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Modern LHC physics

Classic motivation

· dark matter?

· matter vs antimatter?

· origin of Higgs boson?

LHC physics

· fundamental questions

· huge data set

· first-principle, precision simulations

· complete uncertainty control

Successful past

· measurements of total rates

· analyses inspired by simulation

· model-driven Higgs discovery

First-principle, precision simulations

· start with Lagrangian

· calculate scattering using QFT

· simulate collisions

· simulate detectors

→ LHC collisions in virtual worlds

BSM searches

· compare simulations and data

· understand LHC data systematically

· infer underlying theory [SM or BSM]

· publish useable results

→ Lots of data science...

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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Role of theory

First-principle simulations
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· start with Lagrangian
generate Feynman diagrams

· compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [ISR/FSR]

· add parton shower [still QCD]

push fragmentation towards QCD

· all theory, except for detectors

→ Simulations, not modeling
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Role of theory

First-principle simulations
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· start with Lagrangian
generate Feynman diagrams

· compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [ISR/FSR]

· add parton shower [still QCD]

push fragmentation towards QCD

· all theory, except for detectors

→ Simulations, not modeling

Pythia/Madgraph/Sherpa... for HL-LHC

· factor 25 more expected (= simulated) data

· more complex final states
higher-orders precision

· parameter coverage for signals

· enable analysis reinterpretation?
enable global LHC analyses?

→ Theory nightmare

Data Proc

12%

MC-Full(Sim)

10%

MC-Full(Rec)

2%

MC-Fast(Sim)

8%

MC-Fast(Rec)

13%

EvGen

18%

Heavy Ions
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Data Deriv
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MC Deriv
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Analysis

7%

ATLAS Preliminary
2020 Computing Model -CPU: 2030: Aggressive R&D

Data Proc
MC-Full(Sim)
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Role of theory

First-principle simulations
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· start with Lagrangian
generate Feynman diagrams

· compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [ISR/FSR]

· add parton shower [still QCD]

push fragmentation towards QCD

· all theory, except for detectors

→ Simulations, not modeling

LHC-specific explainable AI

· SBI conditional on theory simulations

· understanding LHC data is QFT

· computing speed means precision

· control critical

· uncertainties crucial

· phase space interpretable

→ Lots to talk about...

Scienti�c simulators

9 / 36
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Generative-network (r)evolution

Same problems, better networks

· encode density in target space
sample from Gaussian into target space

· reproduce training data, statistically independently
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Generative-network (r)evolution

Same problems, better networks

· encode density in target space
sample from Gaussian into target space

· reproduce training data, statistically independently

· VAE [not good]

· GAN [2019]

· normalizing flow/INN [2020/2021]

· diffusion [2023]

· diffusion with attention [2023]

· autoregressive transformer [2023/2024]

· covariant diffusion generator [2024]

→ Bayesianize for uncertainty on estimated density
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B-INN as starting point

LHC event generation

· n-particle phase space n × 4 d.o.f. [training on events]

· conceptual playgound for
MadNIS: phase space sampling [similar to Sherpa]

inference: unfolding, matrix element method, Bayesian inference
efficient event shipping

· Zµµ + {1, 2, 3} jets [Z -peak, variable jet number, jet-jet topology]



ML-Theory

Tilman Plehn

LHC physics

Generation

Uncertainties

MadNIS

Control

Expressivity

Inversion

Ideas

News

B-INN as starting point

LHC event generation

· n-particle phase space n × 4 d.o.f. [training on events]

· conceptual playgound for
MadNIS: phase space sampling [similar to Sherpa]

inference: unfolding, matrix element method, Bayesian inference
efficient event shipping

· Zµµ + {1, 2, 3} jets [Z -peak, variable jet number, jet-jet topology]

INN-generator [2110.13632]

· stable bijective mapping

latent r ∼ platent

Gθ (r)→
←−−−−−−−−→
← Gθ (x)

phase space x ∼ pdata

· tractable Jacobian

dx pmodel(x) = dr platent(r)

pmodel(x) = platent
(
Gθ(x)

) ∣∣∣∣∣∂Gθ(x)

