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Modern LHC physics

Classic motivation First-principle simulations
- dark matter? - start with Lagrangian
- baryogenesis? - calculate scattering using QF T
- origin of Higgs field? - simulate collisions

- simulate detectors

LHC physics — LHC collisions in virtual worlds

- fundamental questions

- huge data set BSM searches

- first-principle precision simulations - compare simulations and data

- complete uncertainty control - analyze data systematically

- infer underlying theory (smorBsw

Successful past - understand LHC dataset

- measurements of event counts - publish useable results

- analyses inspired by simulation — Lots of data science...

- model-driven Higgs discovery

forward
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LHC physicist vs data scientist

LHC questions
- How to trigger from 3 PB/s to 300 MB/s?
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LHC physicist vs data scientist

LHC questions

- How to trigger from 3 PB/s to 300 MB/s?
Data compression  [Netfix]

- How to analyze events with 4-vectors?
Graph neural networks [cars]

- How to incorporate symmetries?
Contrastive learning  (Google]

- How to combine tracker and calorimeter?
Super-resolution  (Gaming]

- How to remove pile-up?
Data denoising (cars]

- How to look for BSM physics?
Autoencoders  [sap]

- How to analyse LHC data?
Simulation-based inference

- How to treat uncertatinties??




Shortest ML-intro ever

Fit-like approximation  fask Ramon or NNPDF]
- approximate known f(x) using fy(x)
- no parametrization, just very many values 6
- new representation/latent space 6

Construction and contol
- define loss function
- minimize loss to find best 6
- compare x — fy(x) for training/test data

LHC applications
- regression X — fo(x)
- classification x — fy(x) € [0, 1]
- generation re~N —fy(r)
- conditional generation r ~ N — fy(r|x)

— Transforming numerical science




ML-applications for analysis

Top tagging  [supervised classification] :
- ‘hello world’ of LHC-ML = 1§
- end of QCD-taggers
- different NN-architectures
— Non-NN left in the dust...
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ML-applications for analysis

Top tagging  [supervised classification]
- ‘hello world’ of LHC-ML
- end of QCD-taggers
- different NN-architectures:
— Non-NN left in the dust...

100

8X8 Layer Truth

Particle flow [classification, super-resolution] : f z
- mother of jet tools € uan K
. combined detector channels N S E s
- similar studies in CMS
_, Beyond just concepts Tt
e AT B gl .
25 2 zsé 2§
Towards a Computer Vision Particle Flow * o ¢ e ®
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", yyis resolved by a 3 layer.




Non-QCD and parton densities

Anomaly searches  [unsupervised training, see later]
- train on QCD-jets, SM-events
- look for non-QCD jets, non-SM events
— NAE later ==




Non-QCD and parton densities

Anomaly searches [unsupervised training, see later]
- train on QCD-jets, SM-events

- look for non-QCD jets, non-SM events
— NAE later

NNPDF/N3PDF parton densities il blast
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory - ! 3"‘” B----——

of parton distribution functions




Symmetries

Learning symmetries [representation, visualization]

- (particle) physics is all symmetries
- identify symmetries in 2D systems [paintings]
— Networks representing structure
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Symmetries

Learning symmetries [representation, visualization]

- (particle) physics is all symmetries
- identify symmetries in 2D systems [paintings]
— Networks representing structure

PCA dataset

abel 1 L Symmery
e

(_lbel3  label4 )

Symmetric networks  [contrastive learning, transformer network]
- rotations, translations, permutations, soft splittings, collinear splittings
- learn symmetries/augmentations
— Symmetric latent representation

i o el o
i o sp snd GOD e




Events and amplitudes

Speeding up Sherpa and MadNIS  [inNs, sampling] ‘ s
A

do/dm[pb Gev1]

- precision simulations limiting factor for Runs 3&4
- unweighting critical
— Phase space sampling "

Acceleratin ojection

Ratio

Deviaton [o]




Events and amplitudes

Speeding up Sherpa and MadNIS  [inns, sampling] B ey
- precision simulations limiting factor for Runs 3&4

de/dm [pb Gov-1)

- unweighting critical e emm P ]
— Phase space sampling """

Accelerating Monto Garlo event gencration — rejection
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Speeding up amplitudes [precision regression]

[e—— e

- loop-amplitudes expensive
- interpolation standard Optimising simulations for diphoton production at

hadron colliders using amplitude neural networks

— Precision NN-amplitudes

Targest 100% A
120] ggn .
o largest 1% Au H
process.boosted o B
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Invertible event generation

Precision NN-generators [Bayesian discriminator-flows]
- control through discriminator [GAN-iike]

