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Case for (ML-)Unfolding

Number of analyses

- optimal forward inference:
full signal and background simulations
high-dimensional, unbinned SBI

- CPU-limitation for many signals
— Unfold detectors once

Optimal analyses
- theory limiting many LHC analyses
make best use of continuous progress
- allow for analyses to be updated
— Unfold detectors/soft QCD and save data

Public LHC data
- common lore:
LHC data too complicated for amateurs
no way to even try to publish LHC data
- in truth:
hard scattering and decay simulations easy
BSM physics not in hadronization and detector

— Unfold to hard scattering




High-dimensional and unbinned

Simple process pp — W, be [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

. example operators [wf vs vertex structure vs 4-point]
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High-dimensional and unbinned

Simple process pp — WyHpp  [Brehmer, Dawson, Homiller, Kiing, TP, long time ago]
- example operators  wivs vertex structure vs 4-point]
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- bulk operators
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High-dimensional and unbinned

Simple process pp — Wy Hpp  [Brehmer, Dawson, Homiller, Kiing, TP, long time ago]
- example operators  wivs vertex structure vs 4-point]
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Full kinematics vs pr w — mr 1ot

- bulk operators
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— Full, unbinned kinematics the key [top groups doing better]




Unfolding without and with ML

Basic idea
- four phase space distributions

unfolding inference
Psim(Xpart)  —————— Punfold(Xpart)
p(xreco | Xpart) J TP(Xpan |Xreco)
forward inference
Psim (Xreco) Pdata(Xreco)
- two conditional probabilities
Psim (Xpart)

P(Xpar1|xreco) = P(Xreco‘xpart) Do (Xreco)



Unfolding without and with ML

Basic idea
- four phase space distributions

unfolding inference
Psim (Xpan) <  Punfold (Xpan)
p(xreco | Xpart) J [P(Xpan Ixreco)
forward inference
Psim (Xreco ) Pdata (Xreco )
- two conditional probabilities
Psim (Xpart)

P(Xpart| Xreco) = P(Xreco | Xpart) Deim (Xreco)
LHC simulations

- paired

- stochastic, usually single-mode  [nothing LHC is deterministic]

- following energy scale/resolution

- starting from fundamental parameters
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Unfolding by reweighting

OmniFold: A Method to Simultancously Unfold All Observables

OmniFold

- use paired events (Xpart, Xreco)
learn psim(Xreco) <+ Pdata(Xreco)
reweight Psim (Xpart) — Punfold (Xpart)

20 Nov 2019

classifier weights (3)
Ehiesidiotic bk AN

Psim (Xpart) Punold (Xpart)

pull (2)/push weights(4{

classifier weights (1)

Psim (Xreco) Pdata(Xreco)

- unbinned classifier weight [Neyman-Pearson lemma, CWolLa]

_ _D(x) P1(xi)
0D = T2000) 7 me)

- high-dimensional classification, like jet tagging
— Driven by (now) established ML-classification




Unfolding by reweighting

OmniFold: A Method to Simultancously Unfold All Observables

OmniFold
- use paired events (Xpart, Xreco)
learn psim (Xreco) <* Pdata(Xreco) 2
reweight Psim(Xpart) — Punfold (Xpart) E
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- unbinned classifier weight [Neyman-Pearson lemma, CWoLa]
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- high-dimensional classification, like jet tagging
— Driven by (now) established ML-classification




Unfolding by generation

How to GAN away Detector Effects

Sampling conditional probability B o T Pl T
. just like forward ML_generation th::::‘\:t[ﬁ;QEE%EEE%EE;«E;S:’E ‘J,‘f{g{fﬁ&j@{.g;ﬁfﬁiﬂ’.?;“}f:.ii,‘.'f:.‘tf
- learn inverse conditional probability :2 Al 23,2022
also from paired events (Xpart, Xreco) B A
Psim (Xpart) - Punfold(xpart)
paired dataI T Pmodel (Xpart | Xreco)
correspondence
Psim (Xreco) Pdata(Xreco)
Two improvements needed ftaking some time]
1 likelihood loss to generate posterior — cINN, CFM
2 remove training prior — ICINN  [Backes, Butter, Dunford, Malaescu]
Simulation Experiment