∂x

∣∣∣∣∣
· likelihood loss

LINN = −
〈

log pmodel(x)
〉

pdata

⇒ Per-cent precision possible
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Precision generator with uncertainties

Bayesian network generator

· network with weight distributions [Gal (2016)]

sample weights [defining error bar]

working for regression, classification
frequentist: efficient ensembling

⇒ Training-related error bars 10−4
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http://www.cs.ox.ac.uk/people/yarin.gal/website/
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Precision generator with uncertainties

Bayesian network generator

· network with weight distributions [Gal (2016)]

sample weights [defining error bar]

working for regression, classification
frequentist: efficient ensembling

⇒ Training-related error bars

Theory uncertainties

· BNN regression/classification:
systematics from data augmentation

· systematic uncertainties in tails

w = 1 + a

(
pT ,j1 − 15 GeV

100 GeV

)2

· augment training data [a = 0 ... 30]

· train conditionally on a
error bar from sampling a

⇒ Controlled per-cent precision
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Madgraph, Madevent, MadNIS

INNs as correlated VEGAS

· phase space integration and generation

· VEGAS grids nothing but Jacobians
INNs are better Jacobians

· learn together with channel weights

· mixted online and buffered training

→ mainstream INN-application
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Madgraph, Madevent, MadNIS

INNs as correlated VEGAS

· phase space integration and generation

· VEGAS grids nothing but Jacobians
INNs are better Jacobians

· learn together with channel weights

· mixted online and buffered training

→ mainstream INN-application
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Ultra-fast event generation

· applied to proper processes
up to 1200 Feynman diagrams
almost 1000 channels

· combination with Madgraph

· goal: 10x improvement

→ Getting implemented right now... 0.50
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Controlling generative networks

Compare generated with training data

· easy for regression ∆ = (Adata − Amodel)/Adata

· unsupervised density→ supervised density ratio

w(xi ) =
D(xi )

1− D(xi )
=

pdata(xi )

pmodel(xi )

· classifier more precise and reliable

→ Weight ratio over interpretable phase space
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Controlling generative networks

Compare generated with training data

· easy for regression ∆ = (Adata − Amodel)/Adata

· unsupervised density→ supervised density ratio

w(xi ) =
D(xi )

1− D(xi )
=

pdata(xi )

pmodel(xi )

· classifier more precise and reliable

→ Weight ratio over interpretable phase space

Event generators [same for jets, calorimeter showers]

· shapes of w-histogram vs phase space

· shifted weights indicating poor resolution
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Controlling generative networks

Compare generated with training data

· easy for regression ∆ = (Adata − Amodel)/Adata

· unsupervised density→ supervised density ratio

w(xi ) =
D(xi )

1− D(xi )
=

pdata(xi )

pmodel(xi )

· classifier more precise and reliable

→ Weight ratio over interpretable phase space

Event generators [same for jets, calorimeter showers]

· shapes of w-histogram vs phase space

· shifted weights indicating poor resolution

· small weights indicating missing feature
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Conditional flow matching

Diffusion, better than flows

· denoising as generative model

p(x, t)→
{

pdata(x) t → 0
platent(x) = N (x ; 0, 1) t → 1

· encode density in velocity [continuity equation]

∂p(x, t)
∂t

+∇x [p(x, t)v(x, t)] = 0

generate from velocity [using ODE solvers]

∂p(x, t)
∂t

+∇x [p(x, t)v(x, t)] = 0 ⇔ dx(t)
dt

= v(x(t), t)
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Conditional flow matching

Diffusion, better than flows

· denoising as generative model

p(x, t)→
{

pdata(x) t → 0
platent(x) = N (x ; 0, 1) t → 1

· encode density in velocity [continuity equation]

∂p(x, t)
∂t

+∇x [p(x, t)v(x, t)] = 0

generate from velocity [using ODE solvers]

∂p(x, t)
∂t

+∇x [p(x, t)v(x, t)] = 0 ⇔ dx(t)
dt

= v(x(t), t)

→ Sub-percent precision
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Direct diffusion

Structural advantage of CFM model

· sample from one distribution into another
avoid learning some features

· example: off-shell top decays from on-shell top decays

x ∼ pon(x) ←−−−−−→ x ∼ pmodel(x) ∼ poff(x)

