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Modern LHC physics

Classic motivation First-principle, precision simulations
- dark matter? - start with Lagrangian
- baryogenesis? - calculate scattering using QF T
- origin of Higgs field? - simulate collisions

- simulate detectors

LHC physics — LHC collisions in virtual worlds

- fundamental questions

- huge data set BSM searches

- first-principle, precision simulations - compare simulations and data

- complete uncertainty control - understand LHC data systematically

- infer underlying theory (smorBsw

Successful past - publish useable results

- measurements of total rates — Lots of data science...

- analyses inspired by simulation
- model-driven Higgs discovery

forward

scattering decay Qco shower detectors.
CHEEHETE®




Role of theory

First-principle simulations

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation psriFsR]

- add parton shower [stit acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling!
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First-principle simulations @ @

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [sriFsR)

- add parton shower [stit acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling!

Pythia/Madgraph/Sherpa... for HL-LHC

- factor 25 more expected (= simulated) data
ATLAS Preliminary

- more CompleX final states 2020 Computing Model 'C:EJ,,: 2030: Aggressive R&D
2% 1
higher-orders precision o

- parameter coverage for signals

- enable analysis reinterpretation?
enable global LHC analyses?

— Theory nightmare

12%

== Data Proc
79 == MC-Full(Sim)
MC-Full(Rec)

- MC-Fast(Sim)
= MC-Fast(Rec)
= EvGen

6% Heavy lons

== Data Deriv

= MC Deriv
Analysis




Role of theory

_N:a:ednv decay Qo ‘shower — detectors.
First-principle simulations @ @

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [sriFsR)

- add parton shower [stil acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling!

LHC-specific explainable Al

- SBI conditional on theory simulations
- understanding LHC data is QFT
- computing speed means precision Scientific simulators
- control critical
- uncertainties crucial
- phase space interpretable

— Well-defined, but non-standard Al/ML




ML-applications in experiment

Top tagging  (sanmay’s lecture] :
- ‘hello world’ of LHC-ML = 1§
- end of QCD-taggers
- different NN-architectures
— Non-NN left in the dust...
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ML-applications in experiment

Top tagging  (sanmay’s lecture]
- ‘hello world’ of LHC-ML
- end of QCD-taggers
- different NN-architectures:
Non-NN left in the dust...

88 Layer Truth

Particle flow [ask Sanmay] ;§ Z?
- mother of jet tools © ol
- combined detector channels I S
- similar studies in CMS

_, Beyond just concepts o-pememm s

ful W a® N
Towards a Computer Vision Particle Flow * e ¥ i ¥
e —
e S ey o ) .
e e e oy
: R

; o Mo,

that the shower originating from a &° — yy i resolved by a 32 x 32 granularty layer.



Jets and parton densities

Anomaly searches [Tanmoyss talk]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Autoencoders ==




Jets and parton densities

Anomaly searches [ranmoy’s talk]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— Autoencoders = ==

NNPDF/N3PDF parton densities il blast
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory N 3""‘ B

of parton distribution functions




Symmetries

Sy mmetric networks [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetric latent representation

= =

Symmetries, Safety, and Self:Supervision

Abstract

[y Ty




Symmetries

Sy mmetric networks [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetric latent representation 3

Symmetries, Safety, and Self:Supervision

Abstract

[y Ty

Learning symmetries [representation, visualization]

- (particle) physics is all symmetries
- identify symmetries in 2D systems  [paintings]
— Networks representing structure

PCA dataset

Wbt abeiz [0 > _ symmetry
5 .

(_label3  labeld )




Integrals and perturbative QFT

Learning integrands and integrals (difierentiable activations] BHEP

- learn integrand through differiable network
- evalute integral as promitive
— Novel ML-integrator

1L tanh

2L sigm
2L anh

Multi-variable integration with a neural network

00

“ 2000

1000




Integrals and perturbative QFT

Learning integrands and integrals (difierentiable activations] BHEP

- learn integrand through differiable network
- evalute integral as promitive
— Novel ML-integrator

1L tanh

2L sigm

00
2L anh

3000

“ 2000

1000

Learning integration paths f(invertivle networks]
scilpos | s s 12,120 202)