- uncertainties through Bayesian networks
— JetGPT later

7+ 1 jet exclusive
—— Reweighted
. Train

ae0,6,12)

‘M

2 50

B 100 1%

150
Pry, [GeV]



Invertible event generation

Precision NN—generators [Bayesian discriminator-flows]

- control through discriminator  [can-ike] [ I eges
3 S~ Train
- uncertainties through Bayesian networks

— JetGPT later

Absteach aeln 19l =
We. 40 x10%
o Nesh oquliveius, a5 Truth
Abe discriminator ensures that Uaere are b systemistic incousistencies compared to the. T 30 7
Avaiin d ‘% 25 Detector Truth
iu
Unfolding and inversion [conditional normalizing flows] 05 3 : o
L —
- detector/decays/QCD unfolded T
. . . 0 20 40 60 . 80 100 120
- calibrated inverse sampling o e 6
—» Publishing analysis results PO vRRE ! I | R
- T
Z 20 - Detector Truth
QE 15
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Proper theory

Navigating string landscape  (reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstract
B

Figure I L Cluter siructure i dimensionaly reduced lux samplesfor RL and 25 GA runs (FCA e v ent S 1 o of s v, e 1

on all samples of GA and RL). The runs. Right:

(input)values (Ns and N respecively)in relaion t principa components for a PCA 1t of the
individual output of GA and RL. Vhich e ags Pt o o ng sl i,




Proper theory

Navigating string Iandscape [reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model space Samp“nq Genetic Algorithms and Reinforcement Learning

R

o .
o e R . Y ae
R 7 3 . B
¢ } 1&" } \ :
S0 L L Abstract.
Figure 1: Lot Clusterstucue i dimcosionsly educed . samples for RL and 25 GA uns (°CA P e e e
I sampics of G and R T col
(input) values (N3 and N'; respectively) in relation to principal components for a PCA fit of the
individual output of GA and RL. which we argac i imperativ for roducing sampling bias.

Learning formulas [genetic algorithm, symbolic regression, see later]

- approximate numerical function through formula

- example: score/optimal observables
— PySR later Em Em

Back to the Formula — LHC Edition

3 1

i .

501 o |

6 1 |

T g1

s | »
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153 LSRN Abstract
4

P s18.105

+1)sin(8+9))

Table 8: Score hall of fame for simplificd WBF Higgs production with f 7
optimization fit
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Spirit of LHC

1@40x40  10840x40  10@20x20 5820x20 400100 100 400 5820520 5@40x40 10@40x40 1@40x40

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error
- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S <> B?
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1@40x40  10@40x40  10@20x20 5@20x20 400100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Unsupervised classification
- train on background only
extract unknown signal from reconstruction error
- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B?

Moving to latent Space [pillon, Favaro, TP, Sorrensen, Kramer]

- anomaly score from latent space?

- VAE — does not work

Gaussian mixture VAE — does not work
Dirichlet VAE — works okay

density estimation — does not work

—— ep. 50, AUC: 0.88
ep. 100, AUC: 0.89
ep. 150, AUC: 0.89
ep. 200, AUC: 0.89

ep. 50, AUC: 0.8
ep. 100, AUC: 0.89
ep. 150, AUC: 0.89
ep. 200, AUC: 0.89

10'[DVAE, t/Q=1.0 DVAE, t/Q=1.0

00 02 04 06 08 10 %00 02 04 06 08 10

10"




Spirit of LHC

1@40x40  10840x40  10@20x20 5820x20 400100 100 400 5820520 5@40x40 10@40x40 1@40x40

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S «+» B?

Normalized autoencoder  [sangwoong Yoon, Noh, Park]

- normalized probability loss

- Boltzmann mapping (g, =msg]

e Eo()
T Ze
L= —< Iogpg(x)> = <E9(X) + |ong>

- inducing background metric
- large MSE for too much and missing structure

— Symmetric autoencoder, at last

Po(x) =
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1@40x40  10840x40  10@20x20 5820x20 400100 100 400 5820520 5@40x40 10@40x40 1@40x40

Unsupervised classification

- train on background only
extract unknown signal from reconstruction error

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S «+» B?

