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Shortest ML-intro ever

Fit-like approximation
- approximate fo(x) ~ f(x)
- no parametrization, but many 6
- new representation/latent space 6

Construction and contol
- minimize loss to find 0
- sample O-distributions  [Bayesian networks]
- compare independent test data

LHC applications
- regression X — fp(X)
- classification x — fy(x) € [0, 1]
- generation r~N — fo(r)
- conditional generation r ~ N — fp(r|x)

— Transforming numerical science




ML-applications in experiment

Top tagging :
- ‘hello world’ of LHC-ML =

- end of QCD-taggers

- different NN-architecturesé

— Non-NN left in the dust...
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Particle flow = i ‘ 3
- mother of jet tools . Enn
- combined detector channels 50 L E T

- similar studies in CMS
— Beyond just concepts N
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Jets and parton densities

Anomaly searches
- train on QCD-jets, SM-events

- look for non-QCD jets, non-SM events

— Autoencoders




Jets and parton densities

Anomaly searches
- train on QCD-jets, SM-events

- look for non-QCD jets, non-SM events

— Autoencoders

NNPDF/N3PDF parton densities il blast]
- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory _ Naeer -

of parton distribution functions




Symmetries

Sy mmetric networks [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetric latent representation

= =

Symmetries, Safety, and Self:Supervision

Abstract

[y Ty
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Sy mmetric networks [contrastive learning, transformer network]

- rotations, translations, permutations, soft splittings, collinear splittings

- learn symmetries/augmentations
— Symmetric latent representation 3

Symmetries, Safety, and Self:Supervision

Abstract
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Learning symmetries [representation, visualization]

- (particle) physics is all symmetries
- identify symmetries in 2D systems  [paintings]
— Networks representing structure

PCA dataset

Wbt abeiz [0 > _ symmetry
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Integrals

Learning integrands and integrals (difierentiable activations] BHEP
- learn integrand through differiable network

- evalute integral as promitive

— Novel ML-integrator

1L tanh
2L sigm
2L anh
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Learning integrands and integrals (difierentiable activations] BHEP
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Learning integration paths f(invertivle networks]
_ Scibust Phys 12,129 (2022)

‘Targeting multi-loop integrals with neural networks

- find optimal integration paths
- learn variable transformation ‘
— Theory-integrator

Ramon Winterhader
Matthias Kernert,




Not in Theo’s talk

Speeding up amplitudes [precision regression]

- loop-amplitudes expensive
- training up to interpolation Optimising simultions for dipheton production at

. . hadron colliders using amplitude neural networks
— Precision NN-amplitudes
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Not in Theo’s talk

Speeding up amplitudes [precision regression]
- loop-amplitudes expensive
- training up to interpolation

hadron colliders.

Optimising simulations for diphoton production at

using amplitude neural networks

— Precision NN-amplitudes

Targest 100"

o= largest 1%

process-boosted
BNN traiming

normalized

Unfolding and inversion [conditional normalizing flows]

- detector/decays/QCD unfolded

g

- calibrated inverse sampling
— Publishing analysis results

Javrtible Networks or Partons to Detector and Back Agsin

Abstract

i B ;ﬁ 7

[ COTTTY

@
pre GeV]

\1
e

i Pafl™ e AL

o e e o Pt e ot e

L T T R

Mit s GV



Proper theory

Navigating string landscape  (reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Mode| Space Samp“nq Genetic Algorithms and Reinforcement Learning

Abstract
B

Figure I L Cluter siructure i dimensionaly reduced lux samplesfor RL and 25 GA runs (FCA e v ent S 1 o of s v, e 1

on all samples of GA and RL). The runs. Right:

(input)values (Ns and N respecively)in relaion t principa components for a PCA 1t of the
individual output of GA and RL. Vhich e ags Pt o o ng sl i,




Proper theory

Navigating string Iandscape [reinforcement learning]

- searching for viable vacua

- high dimensions, unknown global structure
. Probing the Structure of String Theory Vacua with
— Model space Samp“nq Genetic Algorithms and Reinforcement Learning

Figure 1: Lefi: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA bt i o i b In okt of B e
il samples of GA and RL). The col

(inpu) values (N and N respectively) in relation to principal components for a PCA fit of the

individual output of GA and RL. G g g o g umpin s

Learning formulas  (genetic aigorithm, symbolic regression]
- approximate numerical function through formula
- example: score/optimal observables
— Understanding numerics through formulas —

Back to the Formula — LHC Edition
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Bayesian network loss

Deriving the loss
- energy measurement for jet j
E) = [ dEEp(E)
- weighted by reproduced training data p(6|T)
P(E) = [ do p(EI6) pl6]T)

— O-distributions means BNN
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Deriving the loss
- energy measurement for jet j
E) = [ dEEp(E)
- weighted by reproduced training data p(6|T)
P(E) = [ do p(EI6) pl6]T)

— O-distributions means BNN

Variational approximation

- definition of training [think g(©) as Gaussian with mean and width]
p(E) = [ 06 plEI0) p(0IT) =~ [ b p(EI) q(0)

. Similarity thl’OUgh minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

Ducla(6).p(6|T)] = [ b q(6) 1og p?é\e;)

q(6)p(T)
p(T10)p(0)

= Dla(0). p(O)] — [ db q(0) 10g p(T16) + log p(T) [ b q(0)

= /d0 q(0) log
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Bayesian network loss

Deriving the loss
- energy measurement for jet j
€)= [ dEEp(E)
- weighted by reproduced training data p(6|T)
p(E) = [ b plEI0) p(0]T)

— B-distributions means BNN

Variational approximation
- definition of training [think g(©) as Gaussian with mean and width]
p(E) = [ 06 p(EI6) p(oIT) ~ [ 0B p(EIS) a(0)
. Similarity thl’OUgh minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

Du[a(6), p(6] T)] = /d0 q(0) log pﬁgf;)
_aO)p(T)
p(T|0)p(0)

~ Dula(6), p(0)] ~ [ 06 q(0) logp(TI6) = £

= / d q(8) log

— Two-term loss: likelihood + prior




Relation to deterministic networks

Regularization
- BNN loss
£ =~ [ do.q(o) 1ogp(TI6) + D [a(0), ()]




Relation to deterministic networks

Regularization

- Gaussian prior
o — o+ (ng — 1p)?