— Driven by generative networks
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Further improvements from generative Al

Generative networks for the LHC

- phase space integration
event generation
calorimeter shower simulation
MEM inference
unfolding
generative inference [astro/cosmo/Gw]

- built-in smoothness [regularization]
- since 2019
GAN — INN — CFM
- combinatorics — Transfusion, TraCFM

- LHC-requirements:
features learned classifiers
uncertainties Bayesian networks
precision classifier weights

— Driven by ML-progress




Further improvements from generative Al

Generative networks for the LHC
- phase space integration
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generative inference [astro/cosmo/Gw]
- built-in smoothness [regularization] 3_5(1)
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GAN — INN — CFM

AR

- combinatorics — Transfusion, TraCFM o
- LHC-requirements: W = Tentomr
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features learned classifiers
uncertainties Bayesian networks
precision classifier weights
Driven by ML-progress
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Heidelberg-Berkeley-Irvine review

3 — o
= put
. . — | — OmniFold
Detector unfolding: jets T 2f = tomikia
- 1. event reweighting (b)Omnifold N

2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp

Truth DiDi-P

0.5 1.0 0.5 1.0
Ty (reco) Ty (reco)




Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets
- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy

— generative: correct conditional posterior

Truth CFM (cINN, VLD)
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Heidelberg-Berkeley-Irvine review

Detector unfolding: jets
- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy

. . . . 160 165 170 175 180
— generative: correct conditional posterior My [GeV]

part
VLD
CFM
TraCFM

Unfolding to partons: 1,

- phase space parametrization key
- transformer for combinatorics




Heidelberg-Berkeley-Irvine review

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy

— generative: correct conditional posterior

Unfolding to partons: 1,

VLD

- phase space parametrization key !

- transformer for combinatorics

- trained classifier test [pas, Favaro, Heimel, Krause, TP, Shih]
— Consistently high precision

Gen — CFM
TraCFM

Normalized




Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- model dependence ms vs my

Psim (Xpart | Ms) Punfold (Xpart| Ms, My)

P(xreco |Xpart)J Tpmodel (Xpart [ Xreco ;Ms)

correspondence

Psim (Xreco| Ms) Pdata(Xreco| M)




Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

. Complete training bias Mg — Ms  [too bad to reweight]
Psim (Xpart| Ms) Puntold (Xpart| Ms, 174

P(xreco |Xpart)J Tpmodel (Xpart | Xreco ;Ms)

correspondence
Psim (Xreco| Ms) Pdata(Xreco| M)

1 weaken bias by training on range of ms-values
2 strengthen data by including batch-wise my ~ Mj; € Xreco




Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]
Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence
Psim (Xreco | Ms) Pata(Xreco | Mq)
1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise my ~ Mj; € Xreco

Reduced phase space [wacrw
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- dedicated parametrization o ded
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets
- complete training bias my — Ms  [too bad to reweight]

Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence

Psim (Xreco| Ms) Pata(Xreco |Mq)

1 weaken bias by training on range of ms-values
2 strengthen data by including batch-wise my ~ Mj; € Xreco
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]

Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence
Psim (Xreco | Ms) Pata(Xreco | Mq)
1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise my ~ Mj; € Xreco
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]
Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

Correspondence
Pata(Xreco |Mq)

Psim (Xreco| Ms)
1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise my ~ Mj; € Xreco

Full 12D unfolding

- using measured top mass 3
- azimuthal angle derived Ev -
- correlations not special 2 o.
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]
Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence
Psim(Xreco|Ms) ¢~ Pdata(Xreco | Mq)

1 weaken bias by training on range of ms-values
2 strengthen data by including batch-wise my ~ Mj; € Xreco

Full 12D unfolding

- using measured top mass

- azimuthal angle derived

- correlations not special
— CMS data next

M,; (unfolded)




Outlook

Unfolding LHC data

- efficient analyses
optimal updated analyses
public LHC data

- my personal dream

- LHC-inverse problem
unbinned & high-dimensional

- ML (just) the transformative tool Modern Machine Learning for LHC Physicists
— reweighting + conditional generation Thco Hom Coio R andRomon Woneldr

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
¥ LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
 HEPHY, Austrian Academy of Sciences. Vienna, Austria
 CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19,2024
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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