‘Targeting multi-loop integrals with neural networks

- find optimal integration paths
- learn variable transformation ‘

— Theory-integrator




Event generation

Speeding up Sherpa and MadNIS  [inNs, sampling] e

s+
h g s

- precision simulations limiting factor for Runs 3&4 «_z

- unweighting critical e mmm
— Phase space sampling =




Event generation

Speeding up Sherpa and MadNIS  [inNs, sampling]

~e=1)

Full Sherpa ——
Surrogae Sherpa ——

- precision simulations limiting factor for Runs 3&4
- unweighting critical

— Phase space sampling -

Abstract

Speeding up amplitudes [precision regression]
- loop-amplitudes expensive mmm—
- training up to interpolation

— Precision NN-amplitudes

Optimising simulations for diphoton production at
hadron colliders using amplitude neural networks

normalized




Invertible event generation

Precision NN-generators [Bayesian generative models]
- control through discriminator [GAN-iike]

- uncertainties through Bayesian networks
— Flow, diffusion, transformer

Z+ 1 jet exclusive
P t Reweighted
z ~ — Tnin
g ~.




Invertible event generation

Precision NN-generators [Bayesian generative models]
- control through discriminator [GAN-iike]

- uncertainties through Bayesian networks
— Flow, diffusion, transformer

Z+ 1 jet exclusive
P t Reweighted
z ~ — Tnin
g ~.

Unfolding and inversion [conditional normalizing flows]

- detector/decays/QCD unfolded

ool £
: . ) P I A
- calibrated inverse sampling === == s T ;H =
— Publishing analysis results .. v e 20 }\ =
)

CE R
Mt (GeV]




Proper theory

Navigating string landscape  (reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstract
B

Figure I L Cluter siructure i dimensionaly reduced lux samplesfor RL and 25 GA runs (FCA e v ent S 1 o of s v, e 1

on all samples of GA and RL). The runs. Right:

(input)values (Ns and N respecively)in relaion t principa components for a PCA 1t of the
individual output of GA and RL. Vhich e ags Pt o o ng sl i,




Proper theory

Navigating string Iandscape [reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model space Samp“nq Genetic Algorithms and Reinforcement Learning

Figure 1: Lefi: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA bt i o i b In okt of B e
il samples of GA and RL). The col

(inpu) values (N and N respectively) in relation to principal components for a PCA fit of the

individual output of GA and RL. G g g o g umpin s

Learning formulas  (genetic aigorithm, symbolic regression]
- approximate numerical function through formula
- example: score/optimal observables
— Understanding numerics through formulas —

Back to the Formula — LHC Edition

o dolFantion VSE
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Table 8: Score hall of fame for simplificd WBF Higgs production with fy, = 0, including a
optimization fit.

0 prodoction. W thn line i o he ki o f CPesnation
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Generative-network revolution

Generative networks
- generate new images, text blocks, LHC events

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density (Bayesian NN]




Generative-network revolution

Generative networks
- generate new images, text blocks, LHC events

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density (Bayesian NN]

- Variational Autoencoder
— low-dimensional physics, high-dimensional representation

- Generative Adversarial Network
— generator trained by discriminator

- Normalizing Flow/Diffusion Model
— stable (bijective) mapping

- Generative Transformer ecpt]
— learning correlations successively

— Pick model for purpose

forward

Y

scattering decay Qco shower i detectors




Phase space generation

Phase-space generators  ypical LHC task]

- training from event samples
no energy-momentum conservation
- every correlation counts

. ZMH + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]




Phase space generation

Phase-space generators  iypical LHC task]

- training from event samples
no energy-momentum conservation

- every correlation counts

. ZMH + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

INN-generator

- stable bijective mapping

Go(n—
latent r ~ Paent ————— phase space x ~ Pyata
«— Go(x)
- tractable Jacobian
Z + 1 jet exclusive
AX Prodel(X) = dr Pratent(r) < 10-2
QE) —— Truth
BGg(x) | -
Prmodel (X) = platent(Go (X)) Z107° INN

- likelihood loss

LiNnn = —< log pmodeI(X)>
Pdata

= Per-cent precision possible

prj, [GeV]




Controlled precision generator

Best of GANSs: discriminator
- D = 0 (generator) vs D = 1 (training)

- NP-optimal discriminator

D(X) N pda1a(X) N 1

Poata(X) + Pmodet (X)
D(x) Pdata(X)
w(x) — =
( ) 1- D(X) pmodel(x)
= Dual purpose: control and reweight

