate osioch 3> Tpred Pr.;=600...620 Gev
statistics not the problem  (LHc theme] 0.015 | ”Ut:, .
noisy label inherent limitaton | j 7 predicte
checked with deterministic networks % o.010
- non-Gaussian network output g
. o
remember pt}‘,‘}h non-Gaussian 25005
model p(T|0) as Gaussian mixture
weight distribution g(0) still Gaussian 0,000 [ R
7500 600 700 800 900

pr, [GeV]




Data augmentation

Calibration means error propagation

- calibration means label measured elsewhere

- training on smeared data?
training with smeared labels!

- Gaussian noise over label
- added to the stochastic uncertainty

2 2 2
Tiot = Tstoch + Upred

2 2 2
= Ostoch,0 + Ocq + O pred

— error extracted correctly

Ocal [GeV]

pr.j = 600...620 GeV

20 40 60 80 100 120
Osmear [GeV]




Data augmentation

Calibration means error propagation

- calibration means label measured elsewhere

- training on smeared data?
training with smeared labels!

- Gaussian noise over label
- added to the stochastic uncertainty

2 2 2
Tiot = Tstoch + Upred

2 2 2
= Ostoch,0 T Tcal T Tpred

— error extracted correctly

Jet regression bottom lines
- BNN regressionion working
- statistical uncertainty controlled
- stochastic uncertainty sizeable
- non-Gaussian output working
- training-data augmentation
- calibration straighforward

Ocal [GeV]
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Precision amplitudes

Loop amplitudes gg — vvg(g) (Badger, Butter, Luchmann, Pitz, TP]
- amplitudes A over phase space points x; — simple regression

- weight-dependent pull _
ght-dependent p A6) — A

U'model,j(e)

- training data exact in x and A
- improvement — interpolation by weighting oy puli or o]

_ 2
|A,(9) — Ajun
L=/d9 -(0 E n x | ——— — + log o, (6
Qu,o(0) i 20mode|,j(9)2 g model,/( )

points j

99-vvg process-boosted
107 =
N(u=018,

g B 0=0.90)
3 = N (= —0.01,
£ £1074 9-090) %
£ £ . training
g 2
20 2.
3 310
2 2
# #

107

— -2 -1 -0 1 2 3 -75 =50 =25 -0.0 25 5.0 7.5
(Ann-A) / Omodel (Ann-A) / Omodel




Precision amplitudes

LOOp amplitudes ag — 'yvg(g) [Badger, Butter, Luchmann, Pitz, TP]

- amplitudes A over phase space points x; — simple regression

- weight-dependent pull _
9 p P Aj(@) _ A}ruth

Umodel,j(g)
- training data exact in x and A
- improvement — interpolation by weighting oy pult or o]
— 2
’A,(G’) _ A}ruth

L=/d0 Gu.o(0) D nyx

+ log Umodel,j(e)
poins j 20model,j(0)2

Precision regression
- quality of network amplitudes

train/test Targest 100% A, largest 100% A,
. <A> — A" 120 R argest oA | 120 . arges! o Ann
Altrainitest) _ L /l 99-vvg largest 1% A 99=vv9 largest 1% Ay
J train/test process-boosted B process-boosted )
Aj 100 BNN trosning largest 0.1% Ayy | 100 BNN traning largest 0.1% Ay
g 80 80
— Beyond fit-like regression z
£ 60 60
5
2
40 40
20 20
-0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04

A 4 overflow bin A== 4 overflow bin



Precision amplitudes

LOOp amplitudes ag — 'yvg(g) [Badger, Butter, Luchmann, Pitz, TP]

- amplitudes A over phase space points x; — simple regression

- weight-dependent pull _
9 p P Aj(@) _ A}ruth

Umodel,j(e)
- training data exact in x and A
- improvement — interpolation by weighting oy pult or o]

A truth 2
L do 2 E 7’/\/(9) _ Aj | %
= n i
/ qma( ) lj X zamodel,j(g)z + OEUmodel,/( )

points j
Precision regression
- quality of network amplitudes o
10
ainftest gg— 77g performance-boosted
rain/test
Alrain/test) _ (A)j — Aj