· standard CFM with boundary conditions

p(x, t)→
{

poff(x) t → 0
pon(x) t → 1
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Direct diffusion

Structural advantage of CFM model

· sample from one distribution into another
avoid learning some features

· example: off-shell top decays from on-shell top decays

x ∼ pon(x) ←−−−−−→ x ∼ pmodel(x) ∼ poff(x)

· standard CFM with boundary conditions

p(x, t)→
{

poff(x) t → 0
pon(x) t → 1

Precision benefits

· data-driven optimal transport

· high-precision features

· minimal failure modes

→ More applications? 10�5
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(ML-)Unfolding

Number of analyses

· optimal forward inference:
full signal and background simulations
high-dimensional, unbinned SBI

· CPU-limitation for many signals

→ Unfold detectors once

Optimal analyses

· theory limiting many LHC analyses
make best use of continuous progress

· allow for analyses to be updated

→ Unfold detectors/soft QCD and save data

Public LHC data

· common lore:
LHC data too complicated for amateurs
no way to even try to publish LHC data

· in truth:
hard scattering and decay simulations easy
BSM physics not in hadronization and detector

→ Unfold to hard scattering
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Unfolding without and with ML

Basic idea

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)

y
xp(xpart|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

· two conditional probabilities

p(xpart|xreco) = p(xreco|xpart)
psim(xpart)

psim(xreco)
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Unfolding without and with ML

Basic idea

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)

y
xp(xpart|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

· two conditional probabilities

p(xpart|xreco) = p(xreco|xpart)
psim(xpart)

psim(xreco)

LHC simulations

· paired

· stochastic, usually single-mode [nothing LHC is deterministic]

· following energy scale/resolution

· starting from fundamental parameters

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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Unfolding by reweighting

OmniFold

MIT-CTP 5155

OmniFold: A Method to Simultaneously Unfold All Observables

Anders Andreassen,1, 2, 3, ⇤ Patrick T. Komiske,4, † Eric M. Metodiev,4, ‡ Benjamin Nachman,2, § and Jesse Thaler4, ¶

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Google, Mountain View, CA 94043, USA
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Collider data must be corrected for detector e↵ects (“unfolded”) to be compared with theoretical
calculations and measurements from other experiments. Unfolding is traditionally done for individ-
ual, binned observables without including all information relevant for characterizing the detector
response. We introduce OmniFold, an unfolding method that iteratively reweights a simulated
dataset, using machine learning to capitalize on all available information. Our approach is un-
binned, works for arbitrarily high-dimensional data, and naturally incorporates information from
the full phase space. We illustrate this technique on a realistic jet substructure example from the
Large Hadron Collider and compare it to standard binned unfolding methods. This new paradigm
enables the simultaneous measurement of all observables, including those not yet invented at the
time of the analysis.

Measuring properties of particle collisions is a central
goal of particle physics experiments, such as those at the
Large Hadron Collider (LHC). Distributions of collider
observables at truth-level can be compared with theoret-
ical predictions as well as with measurements from other
experiments. These comparisons are widely used to en-
hance our understanding of the Standard Model, tune
parameters of Monte Carlo event generators, and enable
precision searches for new physics. “Unfolding” is the
process of obtaining these truth distributions (particle-
level) from measured information recorded by a detector
(detector-level). The unfolding process ensures that mea-
surements are independent of the specific experimental
context, allowing for comparisons across di↵erent exper-
iments and usage with the latest theoretical tools, even
long after the original analysis is completed. Many un-
folding techniques have been proposed and are currently
in widespread use by experiments. See Refs. [1–4] for re-
views and Refs. [5–7] for the most widely-used unfolding
algorithms.

Current unfolding methods face three key challenges.
First, all of the widely-used methods require the mea-
sured observables to be binned into histograms. This
binning must be determined ahead of time and is of-
ten chosen manually. Second, because the measurements
are binned, one can only unfold a small number of ob-
servables simultaneously. Multi-di↵erential cross section
measurements beyond two or three dimensions are simply
not feasible. Finally, unfolding corrections for detector
e↵ects often do not take into account all possible aux-
iliary features that control the detector response. Even
though the inputs to the unfolding can be calibrated, if
the detector response depends on features that are not
used directly in the unfolding, then the results will be
suboptimal and potentially biased.

