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Modern LHC physics

Classic motivation
- dark matter?
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Modern LHC physics

Classic motivation First-principle, precision simulations
- dark matter? - start with Lagrangian
- matter vs antimatter? - calculate scattering using QF T
- origin of Higgs boson? . simulate collisions

- simulate detectors

LHC physics — LHC collisions in virtual worlds

- fundamental questions

- huge data set BSM searches

- first-principle, precision simulations - compare simulations and data

- complete uncertainty control - understand LHC data systematically

- infer underlying theory (smorBsw

Successful past - publish useable results

- measurements of total rates — Lots of data science...

- analyses inspired by simulation
- model-driven Higgs discovery

forward

scattering decay Qco shower detectors.
CHEEHETIE®




Role of theory

First-principle simulations

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation psriFsR]

- add parton shower [stit acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling




Role of theory
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First-principle simulations @ @

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation [sriFsR)

- add parton shower [stit acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling

Pythia/Madgraph/Sherpa... for HL-LHC

- factor 25 more expected (= simulated) data
ATLAS Preliminary

- more CompleX final states 2020 Computing Model -c:tjﬁ: 2030: Aggressive R&D
2% 1
higher-orders precision o

- parameter coverage for signals

- enable analysis reinterpretation?
enable global LHC analyses?

— Theory nightmare

12%

== Data Proc
79 == MC-Full(Sim)
MC-Full(Rec)

- MC-Fast(Sim)
m MC-Fast(Rec)
= EvGen

6% Heavy lons

== Data Deriv

= MC Deriv
Analysis




Role of theory ,
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First-principle simulations @ @

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation psrFsR)

- add parton shower [stil acoj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling

LHC-specific explainable Al
- SBI conditional on theory simulations
- understanding LHC data is QFT
- computing speed means precision
- control critical
- uncertainties crucial
- phase space interpretable

— Lots to talk about...




Generative-network (r)evolution

Same problems, better networks

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently



Generative-network (r)evolution

Same problems, better networks
- encode density in target space
sample from Gaussian into target space
- reproduce training data, statistically independently
- VAE [not good]
- GAN [2019]
- normalizing flow/INN (202012021
- diffusion [2023)

- diffusion with attention [2023) e DA

0 --e-- MLP
\ “Transformer
\ —e— LGATr

- autoregressive transformer  [2023/2024] 09
- covariant diffusion generator (2024]
— Bayesianize for uncertainty on estimated density

\
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B-INN as starting point

LHC event generation
- n-particle phase space n x 4 d.o.f. f(raining on events]
- conceptual playgound for

MadNIS: phase space sampling  similar to Sherpal
inference: unfolding, matrix element method, Bayesian inference
efficient event shipping

. ZMH + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]




B-INN as starting point

LHC event generation
- n-particle phase space n x 4 d.o.f. f(waining on events]
- conceptual playgound for

MadNIS: phase space sampling [similar to Sherpa]
inference: unfolding, matrix element method, Bayesian inference
efficient event shipping

. ZMN + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]

INN-generator [2110.13632)

- stable bijective mapping

Go(n—
latent r ~ Pigent ———— phase space x ~ Pyata
— Gg(x)
- tractable Jacobian Z + 1 jet exclusive
1072
AX Pmodel (X) = dr Patent(r) 5 — Truth
g0 —— INN
3G0 X £10°° o
pmodel(x) plalem(GQ(X)) ( ) 2 [rain
1074
. likelihood loss e
=1=0.95 B
LN = —< |ngmode|(x)>p <1007 A ‘m,”,. TT'F!TI:II;WI“I
- . < Lot
= Per-cent precision possible 25 50 75 100 125 150
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Precision generator with uncertainties

Bayesian network generator

Z + 1 jet exclusive

- network with weight distributions  [cal 2016)]
Sample Welghts [defining error bar]
working for regression, classification
frequentist: efficient ensembling

= Training-related error bars

1072
— True

normalized
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http://www.cs.ox.ac.uk/people/yarin.gal/website/

Precision generator with uncertainties

Bayesian network generator

- network with weight distributions  (cal (2016)]
Sample Welghts [defining error bar]
working for regression, classification

frequentist: efficient ensembling 7+ 1 jot oxclusive
= Training-related error bars g0
P g 1079 . o
Theory uncertainties = Reweighted
—— Train
- BNN regression/classification: 10.0
systematics from data augmentation ST
- systematic uncertainties in tails 0.1
1.1
S10
1 pT,h — 15 GeV 2 0.9
w=1+a |— ———
100 GeV
- augment training data (a=o...30
- train conditionally on a
error bar from sampling a