- learned event weight

7 + 1 jet exclusive 7 + 1 jet exclusive
—— Reweighted 0.2
— INN

—— Reweighted

normalized
normalized

103
1074 '
3 — £ i
s D R LTI SRy ST L LR T TTHTLILLER
ot © o T
25 50 75 100 125 150 80 90 100 110

prj, [GeV] M, [GeV]




Controlled precision generator

Best of GANs: discriminator
- D = 0 (generator) vs D = 1 (training)
- NP-optimal discriminator

pda1a(X) 1
D . rEeeN s —
) = Pdata(X) + Pmodel(X) -
- learned event weight w(x) D(x) _ Paaa(X)

1- D(X) - pmodel(x)
= Dual purpose: control and reweight

Joint training  [@AN inspiration]

- GAN-like training unstable [Nash equilibrium??] 03 2 + 3 jet exclusive
X . - —— Reweighted
- coupling through weights 202 —— DiscFlow
/d pdat1( ) Pmodel (X) 50,1
log
Paogel (X) Pata(X) 00
= Unweighted, controlled events 5 %é IFH
s T T TIT R S L e
= o L T T T 10T
0 2 4 6 8




Precision generator with uncertainties

Training uncertainties

- Bayesian networks  (varin Gal (2016)]
learn weight distributions
sample weights
learn and output uncertainties

- established for regression, classification
frequentist: efficient ensembling

= Statistics-related error bars

Z + 1 jet exclusive

— True
—— BINN
—— Train

10°%

=
g
8
3
g

= -

it T

25 (
prjy [GeV]



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Precision generator with uncertainties

Training uncertainties

- Bayesian networks [varin Gal (2016)]
learn weight distributions
sample weights
learn and output uncertainties

- established for regression, classification
frequentist: efficient ensembling

= Statistics-related error bars
Theory uncertainties

- systematics through training data
- augment training data (a=o...30

. —15 GeV\?

10

100 GeV

normalized

- train conditionally on a
error bar from sampling a

= Systematic/theory error bars

107!

omINN
BINN

[

without conditioning

20 40 60 80
prj,[GeV]



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Precision generator with uncertainties

Training uncertainties

Z + 1 jet exclusive

- Bayesian networks  (varin Gal (2016)]
learn weight distributions 2
sample weights 2
learn and output uncertainties §

- established for regression, classification
frequentist: efficient ensembling

= Statistics-related error bars

—— Reweighted
—— Train

Theory uncertainties

- systematics through training data
- augment training data [a=o...30

. —15 GeV)?
w=1+a <m“7>

100 GeV

- train conditionally on a
error bar from sampling a

= Systematic/theory error bars



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Testing generative networks

Compare network to training/test data

- supervised: histogram deviation [orpu
- unsupervised density — histogram discriminator

D(Xi) _ pdala(xi)

T 1= D(X)  Pmodel(X)
— Using interpretable phase space



Testing generative networks

Compare network to training/test data
- supervised: histogram deviation [orpu

- unsupervised density — histogram discriminator

_ Pdata (Xi )

1= D(X) ~ Pmodel(Xi)
— Using interpretable phase space

Applled to event generators [also jets, calorimeter showers]
- shape and width of w-histogram
- pattern in (interpretable) phase space?

Z+2j
Truth
—— Gen
— w<08
— w>14

0.5
10-1 Z+2j 04
Truth
Gen
=2107%
<
107°
nnMq H
1072 10 10%
w(z)

M, [GeV]

90

100

110



Testing generative networks

Compare network to training/test data
- supervised: histogram deviation (or pui
- unsupervised density — histogram discriminator
_ D) _ Peaa(xi)
1= D(X))  Pmodel(X)
— Using interpretable phase space

Applled to event generators [also jets, calorimeter showers]
- shape and width of w-histogram
- pattern in (interpretable) phase space?