This letter introduces OmniFold, a new approach
that solves all three of these unfolding challenges.
Detector-level quantities are iteratively unfolded, using

machine learning to handle phase space of any dimen-
sionality without requiring binning. Utilizing the full
phase space information mitigates the problem of aux-
iliary features controlling the detector response. There
have been previous proposals to use machine learning
methods for unfolding [8–10] as well as proposals to per-
form unfolding without binning [9–12]. These proposals,
however, are untenable in high dimensions and do not
reduce to standard methods in the binned case. Omni-
Fold naturally processes high-dimensional features, in
the spirit of previous machine-learning-based reweight-
ing strategies [13] (see also [14, 15]), and it reduces to
well-established methods [5] in the binned case. We also
introduce simpler versions of the procedure, using sin-
gle or multiple observables, respectively named UniFold
and MultiFold.1

All unfolding methods require a trustable detector
simulation to estimate the detector response. In the
binned formulation, the folding equation can be written
as m = Rt, where m and t are vectors of the measured
detector-level and true particle-level histograms, respec-
tively. R is the “response matrix”:

Rij = Pr(measure i | truth is j). (1)

In general, R is not invertible, so that the unfolding
problem has no unique solution, and methods attempt
to achieve a useful solution in various ways. One of the
most widely-used methods is Iterative Bayesian Unfold-
ing (IBU) [5], also known as Richardson-Lucy decon-
volution [17, 18]. Given a measured spectrum mi =

Pr(measure i) and a prior spectrum t
(0)
j = Pr(truth is j),

1 The name OmniFold is taken from Emily Dickinson’s poem The
Mountain Sat Upon the Plain [16].
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· use paired events (xpart, xreco)
learn psim(xreco)↔ pdata(xreco)
reweight psim(xpart)→ punfold(xpart)

psim(xpart)
classifier weights (3)−−−−−−−−−−−→ punfold(xpart)

pull (2)/push weights(4)

xy
psim(xreco)

classifier weights (1)←−−−−−−−−−−→ pdata(xreco)

· unbinned classifier weight [Neyman-Pearson lemma, CWoLa]

wD(xi ) =
D(xi )

1− D(xi )
→ p1(xi )

p2(xi )

· high-dimensional classification, like jet tagging

→ Driven by (now) established ML-classification
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Unfolding by generation

Sampling conditional probability

SciPost Physics Submission

How to GAN away Detector E↵ects

Marco Bellagente1, Anja Butter1, Gregor Kasieczka2, Tilman Plehn1, and Ramon
Winterhalder1

1 Institut für Theoretische Physik, Universität Heidelberg, Germany
2 Institut für Experimentalphysik, Universität Hamburg, Germany

bellagente@thphys.uni-heidelberg.de

April 23, 2022

Abstract

LHC analyses direct comparing data and simulated events bear the danger of
using first-principle predictions only as a black-box part of event simulation. We
show how simulations, for instance, of detector e↵ects can instead be inverted
using generative networks. This allows us to reconstruct parton level information
from measured events. Our results illustrate how, in general, fully conditional
generative networks can statistically invert Monte Carlo simulations. As a techni-
cal by-product we show how a maximum mean discrepancy loss can be staggered
or cooled.
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· just like forward ML-generation

· learn inverse conditional probability
also from paired events (xpart, xreco)

psim(xpart) punfold(xpart)

paired data

xy
xpmodel(xpart|xreco)

psim(xreco)
correspondence←−−−−−−−−→ pdata(xreco)

Two improvements needed [taking some time]

1 likelihood loss to generate posterior → cINN, CFM

2 remove training prior → IcINN [Backes, Butter, Dunford, Malaescu]

→ Driven by generative networks

 Ic NN

1. Train c NN 2. Predict

MC Truth

MC Reco

Unfolded

3. Reweight

Measured

ExperimentSimulation

Detector
Level

Particle
Level

New MC Truth 
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Heidelberg-Berkeley-Irvine

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD 0
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Heidelberg-Berkeley-Irvine

