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Case for (ML-)Unfolding

Number of analyses

· optimal forward inference:
full signal and background simulations
high-dimensional, unbinned SBI

· CPU-limitation for many signals

→ Unfold detectors once

Optimal analyses

· theory limiting many LHC analyses
make best use of continuous progress

· allow for analyses to be updated

→ Unfold detectors/soft QCD and save data

Public LHC data

· common lore:
LHC data too complicated for amateurs
no way to even try to publish LHC data

· in truth:
hard scattering and decay simulations easy
BSM physics not in hadronization and detector

→ Unfold to hard scattering
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High-dimensional and unbinned

Simple process pp → W`Hbb [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

· example operators [wf vs vertex structure vs 4-point]

ÕHD = (φ†φ)�(φ†φ)− 1
4

(φ†Dµφ)∗(φ†Dµφ)

OHW = φ
†
φW a

µνWµνa

O(3)
Hq = (φ† i

↔
D a
µ φ)(QLσ
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γ
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High-dimensional and unbinned

Simple process pp → W`Hbb [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

· example operators [wf vs vertex structure vs 4-point]

ÕHD = (φ†φ)�(φ†φ)− 1
4

(φ†Dµφ)∗(φ†Dµφ)

OHW = φ
†
φW a

µνWµνa

O(3)
Hq = (φ† i

↔
D a
µ φ)(QLσ

a
γ
µQL)

Full kinematics vs pT ,W −mT ,tot

· bulk operators
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High-dimensional and unbinned

Simple process pp → W`Hbb [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

· example operators [wf vs vertex structure vs 4-point]

ÕHD = (φ†φ)�(φ†φ)− 1
4

(φ†Dµφ)∗(φ†Dµφ)

OHW = φ
†
φW a

µνWµνa

O(3)
Hq = (φ† i

↔
D a
µ φ)(QLσ

a
γ
µQL)

Full kinematics vs pT ,W −mT ,tot

· bulk operators

· tail operator
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→ Full, unbinned kinematics the key [top groups doing better]
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Unfolding without and with ML

Basic idea

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)

y
xp(xpart|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

· two conditional probabilities

p(xpart|xreco) = p(xreco|xpart)
psim(xpart)

psim(xreco)
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Unfolding without and with ML

Basic idea

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)

y
xp(xpart|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

· two conditional probabilities

p(xpart|xreco) = p(xreco|xpart)
psim(xpart)

psim(xreco)

LHC simulations

· paired

· stochastic, usually single-mode [nothing LHC is deterministic]

· following energy scale/resolution

· starting from fundamental parameters

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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Unfolding by reweighting

OmniFold

MIT-CTP 5155

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen,1, 2, 3, ⇤ Patrick T. Komiske,4, † Eric M. Metodiev,4, ‡ Benjamin Nachman,2, § and Jesse Thaler4, ¶

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Google, Mountain View, CA 94043, USA
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Collider data must be corrected for detector e↵ects (“unfolded”) to be compared with theoretical
calculations and measurements from other experiments. Unfolding is traditionally done for individ-
ual, binned observables without including all information relevant for characterizing the detector
response. We introduce OmniFold, an unfolding method that iteratively reweights a simulated
dataset, using machine learning to capitalize on all available information. Our approach is un-
binned, works for arbitrarily high-dimensional data, and naturally incorporates information from
the full phase space. We illustrate this technique on a realistic jet substructure example from the
Large Hadron Collider and compare it to standard binned unfolding methods. This new paradigm
enables the simultaneous measurement of all observables, including those not yet invented at the
time of the analysis.

Measuring properties of particle collisions is a central
goal of particle physics experiments, such as those at the
Large Hadron Collider (LHC). Distributions of collider
observables at truth-level can be compared with theoret-
ical predictions as well as with measurements from other
experiments. These comparisons are widely used to en-
hance our understanding of the Standard Model, tune
parameters of Monte Carlo event generators, and enable
precision searches for new physics. “Unfolding” is the
process of obtaining these truth distributions (particle-
level) from measured information recorded by a detector
(detector-level). The unfolding process ensures that mea-
surements are independent of the specific experimental
context, allowing for comparisons across di↵erent exper-
iments and usage with the latest theoretical tools, even
long after the original analysis is completed. Many un-
folding techniques have been proposed and are currently
in widespread use by experiments. See Refs. [1–4] for re-
views and Refs. [5–7] for the most widely-used unfolding
algorithms.