Z+3j
""" Truth

—— Gen

— Generative xAl for LHC physicists




Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event

forward

Y

scattering decay QCD shower detectors

I [T | g |2 | 0| [

<
« .
inverse




Inverse simulation

Invertible ML-simulation
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known problems

detector unfolding

unfolding to QCD parton means jet algorithm

unfolding jet radiation known combinatorics problem

unfolding to hard process standard in top groups  ineeded for global analyses]
matrix element method an old dream

- improved through coherent ML-method
- free choice of data-theory inference point
— Transformative progress for HL-LHC

forward

N
>

scattering decay QCD shower detectors

inverse

<
«




ML for LHC Theory

ML-applications

- just another numerical tool for a numerical field
- driven by money from data science and medical research

- goals are...
...improve established tasks

...develop new tools for established tasks

...transform through new ideas
- XAl through...

...precision control
...uncertainties
...symmetries
...formulas

— Lots of fun with hard LHC problems

Modern Machine Learning for LHC Physicists

Tilman Plehn®; Anja Butter*", Barry Dillon”, Claudius Krause®*, and Ramon Winterhalder!

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany

 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

 NHETC, Dept. of Physics and Astronomy. Rutgers University, Piscataway, USA
#CP3, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

July 21,2023

Abstract

Modern machine learming s transforming partcle physics, faster than we can follow, and bullying its way into our

bavc knowldse of paricle phy
possible. They siart v

irs. Given that these notes will be outdated alrcady at the time of sul
Vi aset 2023, they il Updaed frequenty.


http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf

Inverting to QCD

cINN for inference (Bieringer, Butter, Heimel, Hoche, Kothe, TP, Radev]

condition jets with QCD parameters
train model parameters — Gaussian latent space

test Gaussian sampling — parameter measurement
- beyond C4 vs Cr

D a1 2+ Gt - )

1—z(1—y)

) 2(1—y) (=20 -y - -
Pgg = 2C4 [Dgg (1 T + 1T—(1-20 7y)> + Fggz(1 — 2) + Cggyz(1 z)]
Pgg = Tg [qu (22 +(1 - 2)2)  Cgayz(t Z)]

Training

Pqq = C¢ [qu

Inference

{=}

Summary LHC Summary
net Jets net
v

z
NN [ Qe NN
measurement

g(m;h) P(2)

{zm}

QCD
model

P(ml{z}) 9(z:h)




Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

- condition jets with QCD parameters
train model parameters — Gaussian latent space
test Gaussian sampling — parameter measurement

- beyond C4 vs Cg
2z(1 —y)

1—z(1-y)
z(1 —y) (1-20-y)

1—z1—-y) 1-(1-2(1=-»

Pqq = C¢ [qu + Fgq(1 — 2) + Cqqyz(1 — Z)]

) + Fggz(1 —2z)+ ngyz(1 — z)}

Pgg = 2Ca [Dyg <
0.4

Pgg = Tr [qu (z2 +(1— 2)2) + Cgqyz(1 — z)] ’
- idealized shower [sherpa)
- More ML-opportunities... ’ 2

= Posterior
—— Gaussian fit
== Absolute error of 2.5

Caq fo-08 =56

-10 0 10 -10 0 10 -10 o 10




JetGPT

Correlations through self-attention

- think of data as bins in phase-space directions
self-attention: encode relation between bins

input x, learn relation x; < x; VV
- latent query representation g = W9x o Ywk, M @k softmax | Y
latent key representation k = WKx . } < ke —g ~:I\:(7} ac
define correlation as Aj = g; - k; " )\ ¢
W vy v —
- latent value representation v = WVx v agug = T

outputz = Av



JetGPT

Correlations through self-attention

- think of data as bins in phase-space directions
self-attention: encode relation between bins

input x, learn relation x; < x;

- latent query representation g = W%x
latent key representation k = WKx
define correlation as Aj = q; - k;

- latent value representation v = WVx
outputz = Av

Autoregressive transformer
- factorized density

Prodei(x16) = T T p(xilx1, .. xi—1)
i
- bins — Gaussian mixture model

- autoregressive Aj = 0 forj > i
— Bayesian version for uncertainties

T

pi Rk }m.
} — L(, —q ~'1.',(7
.'r(‘

wVv v v —
D —_— B !
ve acve —

’@’w‘“‘* Plal0®)

L > w©
N > p(x;lw“’)

L . E&@: .
i H : M
I

©®

0D = plal®D)
|

[



JetGPT

Correlations through self-attention

- think of data as bins in phase-space directions

self-attention: encode relation between bins
input x, learn relation x; <> x;

- latent query representation g = W%x
latent key representation k = WKx
define correlation as A; = q; - k;

- latent value representation v = WVx
outputz = Av
Bayesian JetGPT
- sometimes you win...