) 0 50 100 150
= Controlled per-cent precision i [GeV)
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Madgraph, Madevent, MadNIS

INNs as correlated VEGAS

- phase space integration and generation

- VEGAS grids nothing but Jacobians
INNs are better Jacobians

- learn together with channel weights
- mixted online and buffered training
— mainstream INN-application

Normalized
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Madgraph, Madevent, MadNIS

INNs as correlated VEGAS
- phase space integration and generation

- VEGAS grids nothing but Jacobians
INNs are better Jacobians

- learn together with channel weights
- mixted online and buffered training
— mainstream INN-application

Ultra-fast event generation

- applied to proper processes
up to 1200 Feynman diagrams
almost 1000 channels

- combination with Madgraph
- goal: 10x improvement
— Getting implemented right now...

Normalized
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Controlling generative networks

Compare generated with training data

- easy for regression A = (Agata — Amodel)/Adata
- unsupervised density — supervised density ratio

D(x;) Pdata (Xi)
w(X;) = =
() 1 —D(X))  Pmodel(Xi)
- classifier more precise and reliable
— Weight ratio over interpretable phase space



Controlling generative networks

Compare generated with training data

- easy for regression A = (Asata — Amodel)/Asata
- unsupervised density — supervised density ratio

D(x;)

_ Pdata (Xi)

w(x;) =

- classifier more precise and reliable
— Weight ratio over interpretable phase space

Event generato I'S [same for jets, calorimeter showers]

- shapes of w-histogram vs phase space
- shifted weights indicating poor resolution

T =Dk

Prmodel (X;)
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My, [GeV]




Controlling generative networks

Compare generated with training data
- easy for regression A = (Agata — Amodel)/Adata
- unsupervised density — supervised density ratio

W(X,-) _ D(Xi) pdala(Xi)

11— D(Xi) B pmodeI(Xi)
- classifier more precise and reliable

— Weight ratio over interpretable phase space

Event generato I'S [same for jets, calorimeter showers]

- shapes of w-histogram vs phase space
- shifted weights indicating poor resolution
- small weights indicating missing feature

Z+3j
rrrrrr Truth
—— Gen




Conditional flow matching

Diffusion, better than flows
- denoising as generative model

poct = {ZZTZanf(Xx)) = N(x:0,1) e
- encode density in velocity (continuity equation]
3"5;;’ D 9y lpx, v(x, ] = 0
generate from velocity  [using ODE solvers]
Bp(axt, D v, bt v =0 o d’;(tt) — v(x(1), 1)




Conditional flow matching

Diffusion, better than flows
- denoising as generative model

pdata(x) t—0
Pl 1) = {Qatent(x) = N(x;0,1) t—1

- encode density in velocity (continuity equation]

PO 4 9l v(x, D] = 0
generate from velocity  {using ODE solvers]
PO b vl =0 o Py,

ot

— Sub-percent precision
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Direct diffusion

Structural advantage of CFM model
- sample from one distribution into another
avoid learning some features
- example: off-shell top decays from on-shell top decays
X~ Pon(X) ——— X ~ Pmodel(X) ~ Poir(X)
- standard CFM with boundary conditions

pcﬁ(x) t—=0

pix; 1) = {pon(x) t—1




Direct diffusion

Structural advantage of CFM model

- sample from one distribution into another
avoid learning some features
- example: off-shell top decays from on-shell top decays
X~ Pon(X) ——— X~ Pmodel(X) ~ Pofi(X)
- standard CFM with boundary conditions

Poi(x)  t—0

pix; 1) = {pon(x) t—1

Precision benefits

=
2

- data-driven optimal transport

- high-precision features I
L. X =10~
- minimal failure modes E
N z
— More applications? 105f]
_gl. 5
ggl.oo

50 200 250
my;, [GeV]




(ML-)Unfolding

Number of analyses

- optimal forward inference:
full signal and background simulations
high-dimensional, unbinned SBI

- CPU-limitation for many signals
— Unfold detectors once

Optimal analyses
- theory limiting many LHC analyses
make best use of continuous progress
- allow for analyses to be updated
— Unfold detectors/soft QCD and save data

Public LHC data

- common lore:
LHC data too complicated for amateurs
no way to even try to publish LHC data
- in truth:
hard scattering and decay simulations easy
BSM physics not in hadronization and detector

