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Machine learning in modern LHC physics

Classic motivation
- dark matter?
- matter vs antimatter?
- origin of Higgs boson?
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Machine learning in modern LHC physics

Classic motivation
- dark matter?
- matter vs antimatter?
- origin of Higgs boson?

LHC physics
- fundamental questions
- huge data set
- first-principle, precision simulations
- complete uncertainty control

Successful past
- measurements of total rates
- analyses inspired by simulation
- model-driven Higgs discovery




Machine learning in modern LHC physics

Classic motivation First-principle, precision simulations
- dark matter? - start with Lagrangian
- matter vs antimatter? - calculate scattering using QF T
- origin of Higgs boson? - simulate collisions

- simulate detectors

LHC physics — LHC collisions in virtual worlds
- fundamental questions
- huge data set BSM searches
- first-principle, precision simulations - compare simulations and data
- complete uncertainty control - infer underlying theory  smoresm
- publish useable results
Successful past — understand LHC data systematically

- measurements of total rates
- analyses inspired by simulation
- model-driven Higgs discovery
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Learned uncertainties

LHC applications

- accuracy & reliability & control

- regression: amplitudes, calibration,...
classification: object identification, tagging, event searches...
generation: integration, simulation, unfolding...

— Uncertainties as test and analysis input
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LHC applications

- accuracy & reliability & control

- regression: amplitudes, calibration,...
classification: object identification, tagging, event searches...
generation: integration, simulation, unfolding...

— Uncertainties as test and analysis input

Remember a fit
- learn underlying function  fo(x) = f(x)
- maximize parameter probability given (f,); icaussian]
p(x16) p(9)
0lx) = =27
p(61x) p(X)
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— parameterized function from Gaussian likelihood maximization

+ const(0)




Learned uncertainties

LHC applications

- accuracy & reliability & control

- regression: amplitudes, calibration,...
classification: object identification, tagging, event searches...
generation: integration, simulation, unfolding...

— Uncertainties as test and analysis input

Many parameters 6, unknown o
- minimize Gaussian log-likelihood loss

If(x) — fo(x)?

Lhet =
het 209(x)2

+ logog(x) +---
- double network
learning fy(x) and ogy(x)
- generalization: oy (x) from GMM
- LHC: phase space interpretable
— Local uncertainty learned




Regression with uncertainties

Detector calibration, transition amplitude, jet energy...
- energy measurement for cluster/jet j
€)= [ dEEp(E)
- weighted by reproducing training data p(6| T)
p(E) = [ do p(EI6) pl6]T)

— O-distributions defining Bayesian NN



Regression with uncertainties

Detector calibration, transition amplitude, jet energy...
- energy measurement for cluster/jet j
€)= [ dEEp(E)
- weighted by reproducing training data p(6| T)
p(E) = [ do p(EI6) pl6]T)

— O-distributions defining Bayesian NN

Variational approximation

- definition of training [think g(&) as Gaussian with mean and width]

p(E) = [ a0 p(EI6) p(6]T) ~ [ db p(EIO) (6)
. Similarity thl’OUgh minimal KL—divergence [Bayes’ theorem to remove unknown posterior]
_ q(9)
Dialato), p(OIT)) = [ db a(0) tog T
q(9)p(T)

p(T16)p(6)

= Dala(0). p(O)] — [ do q(0) 10g p(T10) + log p(T) [ b q(0)

= /d0 q(0) log




Regression with uncertainties

Detector calibration, transition amplitude, jet energy...
- energy measurement for cluster/jet j
- / dE E p(E)
- weighted by reproducing training data p(0|T)
P(E) = [ 06 p(EI6) p(0]T)

— 6-distributions defining Bayesian NN

Variational approximation
- definition of training (iink q(6) as Gaussian with mean and width]
p(E) = [ 06 p(EI6) p(oIT) ~ [ b p(EIS) q(6)
. Similarity thl’OUgh minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

Die[q(0), p(OIT)] = / 99 (9) log ?fg\g;)

q(8)p(T)
p(T10)p(0)

~ Dula(6), p(9)] ~ [ 06 q(0) logp(TI6) = £

— Two-term loss: likelihood + prior

= /d0 q(0) log




Relation to deterministic networks

Regularization

- BNN loss
£ =~ [ do.q(o) 1ogp(TI6) + DL [a(0). P(O)]
2 2 RY:
=~ [ d0.q) 0p(TI0) + %a= %t (o pe)
20p
- deterministic network
(60 — #p)2

q(0) =6(6 —60) = L~ —logp(Tlbo) + —5—
Tp

— Likelihood with L2-regularization




Relation to deterministic networks

Regularization
- BNN loss
£ =~ [ do.q(o) 1ogp(TI6) + DL [a(0). P(O)]

o8 — 0p + (g — Hp)®

— [ a6 at6) togp(Tie) + o
20p

- deterministic network
(60 — #p)z

q(0) =6(6 —60) = L~ —logp(Tlbo) + —5—
9p

— Likelihood with L2-regularization

Dropout
- Bernoulli weights

q(0) = q(x) = p*(1 = p)' ™~ with 6 = x6o
x=0,1
- Regularized likelihood with dropout
— Easy to train to high precision