=~ [ dbq(6) togp(TI) + 72 : o
20p
- deterministic network
= ~ (‘90 - :up)2
q(0) =6(0 —60) = L~ —logp(Tl0o) + "~
P

— Likelihood with L2-regularization




Relation to deterministic networks

Regularization

- Gaussian prior
o — o+ (ng — 1p)?

C= —/de q(6) log p(T|0) + 29 ! +..
203
- deterministic network
_ ~ (‘90 - #p)2
q(0) =60 = 6o) = L~ —logp(T|0o) + — 5
9p
— Likelihood with L2-regularization
Dropout
- Bernoulli weights
q(0) = q(x) = p*(1 = p)' ™~ with 6 = x6o
x=0,1
- likelihood loss
£==3 [0~ 0)'™] togp(TIxb0) = —p logp(T|00)

x=0,1
- likelihood Gaussian or whatever else...
— Regularized likelihood with dropout




Generative-network revolution

Generative networks
- generate new images, text blocks, LHC events

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density (Bayesian NN]




Generative-network revolution

Generative networks
- generate new images, text blocks, LHC events

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently
- include uncertainty on estimated density (Bayesian NN]

- Variational Autoencoder
— low-dimensional physics, high-dimensional representation

- Generative Adversarial Network
— generator trained by discriminator

- Normalizing Flow/Diffusion Model
— stable (bijective) mapping

- Generative Transformer ecpt]
— learning correlations successively

— Pick model for purpose

forward

Y

scattering decay Qco shower i detectors




Transformers

Extracting correlations

- Start with (compact) query representation
Xi

Xij —)q:m

- Orthonormal values basis [related to g through scalar product]
9=> (@)
. . J
- Simpler orthogonal keys basis

. Vi
qzzj:(q-k,-) v owith k=7
— Self-attention representation

X — zi=» (q-k)v

J




Transformers

Extracting correlations

- Start with (compact) query representation

Xi

Xi — Q= —

- Orthonormal values basis [related to g through scalar product]

x|

a=>a-vy
i

- Simpler orthogonal keys basis

a=>(q-k) v with k=

J
— Self-attention representation

X — zi=» (q-k)v

J

LHC phase space
- learn bin-bin relation x; <+ X; we

- latent query representation g = W%x o WK
latent key representation k = WKx . } -
correlation A; = q; - k; ) Ik

- latent value representation v = WV x
constructed representation z = Av

k{l ¢ jkl
ke —q1 ke
v

ve

vi

v2

} softmax
Sonmax



JetGPT

Autoregressive transformer
- factorized density

xo=0

Prodel (x10) = [T pOXIX1, -, Xi—1) ”@‘* P
i

L 0O
H f f X —— == p(xsle?)
- bins — Gaussian mixture model ' @ oot

- autoregressive A; = 0 forj > i \\

oo
— Bayesian version for uncertainties | [ : ] - -
Ly @D == plxy ™)

e ‘




JetGPT

Autoregressive transformer

- factorized density
pmode|(xl0) _ HP(Xi|X1, . Xi71) x=0 4@00(0)—— Pl l0®)
i

L  E— )
- bins — Gaussian mixture model T @:‘”‘”" Rl

- autoregressive Aj = 0 forj > i L
> w©®
— Bayesian version for uncertainties T : b ;
Ly @D — P(x,.lo‘»"* D)

Bayesian JetGPT

743 jet exclusive

- sometimes you win... 0a

—— Truth
— AT




JetGPT

Autoregressive transformer
- factorized density

X0=0 WO = px,[®;
Proder(x16) = T T p(xilx1, ... xi—1) @ p(xl ’
' Ok
. . . _— 1) —> )
- bins — Gaussian mixture model ' w0 Lot
- autoregressive Aj = 0 forj > i L
> w©®
— Bayesian version for uncertainties B : : F -
L @D — p(x,.lo‘» )
I—> X

Bayesian JetGPT

- sometimes you win...

Z+1 jet exclusive

...and sometimes there is work to do... 2

—— Truth
— AT

Normalized




ML for LHC Theory

ML-applications

- just another numerical tool for a numerical field
- driven by money from data science and medical research

- goals are...
...improve established tasks

...develop new tools for established tasks

...transform through new ideas
- XAl through...

...precision control
...uncertainties
...symmetries
...formulas

— Lots of fun with hard LHC problems

Modern Machine Learning for LHC Physicists

Tilman Plehn®; Anja Butter*", Barry Dillon”, Claudius Krause®*, and Ramon Winterhalder!

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany

 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

 NHETC, Dept. of Physics and Astronomy. Rutgers University, Piscataway, USA
#CP3, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

July 21,2023

Abstract

Modern machine learming s transforming partcle physics, faster than we can follow, and bullying its way into our

bavc knowldse of paricle phy
possible. They siart v

irs. Given that these notes will be outdated alrcady at the time of sul
Vi aset 2023, they il Updaed frequenty.


http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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