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
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Heidelberg-Berkeley-Irvine

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy
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Heidelberg-Berkeley-Irvine

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy

→ generative: correct conditional posterior
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Heidelberg-Berkeley-Irvine

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy

→ generative: correct conditional posterior

Unfolding to partons: th t̄`

· phase space parametrization key

· transformer for combinatorics

0.0

0.1

0.2

0.3

n
or

m
al

iz
ed

part

VLD

CFM

TraCFM

0.95
1.00
1.05

M
o
d

el
T

ru
th

0.95
1.00
1.05

M
o
d

el
T

ru
th

160 165 170 175 180
Mt,h [GeV]

0.95
1.00
1.05

M
o
d

el
T

ru
th

0.2

0.4

n
or

m
al

iz
ed

part

VLD

CFM

TraCFM

0.95
1.00
1.05

M
o
d

el
T

ru
th

0.95
1.00
1.05

M
o
d

el
T

ru
th

1 2 3 4 5
∆Rbl,Wl

0.95
1.00
1.05

M
o
d

el
T

ru
th



ML-Theory

Tilman Plehn

LHC physics

Generation

Uncertainties

MadNIS

Control

Expressivity

Inversion

Ideas

News

Heidelberg-Berkeley-Irvine

Detector unfolding: jets

· 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

· trained on paired events
event migration known

· DiDi paried: too sharp
DiDi unpaired: more noisy

→ generative: correct conditional posterior

Unfolding to partons: th t̄`

· phase space parametrization key

· transformer for combinatorics

· trained classifier test [Das, Favaro, Heimel, Krause, TP, Shih]

→ Consistently high precision
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· model dependence ms vs md

psim(xpart|ms) punfold(xpart|ms,md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Reduced phase space [TraCFM]

· dedicated parametrization

· 4D for calibration and top mass
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Reduced phase space [TraCFM]

· dedicated parametrization

· 4D for calibration and top mass
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Reduced phase space [TraCFM]

· dedicated parametrization

· 4D for calibration and top mass

→ unbiased top mass
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Full 12D unfolding

· using measured top mass

· azimuthal angle derived

· correlations not special
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded boosted decays
then unfold kinematics of 3 subjets
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Full 12D unfolding

· using measured top mass

· azimuthal angle derived

· correlations not special

→ CMS data next
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ML for LHC Theory

ML-applications

· just another numerical tool for a numerical field

· driven by money from data science and medical research

· goals are...
...improve established tasks
...develop new tools for established tasks
...transform through new ideas

· xAI through...
...precision control
...uncertainties
...symmetries
...formulas

→ Lots of fun with hard LHC problems

Modern Machine Learning for LHC Physicists

Tilman Plehna*, Anja Buttera,b, Barry Dillona, Claudius Krausea,c, and Ramon Winterhalderd

a Institut für Theoretische Physik, Universität Heidelberg, Germany
b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
c NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, USA

d CP3, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

July 21, 2023

Abstract

Modern machine learning is transforming particle physics, faster than we can follow, and bullying its way into our
numerical tool box. For young researchers it is crucial to stay on top of this development, which means applying cutting-
edge methods and tools to the full range of LHC physics problems. These lecture notes are meant to lead students with
basic knowledge of particle physics and significant enthusiasm for machine learning to relevant applications as fast as
possible. They start with an LHC-specific motivation and a non-standard introduction to neural networks and then cover
classification, unsupervised classification, generative networks, and inverse problems. Two themes defining much of the
discussion are well-defined loss functions reflecting the problem at hand and uncertainty-aware networks. As part of the
applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from particle physics
publications of the last few years. Given that these notes will be outdated already at the time of submission, the week of
ML4Jets 2022, they will be updated frequently.