) Atrain/test
J

— Beyond fit-like regression




Generative networks

Unsupervised Bayesian networks  [geliagente, HauBmann, Luchmann, TP]

- data: event sample [points in 2D space]

learn phase space density
normalizing flow mapping to latent space nn
standard distribution in latent space (caussian]
mapping bijective
sample from latent space

- Bayesian version

allow weight distributions

learn uncertainty map HR ) T —
. 2D Wedge ramp 0.2 0.4 . 0.6 0.8
2 2
p(X) —ax+b=ax+ 11— g(xmax - Xmin) 0.07{ —— Fit: Aa = 0.09, Az = 0.01
X — Xmi T Opred
max min 0.06] B £50y

0.05

o2 = (x-3) (e

+ (1 + 2)2 (Dxmax)? + (1 - 2)2 (A Xin)?

0.04

Absolute Uncertainty

0.03

explaining minimum in opreq(x) 002

— INNs just (non-parametric) fits




More generative networks

Alternative architectures [Buter, Huetsch, Schweitzer, TP, Sorrenson, Spinner]
- always a fit?
- expressivity vs architecture?
- discrete diffusion model

[N}

Normalized




More generative networks

Alternative architectures [Buter, Huetsch, Schweitzer, TP, Sorrenson, Spinner]
- always a fit?

- expressivity vs architecture?

- discrete diffusion model

- continuous diffusion model

2

Normalized
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More generative networks

Alternative architectures [Buter, Huetsch, Schweitzer, TP, Sorrenson, Spinner]
- always a fit?
- expressivity vs architecture?
- discrete diffusion model
- continuous diffusion model
- autoregressive transformer (bins)

Normalized




More generative networks

Alternative architectures [Buter, Huetsch, Schweitzer, TP, Sorrenson, Spinner]
- always a fit?
- expressivity vs architecture?
- discrete diffusion model
- continuous diffusion model
- autoregressive transformer (bins)
- autoregressive transformer (GMM)

[N

Normalized




Precision generator with uncertainties

Bayesian network generator

- network with weight distributions  (cal (2016)]
Sample Welghts [defining error bar]
working for regression, classification
frequentist: efficient ensembling

= Training-related error bars

Theory uncertainties
- BNN regression/classification:
systematics from data augmentation
- systematic uncertainties in tails

1 pT,h — 15 GeV 2
w=1ta 100 GeV

- augment training data (a=o...30

- train conditionally on a
error bar from sampling a

= Systematic/theory error bars

7 + 1 jet exclusive

§HIJE ‘TTI‘"‘T. s i
® \‘\ll\TWHITHHTTHWHMl il
s W e
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http://www.cs.ox.ac.uk/people/yarin.gal/website/

Bayesian networks

Initially developed for inference they work for...

...regression with error bars
...classification with error bars

..generation with error bars
Modern Machine Learning for LHC Physicists

Tilman Plehn”; Anja Butter"”, Barry Dillon”, Claudius Krause®, and Ramon Winterhalder?
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Abstract

Modern machine learning s transforming particle physics, faster than we can follow, and bullying its way into our
‘numerical tool box. For young researchers it is crucial 10 stay on top of ths development, which means applying cuting:-
edge methods and tools {0 the full range of LHC physics problems. These lecture notes are meant to lead students with
basic knowledge of particle physics and significant enthusiasm for machine learning o relevant applications as fast as

ssible. They start with an LHC-specific motivation and a non-standard introduction to neural networks and then cover
ation, unsupersised classfication, generative networks, and inverse problems. Two themes defining much of the
usion ar wellefied s uncton rellecing e probles  hand nd nceriny-ars neworks. A part of te
. the notes include some aspects of theorctical LHC physics. Al cxamples are chosen from paricle physics
yubhcmm\\ Of the last few years. Given that these notes will be outdated already at the time of submission, the week of
MLAJets 2022, they wil be updted frequenly.



http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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