Normalized autoencoder [sangwoong Yoon, Noh, Park]

- normalized probability loss

- Boltzmann mapping (g, =msg]
—Eg(x)

e 7
Zy 20
L= —< Iogpg(x)> = <E9(X) + |ong>
- inducing background metric
- large MSE for too much and missing structure
— Symmetric autoencoder, at last 05

QCD tagging

Po(x) =

10 ! QCp

10°°
MSE




Modern generative networks

Generative networks [Butter, Heimel, Krause, TP, Winterhalder,...]
- generate new images, text blocks, etc

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density [snn)
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Generative networks [Butter, Heimel, Krause, TP, Winterhalder,...]
- generate new images, text blocks, etc

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density [snn)

- Variational Autoencoder
— low-dimensional physics, high-dimensional objects

- Generative Adversarial Network
— generator trained by classifier

- Normalizing Flow/Diffusion Model
— stable bijective mapping

- Generative Pre-trained Transformer
— learning correlations successively

— Pick best model for purpose

forward

Y

scattering decay QCD shower detectors
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Modern generative networks

Generative networks [Butter, Heimel, Krause, TP, Winterhalder,...]
- generate new images, text blocks, etc

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density [snn)

- Variational Autoencoder
— low-dimensional physics, high-dimensional objects

- Generative Adversarial Network
— generator trained by classifier

- Normalizing Flow/Diffusion Model
— stable bijective mapping

- Generative Pre-trained Transformer
— learning correlations successively

— Pick best model for purpose

Fundamental question: GANplification

- first generated instances reproducing structures
- too many generated instances reproducing noise?




JetGPT

Correlations through self-attention
- think of data as bins in phase-space directions
- self-attention: encode relation between bins
- input x, need link of x; and x;

- latent query representation g = W%x we
; — WK
Iate_nt key reprgsentanon k= W"x " R o @
define correlation as Aj; = g; - k; o }”/' : }4’ 1
zc

- latent value representation v = WVx
outputz = Av

ke —q1 ke ac
\ '
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— Learning all correlations

ve acve —



JetGPT

Correlations through self-attention
- think of data as bins in phase-space directions
- self-attention: encode relation between bins
- input x, need link of x; and x;

- latent query representation g = W9x we
latent key representation k = WKx .
define correlation as A; = g; - k; o }”/' B Nt o

zc

- latent value representation v = WVx Ik N
outputz = Av

e

1 a; k1 softmax

Soltmax _ .

>

v
ve acve —~

— Learning all correlations

Autoregressive transformer
- factorized density

Prmodel(x16) = T T p(xilx1, -, xi—1) 0=0 “@‘mm)" Plo®)
i |
- bins — Gaussian mixture model Lg ——:@:Zﬁ’?» o)
- autoregressive A; = 0 forj > i t |
- Bayesian version for uncertainties LEs E@: w
— Most famous generative model e : e

L




Precision generator

ML-playground: end-to-end generators

- generative network over phase space

- training from event samples
no momentum conservation
no detector effects [sharper structures]

. ZMN + {1 s 27 3} jets [Z-peak, variable jet number, jet-jet topology]




Precision generator

ML-playground: end-to-end generators

- generative network over phase space

- training from event samples
no momentum conservation
no detector effects [sharper structures]

. ZHM + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

JetG PT [Butter, Huetsch, Palacios Schweitzer, Sorrenson, Spinner]
- uncertainties from limited training statistics
- variable number of jets from condition

107!

Z+2 jet exclusive Z+jets inclusive

—— Truth
— AT

—— Truth
— AT

Normalized
=
5}
b

Pr,j2[GeV] ZEPT)L




Precision generator

ML-playground: end-to-end generators
- generative network over phase space

- training from event samples
no momentum conservation
no detector effects [sharper structures]

. ZHM + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

JetGPT  [Butter, Huetsch, Palacios Schweitzer, Sorrenson, Spinner]
- uncertainties from limited training statistics
- variable number of jets from condition
- challenging ARj; and mass peaks

Z+1 jet exclusive 0.4 Z+3 jet exclusive
'E 0.2 Truth E 0.3 —— Truth
E —— AT Eo.z —— AT
4 N — W

X 0.
T ohtitttns T b 200 s e R
£ o T 2 ol R R
80 85 90 95 100 2 AR4 6

M,,[GeV]




Inverse simulation

Invertible ML-simulation [Ramon’s lecture]

- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event

forward

Y

scattering decay QCD shower i detectors

POV I BN N B o 22
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- inverse




Inverse simulation

Invertible ML-simulation [Ramon’s lecture]

- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known problems

detector unfolding

unfolding to QCD parton means jet algorithm

unfolding jet radiation known combinatorics problem

unfolding to hard process standard in top groups  [needed for global analyses]
matrix element method an old dream

- improved through coherent ML-method
- free choice of data-theory inference point
— Major progress for towards HL-LHC

forward

N
>

scattering decay QCD shower i detectors
[T E s | |0 T

<
<

inverse




Learning optimal observables

Measure model parameter 6 optimally (Butter, TR, Soybeiman, Brehmer]

- single-event likelihood

1 d"o(x]6)
p(x|0) = co@)
- expanded in 6 around 6, define score
og DU (0~ 00) o togpx16)] = (0~ b0) txI) = (0 — 60) 0™ ()
p(x160) %
- to leading order at parton level
M2
PO~ IME+OIME, = t(x]fg) ~ i
| Mg

= And including everything?