Current unfolding methods face three key challenges.
First, all of the widely-used methods require the mea-
sured observables to be binned into histograms. This
binning must be determined ahead of time and is of-
ten chosen manually. Second, because the measurements
are binned, one can only unfold a small number of ob-
servables simultaneously. Multi-di↵erential cross section
measurements beyond two or three dimensions are simply
not feasible. Finally, unfolding corrections for detector
e↵ects often do not take into account all possible aux-
iliary features that control the detector response. Even
though the inputs to the unfolding can be calibrated, if
the detector response depends on features that are not
used directly in the unfolding, then the results will be
suboptimal and potentially biased.

This letter introduces OmniFold, a new approach
that solves all three of these unfolding challenges.
Detector-level quantities are iteratively unfolded, using

machine learning to handle phase space of any dimen-
sionality without requiring binning. Utilizing the full
phase space information mitigates the problem of aux-
iliary features controlling the detector response. There
have been previous proposals to use machine learning
methods for unfolding [8–10] as well as proposals to per-
form unfolding without binning [9–12]. These proposals,
however, are untenable in high dimensions and do not
reduce to standard methods in the binned case. Omni-
Fold naturally processes high-dimensional features, in
the spirit of previous machine-learning-based reweight-
ing strategies [13] (see also [14, 15]), and it reduces to
well-established methods [5] in the binned case. We also
introduce simpler versions of the procedure, using sin-
gle or multiple observables, respectively named UniFold
and MultiFold.1

All unfolding methods require a trustable detector
simulation to estimate the detector response. In the
binned formulation, the folding equation can be written
as m = Rt, where m and t are vectors of the measured
detector-level and true particle-level histograms, respec-
tively. R is the “response matrix”:

Rij = Pr(measure i | truth is j). (1)

In general, R is not invertible, so that the unfolding
problem has no unique solution, and methods attempt
to achieve a useful solution in various ways. One of the
most widely-used methods is Iterative Bayesian Unfold-
ing (IBU) [5], also known as Richardson-Lucy decon-
volution [17, 18]. Given a measured spectrum mi =

Pr(measure i) and a prior spectrum t
(0)
j = Pr(truth is j),

1 The name OmniFold is taken from Emily Dickinson’s poem The
Mountain Sat Upon the Plain [16].
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· use paired events (xpart, xreco)
learn psim(xreco)↔ pdata(xreco)
reweight psim(xpart)→ punfold(xpart)

psim(xpart)
classifier weights (3)−−−−−−−−−−−→ punfold(xpart)

pull (2)/push weights(4)

xy
psim(xreco)

classifier weights (1)←−−−−−−−−−−→ pdata(xreco)

· unbinned classifier weight [Neyman-Pearson lemma, CWoLa]

wD(xi ) =
D(xi )

1− D(xi )
→ p1(xi )

p2(xi )

· high-dimensional classification, like jet tagging

→ Driven by (now) established ML-classification
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Collider data must be corrected for detector e↵ects (“unfolded”) to be compared with theoretical
calculations and measurements from other experiments. Unfolding is traditionally done for individ-
ual, binned observables without including all information relevant for characterizing the detector
response. We introduce OmniFold, an unfolding method that iteratively reweights a simulated
dataset, using machine learning to capitalize on all available information. Our approach is un-
binned, works for arbitrarily high-dimensional data, and naturally incorporates information from
the full phase space. We illustrate this technique on a realistic jet substructure example from the
Large Hadron Collider and compare it to standard binned unfolding methods. This new paradigm
enables the simultaneous measurement of all observables, including those not yet invented at the
time of the analysis.

Measuring properties of particle collisions is a central
goal of particle physics experiments, such as those at the
Large Hadron Collider (LHC). Distributions of collider
observables at truth-level can be compared with theoret-
ical predictions as well as with measurements from other
experiments. These comparisons are widely used to en-
hance our understanding of the Standard Model, tune
parameters of Monte Carlo event generators, and enable
precision searches for new physics. “Unfolding” is the
process of obtaining these truth distributions (particle-
level) from measured information recorded by a detector
(detector-level). The unfolding process ensures that mea-
surements are independent of the specific experimental
context, allowing for comparisons across di↵erent exper-
iments and usage with the latest theoretical tools, even
long after the original analysis is completed. Many un-
folding techniques have been proposed and are currently
in widespread use by experiments. See Refs. [1–4] for re-
views and Refs. [5–7] for the most widely-used unfolding
algorithms.