Statistics vs systematics

Network evaluation
- expectation value using trained network q(9)

(E) = [ dEdo £ p(El0) q(0)
= /de q(0)E(0) with  E(9) = /dEEp(E\G)
- corresponding variance
ot = [ dedo (£~ (E))? p(EI0) a(0)
= [ o a(e) [E¥(6) - 2(EVE(6) + (E)7]

= [ @0 a0) [E0) - E@)" + (E0) - ())°] = oh + o

Two uncertainty classes [LHC version of aleatoric/epistemic]
- systematic — vanishing for perfect network and data: p(E|0) — 6(E — Ep)

ok = [ 40 a(0) [E2(0) - E0)?] = ot

- statistical — vanishing for perfect training: q(0) — §(0 — 6p) (see repuisive ensembies]
— LHC: systematics the problem, always!




LHC Experiment

Calibration with uncertainties [Heidelberg-ML + ATLAS]
- interpretable topo-cluster phase space x

- learned calibration

RO ~ R(x) = £

Edep(x)
- trained on simulations, statistics neglibigle
- systematics: noise in data

network expressivity
data representation ...

Uncertainty contribution &
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LHC Experiment

Calibration with uncertainties [Heidelberg-ML + ATLAS]
- interpretable topo-cluster phase space x

- learned calibration

RO ~ R(x) = £

: BNN
EdT(x) with AR (x)
- trained on simulations, statistics neglibigle
- systematics: noise in data

network expressivity
data representation ...

. . @ r : ;
— calibration from pull £ )04 [ ATLAS Simulation Internal ]
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LHC Experiment

Calibration with uncertainties  [Heidelberg-ML + ATLAS]
- interpretable topo-cluster phase space x
- learned calibration

REWN (%) ~ R(x) E™M(x)

= Edep(X)
- trained on simulations, statistics neglibigle

- systematics: noise in data
network expressivity
data representation ...

— calibration from pull
— Understand data using uncertainties!
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Generative Al

Forward simulations
- learn phase space density
sample Gaussian — phase space
- Variational Autoencoder
— low-dimensional physics
- Generative Adversarial Network
— generator trained by classifier
- Normalizing Flow/Diffusion
— (bijective) mapping (NN
- JetGPT, ViT
— non-local structures
- Equivariant L-GATr
— guarantee Lorentz symmetry

— Combinations: equivariant transformer CFM...

forward

Neural classifier AUC

~ve --e-- MLP
\ ‘Transformer
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Generative Uncertainties

Unsupervised Bayesian networks

- data: event sample [points in 2D space]

learn phase space density
sample from latent space

- Bayesian version

allow weight distributions
learn uncertainty map

- 2D wedge ramp ) x

a(y2 2
1- E(Xmax — Xmin) 0.071 —— Fit: Aa = 0.09, Aty = 0.01

p(x) =ax+b=ax+ X X o
max min 0.06 +00pred

(ap) = (x - ;)2 (Aa)’
+ (1 + 2)2 (Bxmax)® + (1 - 2)2 (Axnin)?

explaining minimum in o(x) 002

o
2
2

Absolute Uncertainty

0.03

— INNs just fit, CFM less stiff, transformer patch-wise...




Events with uncertainties

Bayesian network generator
- network with weight distributions
- weights with uncertainty
= Training-related error bars

Z + 1 jet exclusive

— True




Events with uncertainties

Bayesian network generator
- network with weight distributions
- weights with uncertainty

= Training-related error bars

Control classifier

- train classifier training vs generated
- quantify accuracy

identify failure modes

reweight generator

Z + 1 jet exclusive

—— Reweighted
—— Train
Theory uncertainties 1001 1 gttt
ESY il

- systematics from data augmentation

100 GeV

. —15 GeV\?
w=1+a (F)T”i)

- train conditionally on a (a=o...30
error bar from sampling a

=- Systematic/theory error bars

0 50 100 150
pry [GeV]




Modern ML for LHC

ML for the best science
- old people: just another numerical tool for a numerical field
- young people: transformative new common language
- uncertainties crucial for physics
- be 10000 Einsteins,

...improving established tools
...developing new tools for established tasks
...tfransforming through new ideas

— It's the future, also of Science

Modern Machine Learning for LHC Physicists

Tilman Plehn”; Anja Butter"?, Barry Dillon”,
Theo Heimel”, Claudius Krause®, and Ramon Winterhalder?

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
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4 CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

paricle p . bullying its way into. For young

range of LHC These lect lead students with basic knowledge of p y
enthusiasm for machine learning (o relevant applications. They start with an LHC-specific motivation and a non-standard
work: and

problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware neoworks.
‘As partof the applications, the notes include some aspects of theoretcal LHC physics. Al examples are chosen from
particle physics publications of the st few years.
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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