Learning optimal observables

Measure model parameter 6 optimally (Butter, TR, Soybeiman, Brehmer]

- single-event likelihood

1 d"o(x]9)
p(x|0) = (@) dxm
- expanded in 6 around 6, define score
og PO (0~ 60) Vo logp(x16)| = (6 — 06) t(x160) = (6 — 00) 6™ (x)
p(x|60) %
- to leading order at parton level
M2
PUxIO) & IME+0IME, = t(xlog) ~ Al
[MI3
= And including everything?
CP-violating Higgs production q
- unique CP-observable W
v O . w
t o euvpo Ki* k3 QY qg sign[(ki — ka) - (g1 — q2)] BOIEC gin Agj
- CP-effect in Ag;; ¢

Dé-effect in pr;
= Established LHC task




Symbolic regression

Symbolic regression of score  [pysr (M Cranmer) + final fif

- function to approximate  t(x|0)
- phase space parameters xp = pr/my, An, Ad [node]
- operators  sinx, X2, x3, X 4+ y,X — Y, X% y,X/y [node]
- represent formula as tree  complexity = number of nodes]

= Figures of merit

1< 2 ) )
MSE=-—>" [g/(x) — H(x, z\a)] — MSE + parsimony - complexity

n i=1

Score around Standard Model

compl dof ‘fu.nction MSE
3 1|ade 1301071
4 1 |sin(aA¢) 2.75-107! -
5 1 |aAda,, 9.93-102 1°
6 1 |-z, sin(A¢ +a) 1.90-1071 w
7 1 |(=2p1 — a)sin(sin(A¢)) 5.63-1072 2
8 1 |(a—zp1)zp2sin(Ag) 1.61-1072
14 2 |zp1(aA¢ —sin(sin(A¢)))(zp2 +b)  1.44-1072
15 3 |—(zp2(aln® + 1) + b)sin(Ap +¢) 1.30-1072
16 4 |—zp1(a—bAn)(zp2 +c)sin(Ad+d) 8.50-10-3 107
(zp,2 + a) (bzp1(c — Ad) .10-3 5 10 15 20 25 30
BT —p1(dAn + exp o + f)sin(A¢ + g)) 8.18-10 complexity




Symbolic regression

Symbolic regression of score  [pysr (M Cranmer) + final fif

- function to approximate  t(x|0)
- phase space parameters  xp = pr/my, An, Ad [node]
- operators  sinX, X2, X3, X+ y,X — Y, X * Y, X/Y [node]
- represent formula as tree  complexity = number of nodes]

= Figures of merit

MSE = ! i [gv(x) t(x 2\9)]2 — MSE + parsimony - complexity
n — 1 )
Score around Standard Model
- expected limits: 10
very wrong formula

CPV in WBF

wrong formula 08
E]

- same within statistical limitation: _g_o.e
right formula E os
MadMiner -

= Formulas to numerics and back 02

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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ML for LHC Theory

ML-applications
- just another numerical tool for a numerical field
- driven by money from data science and medical research
- goals are...

...improve established tasks
...develop new tools for established tasks
...transform through new ideas

- XAl through...

...precision control

...uncertainties
sym m et”es Tilman Plehn®; Anja Butter®?, Barry Dillon®, and Claudius Krause®<

Modern Machine Learning for LHC Physicists

© Institut fiir Theoretische Physik, Universitiit Heidelberg, Germany
o .fO rmu l as * LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
. ¢ NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, USA
— Fun with LHC problems

November 2, 2022

Abstract

Mol machine lsing i tasformin gl physies, e han e an follow, ad blin sy no ur
tostay on top of

edge bt 1 s o fange of LHC physics problems. Tocs e s o o, el students with
basic knowledge of partcle physics and for machine learning to rel as fast as
‘possible. They start with an LHC-specific motivalion and a non-standard introduction @ neural networks and then cover
classification, and blems. Two much of the
discussion are well-defined | Aecting the problem at hand and s part of the

‘applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from particle physics
publications of the las few years. Given that these otes will be outdated already at the time of subission, the week of
MIL4Jets 2022, they will be updated frequently.



http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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