Current unfolding methods face three key challenges.
First, all of the widely-used methods require the mea-
sured observables to be binned into histograms. This
binning must be determined ahead of time and is of-
ten chosen manually. Second, because the measurements
are binned, one can only unfold a small number of ob-
servables simultaneously. Multi-di↵erential cross section
measurements beyond two or three dimensions are simply
not feasible. Finally, unfolding corrections for detector
e↵ects often do not take into account all possible aux-
iliary features that control the detector response. Even
though the inputs to the unfolding can be calibrated, if
the detector response depends on features that are not
used directly in the unfolding, then the results will be
suboptimal and potentially biased.

This letter introduces OmniFold, a new approach
that solves all three of these unfolding challenges.
Detector-level quantities are iteratively unfolded, using

machine learning to handle phase space of any dimen-
sionality without requiring binning. Utilizing the full
phase space information mitigates the problem of aux-
iliary features controlling the detector response. There
have been previous proposals to use machine learning
methods for unfolding [8–10] as well as proposals to per-
form unfolding without binning [9–12]. These proposals,
however, are untenable in high dimensions and do not
reduce to standard methods in the binned case. Omni-
Fold naturally processes high-dimensional features, in
the spirit of previous machine-learning-based reweight-
ing strategies [13] (see also [14, 15]), and it reduces to
well-established methods [5] in the binned case. We also
introduce simpler versions of the procedure, using sin-
gle or multiple observables, respectively named UniFold
and MultiFold.1

All unfolding methods require a trustable detector
simulation to estimate the detector response. In the
binned formulation, the folding equation can be written
as m = Rt, where m and t are vectors of the measured
detector-level and true particle-level histograms, respec-
tively. R is the “response matrix”:

Rij = Pr(measure i | truth is j). (1)

In general, R is not invertible, so that the unfolding
problem has no unique solution, and methods attempt
to achieve a useful solution in various ways. One of the
most widely-used methods is Iterative Bayesian Unfold-
ing (IBU) [5], also known as Richardson-Lucy decon-
volution [17, 18]. Given a measured spectrum mi =

Pr(measure i) and a prior spectrum t
(0)
j = Pr(truth is j),

1 The name OmniFold is taken from Emily Dickinson’s poem The
Mountain Sat Upon the Plain [16].
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· use paired events (xpart, xreco)
learn psim(xreco)↔ pdata(xreco)
reweight psim(xpart)→ punfold(xpart)

Simulation
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Detector-level

Data

Particle-level

Generation

Truth

Pull Weights

Push Weights

Step 1: 
Reweight Sim. to Data

Step 2: 
Reweight Gen.

νn−1
ωn−−→ νn
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νn−1
Data−−−→ ωn
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· unbinned classifier weight [Neyman-Pearson lemma, CWoLa]

wD(xi ) =
D(xi )

1− D(xi )
→ p1(xi )

p2(xi )

· high-dimensional classification, like jet tagging

→ Driven by (now) established ML-classification
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Unfolding by generation

Sampling conditional probability

SciPost Physics Submission

How to GAN away Detector E↵ects

Marco Bellagente1, Anja Butter1, Gregor Kasieczka2, Tilman Plehn1, and Ramon
Winterhalder1

1 Institut für Theoretische Physik, Universität Heidelberg, Germany
2 Institut für Experimentalphysik, Universität Hamburg, Germany

bellagente@thphys.uni-heidelberg.de

April 23, 2022

Abstract

LHC analyses direct comparing data and simulated events bear the danger of
using first-principle predictions only as a black-box part of event simulation. We
show how simulations, for instance, of detector e↵ects can instead be inverted
using generative networks. This allows us to reconstruct parton level information
from measured events. Our results illustrate how, in general, fully conditional
generative networks can statistically invert Monte Carlo simulations. As a techni-
cal by-product we show how a maximum mean discrepancy loss can be staggered
or cooled.