*plehn@uni-heidelberg.de

http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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JetGPT

Correlations through self-attention [2305.10475]

· think of data as bins in phase-space directions
self-attention: encode relation between bins
input x , learn relation xi ↔ xj

· latent query representation q = W Qx
latent key representation k = W K x
define correlation as Aij = qi · kj

· latent value representation v = W V x
output z = A v
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JetGPT

Correlations through self-attention [2305.10475]

· think of data as bins in phase-space directions
self-attention: encode relation between bins
input x , learn relation xi ↔ xj

· latent query representation q = W Qx
latent key representation k = W K x
define correlation as Aij = qi · kj

· latent value representation v = W V x
output z = A v

Autoregressive generator

· factorized density

pmodel(x|θ) =
∏

i

p(xi |x1, ..., xi−1)

· bins→ Gaussian mixture model

· autoregressive Aij = 0 for j > i

→ Bayesian version for uncertainties
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JetGPT

Correlations through self-attention [2305.10475]

· think of data as bins in phase-space directions
self-attention: encode relation between bins
input x , learn relation xi ↔ xj

· latent query representation q = W Qx
latent key representation k = W K x
define correlation as Aij = qi · kj

· latent value representation v = W V x
output z = A v

Bayesian JetGPT

· sometimes you win...
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JetGPT

Correlations through self-attention [2305.10475]

· think of data as bins in phase-space directions
self-attention: encode relation between bins
input x , learn relation xi ↔ xj

· latent query representation q = W Qx
latent key representation k = W K x
define correlation as Aij = qi · kj

· latent value representation v = W V x
output z = A v

Bayesian JetGPT

· sometimes you win...

...and sometimes there is work to do...
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High-dimensional and unbinned

Simple process pp → W`Hbb [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

· example operators [wf vs vertex structure vs 4-point]

ÕHD = (φ†φ)�(φ†φ)− 1
4

(φ†Dµφ)∗(φ†Dµφ)

OHW = φ
†
φW a

µνWµνa

O(3)
Hq = (φ† i

↔
D a
µ φ)(QLσ

a
γ
µQL)
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High-dimensional and unbinned

Simple process pp → W`Hbb [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

· example operators [wf vs vertex structure vs 4-point]

ÕHD = (φ†φ)�(φ†φ)− 1
4

(φ†Dµφ)∗(φ†Dµφ)

OHW = φ
†
φW a

µνWµνa

O(3)
Hq = (φ† i

↔
D a
µ φ)(QLσ

a
γ
µQL)

Full kinematics vs pT ,W −mT ,tot

· bulk operators
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High-dimensional and unbinned

Simple process pp → W`Hbb [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

· example operators [wf vs vertex structure vs 4-point]

ÕHD = (φ†φ)�(φ†φ)− 1
4

(φ†Dµφ)∗(φ†Dµφ)

OHW = φ
†
φW a

µνWµνa

O(3)
Hq = (φ† i

↔
D a
µ φ)(QLσ

a
γ
µQL)

Full kinematics vs pT ,W −mT ,tot

· bulk operators

· tail operator
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→ Full, unbinned kinematics the key [top groups doing better]
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Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

· condition jets with QCD parameters
train model parameters→ Gaussian latent space
test Gaussian sampling→ parameter measurement

· beyond CA vs CF

Pqq = CF

[
Dqq

2z(1 − y)

1 − z(1 − y)
+ Fqq (1 − z) + Cqqyz(1 − z)

]

Pgg = 2CA

[
Dgg

(
z(1 − y)

1 − z(1 − y)
+

(1 − z)(1 − y)

1 − (1 − z)(1 − y)

)
+ Fgg z(1 − z) + Cgg yz(1 − z)

]
Pgq = TR

[
Fqq

(
z2 + (1 − z)2

)
+ Cgqyz(1 − z)

]
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Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Höche, Köthe, TP, Radev]

· condition jets with QCD parameters
train model parameters→ Gaussian latent space
test Gaussian sampling→ parameter measurement

· beyond CA vs CF

Pqq = CF

[
Dqq

2z(1 − y)

1 − z(1 − y)
+ Fqq (1 − z) + Cqqyz(1 − z)

]

Pgg = 2CA

[
Dgg

(
z(1 − y)

1 − z(1 − y)
+

(1 − z)(1 − y)

1 − (1 − z)(1 − y)

)
+ Fgg z(1 − z) + Cgg yz(1 − z)

]
Pgq = TR

[
Fqq

(
z2 + (1 − z)2

)
+ Cgqyz(1 − z)

]
· idealized shower [Sherpa]

· More ML-opportunities...
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