T

Iy
kl

2

Wk

wY

; ihr } _softmax__ a
< kF — 31 ke dc

Z+3 jet exclusive

—— Truth
— AT




JetGPT

Correlations through self-attention

- think of data as bins in phase-space directions
self-attention: encode relation between bins ,

input x, learn relation x; <> x; Iy
i kl ik } _softmax__ =

- latent query representation g = W9x WK
latent key representation k = WKx } ke —q ke ac
define correlation as Aj = q; - k; " ajul .
- latent value representation v = WVx A

outputz = Av

Bayesian JetGPT
. sometimes you win... Z+1 jet exclusive
. . 0.2
...and sometimes there is work to do... 3 Truth
;g — AT
Eo.
Z

1.2
[z o—wggasﬁ@%ﬁ
<:E N

. rmmq ’It
I

i fHi
T Nmﬁl | H

9
MW[GeV]




Learning optimal observables

Measure model parameter 6 optimally (Butter, TR, Soybeiman, Brehmer]

- single-event likelihood

1 d"o(x]6)
p(x|0) = co@)
- expanded in 6 around 6, define score
og DU (0~ 00) o togpx16)] = (0~ b0) txI) = (0 — 60) 0™ ()
p(x160) %
- to leading order at parton level
M2
PO~ IME+OIME, = t(x]fg) ~ i
| Mg

= And including everything?




Learning optimal observables

Measure model parameter 6 optimally (Butter, TR, Soybeiman, Brehmer]

- single-event likelihood

1 d"o(x]9)
p(x|0) = (@) dxm
- expanded in 6 around 6, define score
og PO (0~ 60) Vo logp(x16)| = (6 — 06) t(x160) = (6 — 00) 6™ (x)
p(x|60) %
- to leading order at parton level
M2
PUxIO) & IME+0IME, = t(xlog) ~ Al
[MI3
= And including everything?
CP-violating Higgs production q
- unique CP-observable W
v O . w
t o euvpo Ki* k3 QY qg sign[(ki — ka) - (g1 — q2)] BOIEC gin Agj
- CP-effect in Ag;; ¢

Dé-effect in pr;
= Established LHC task




Symbolic regression

Symbolic regression of score  [pysr (M Cranmer) + final fif

- function to approximate  t(x|0)
- phase space parameters xp = pr/my, An, Ad [node]
- operators  sinx, X2, x3, X 4+ y,X — Y, X% y,X/y [node]
- represent formula as tree  complexity = number of nodes]

= Figures of merit

1< 2 ) )
MSE=-—>" [g/(x) — H(x, z\a)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

compl dof ‘fu.nction MSE
3 1|ade 1301071
4 1 |sin(aA¢) 2.75-107! -
5 1 |aAda,, 9.93-102 1°
6 1 |-z, sin(A¢ +a) 1.90-1071 w
7 1 |(=2p1 — a)sin(sin(A¢)) 5.63-1072 2
8 1 |(a—zp1)zp2sin(Ag) 1.61-1072
14 2 |zp1(aA¢ —sin(sin(A¢)))(zp2 +b)  1.44-1072
15 3 |—(zp2(aln® + 1) + b)sin(Ap +¢) 1.30-1072
16 4 |—zp1(a—bAn)(zp2 +c)sin(Ad+d) 8.50-10-3 107
(zp,2 + a) (bzp1(c — Ad) .10-3 5 10 15 20 25 30
BT —p1(dAn + exp o + f)sin(A¢ + g)) 8.18-10 complexity




Symbolic regression

Symbolic regression of score  [pysr (M Cranmer) + final fif

- function to approximate  t(x|0)
- phase space parameters  xp = pr/my, An, Ad [node]
- operators  sinX, X2, X3, X+ y,X — Y, X * Y, X/Y [node]
- represent formula as tree  complexity = number of nodes]

= Figures of merit

MSE = ! i [gv(x) t(x 2\9)]2 — MSE + parsimony - complexity
n — 1 )
Score around Standard Model
- expected limits: 10
very wrong formula

CPV in WBF

wrong formula 08
E]

- same within statistical limitation: _g_o.e
right formula E os
MadMiner -

= Formulas to numerics and back 02

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
fuw
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