Content

1 Introduction 2

2 GAN unfolding 2

3 Fully conditional GAN 6

4 Outlook 11

A Performance 13

B Staggered vs cooling MMD 14

References 16
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· just like forward ML-generation

· learn inverse conditional probability
also from paired events (xpart, xreco)

psim(xpart) punfold(xpart)

paired data

xy
xpmodel(xpart|xreco)

psim(xreco)
correspondence←−−−−−−−−→ pdata(xreco)

Two improvements needed [taking some time]

1 likelihood loss to generate posterior → cINN, CFM

2 remove training prior → IcINN [Backes, Butter, Dunford, Malaescu]

→ Driven by generative networks

 Ic NN

1. Train c NN 2. Predict

MC Truth

MC Reco

Unfolded

3. Reweight

Measured

ExperimentSimulation

Detector
Level

Particle
Level

New MC Truth 
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Further improvements from generative AI

Generative networks for the LHC

· phase space integration
event generation
calorimeter shower simulation
MEM inference
unfolding
generative inference [astro/cosmo/GW]

· built-in smoothness [regularization]

· since 2019
GAN→ INN→ CFM

· combinatorics→ Transfusion, TraCFM

· LHC-requirements:
features learned classifiers
uncertainties Bayesian networks
precision classifier weights

→ Driven by ML-progress
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Further improvements from generative AI

Generative networks for the LHC

· phase space integration
event generation
calorimeter shower simulation
MEM inference
unfolding
generative inference [astro/cosmo/GW]

· built-in smoothness [regularization]

· since 2019
GAN→ INN→ CFM

· combinatorics→ Transfusion, TraCFM

· LHC-requirements:
features learned classifiers
uncertainties Bayesian networks
precision classifier weights

→ Driven by ML-progress

→ further improvements coming
Lorentz-covariant GATr-CFM [t t̄ + 4j ]
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD 0
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp

0.5 1.0
τ21 (reco)

0.25

0.50

0.75

1.00

τ 2
1

(p
ar

t)

Truth

0.5 1.0
τ21 (reco)

0.25

0.50

0.75

1.00

τ 2
1

(p
ar

t)

DiDi-P



ML-Unfolding

Tilman Plehn

Case

Ideas

Progress

News

Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy

→ generative: correct conditional posterior
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy

→ generative: correct conditional posterior

Unfolding to partons: th t̄`

· phase space parametrization key

· transformer for combinatorics
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy

→ generative: correct conditional posterior

Unfolding to partons: th t̄`

· phase space parametrization key

· transformer for combinatorics

· trained classifier test [Das, Favaro, Heimel, Krause, TP, Shih]

→ Consistently high precision
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· model dependence ms vs md

psim(xpart|ms) punfold(xpart|ms,md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Reduced phase space [TraCFM]

· dedicated parametrization

· 4D for calibration and top mass
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Reduced phase space [TraCFM]

· dedicated parametrization

· 4D for calibration and top mass
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Reduced phase space [TraCFM]

· dedicated parametrization

· 4D for calibration and top mass

→ unbiased top mass
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Full 12D unfolding

· using measured top mass

· azimuthal angle derived

· correlations not special
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Full 12D unfolding

· using measured top mass

· azimuthal angle derived

· correlations not special

→ CMS data next
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Outlook

Unfolding LHC data

· efficient analyses
optimal updated analyses
public LHC data

· my personal dream

· LHC-inverse problem
unbinned & high-dimensional

· ML (just) the transformative tool

→ reweighting + conditional generation

Modern Machine Learning for LHC Physicists

Tilman Plehna*, Anja Buttera,b, Barry Dillona,
Theo Heimela, Claudius Krausec, and Ramon Winterhalderd

a Institut für Theoretische Physik, Universität Heidelberg, Germany
b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

c HEPHY, Austrian Academy of Sciences. Vienna, Austria
d CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics fast, bullying its way into our numerical tool box. For young
researchers it is crucial to stay on top of this development, which means applying cutting-edge methods and tools to the full
range of LHC physics problems. These lecture notes lead students with basic knowledge of particle physics and significant
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
introduction to neural networks and then cover classification, unsupervised classification, generative networks, and inverse
problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years.1

*plehn@uni-heidelberg.de
1Given that these notes are by definition always outdated, they will be updated frequently, together with the corresponding tutorials.
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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