— Unfold to hard scattering




Unfolding without and with ML

Basic idea
- four phase space distributions

unfolding inference
Psim(Xpart)  —————— Punfold(Xpart)
p(xreco | Xpart) J TP(Xpan |Xreco)
forward inference
Psim (Xreco) Pdata(Xreco)
- two conditional probabilities
Psim (Xpart)

P(Xpar1|xreco) = P(Xreco‘xpart) Do (Xreco)



Unfolding without and with ML

Basic idea
- four phase space distributions

unfolding inference
Psim (Xpan) <  Punfold (Xpan)
p(xreco | Xpart) J [P(Xpan Ixreco)
forward inference
Psim (Xreco ) Pdata (Xreco )
- two conditional probabilities
Psim (Xpart)

P(Xpart| Xreco) = P(Xreco | Xpart) Deim (Xreco)
LHC simulations

- paired

- stochastic, usually single-mode  [nothing LHC is deterministic]

- following energy scale/resolution

- starting from fundamental parameters

forward N

scattering decay QCD shower i detectors

o [l | o8] [

inverse




Unfolding by reweighting

OmniFold: A Method to Simultancously Unfold All Observables

OmniFold

- use paired events (Xpart, Xreco)
learn psim(Xreco) <+ Pdata(Xreco)
reweight Psim (Xpart) — Punfold (Xpart)

20 Nov 2019

classifier weights (3)
Ehiesidiotic bk AN

Psim (Xpart) Punold (Xpart)

pull (2)/push weights(4{

classifier weights (1)

Psim (Xreco) Pdata(Xreco)

- unbinned classifier weight [Neyman-Pearson lemma, CWolLa]

_ _D(x) P1(xi)
0D = T2000) 7 me)

- high-dimensional classification, like jet tagging
— Driven by (now) established ML-classification




Unfolding by generation

How to GAN away Detector Effects

Sampling conditional probability B o T Pl T
. just like forward ML_generation th::::‘\:t[ﬁ;QEE%EEE%EE;«E;S:’E ‘J,‘f{g{fﬁ&j@{.g;ﬁfﬁiﬂ’.?;“}f:.ii,‘.'f:.‘tf
- learn inverse conditional probability :2 Al 23,2022
also from paired events (Xpart, Xreco) B A
Psim (Xpart) - Punfold(xpart)
paired dataI T Pmodel (Xpart | Xreco)
correspondence
Psim (Xreco) Pdata(Xreco)
Two improvements needed ftaking some time]
1 likelihood loss to generate posterior — cINN, CFM
2 remove training prior — ICINN  [Backes, Butter, Dunford, Malaescu]
Simulation Experiment

— Driven by generative networks

Detector . 3 ‘ . X
Level RCRc \) LA) Measured

1. Train ¢|NN 2. Predict

] \Ic]NN / |

3. Reweight
Particle ~ MCTruch l‘) w Unfolded
Level

NewMCTruth AL | <=




Heidelberg-Berkeley-Irvine

Detector unfolding: jets
- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

91 — reco

— part
— OmniFold
— bOmniFold

1 Fold
bOmmiFold

PiDiF PiD

Dibi-P




Heidelberg-Berkeley-Irvine

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp

Truth DiDi-P

0.5 1.0 0.5 1.0
Ty (reco) Ty (reco)




Heidelberg-Berkeley-Irvine

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy

Truth DiDi-U

0.5 . 0.5
Ty (reco)

To1 (reco)




Heidelberg-Berkeley-Irvine

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets
- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy

— generative: correct conditional posterior

Truth CFM (cINN, VLD)

0.5 1.0

To1 (reco) To1 (reco)




Heidelberg-Berkeley-Irvine

Detector unfolding: jets
- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy

. . . . 160 165 170 175 180
— generative: correct conditional posterior My [GeV]

part
VLD
CFM
TraCFM

Unfolding to partons: 1,

- phase space parametrization key
- transformer for combinatorics




Heidelberg-Berkeley-Irvine

Detector unfolding: jets

- 1. event reweighting (b)Omnifold
2. distribution mapping DiDi,(b)SB
3. conditional generation cINN, CFM, VLD

Event migration: jets

- trained on paired events
event migration known

- DiDi paried: too sharp
DiDi unpaired: more noisy

— generative: correct conditional posterior

Unfolding to partons: 1,

VLD

- phase space parametrization key !

- transformer for combinatorics

- trained classifier test [pas, Favaro, Heimel, Krause, TP, Shih]
— Consistently high precision

Gen — CFM
TraCFM

Normalized




Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- model dependence ms vs my

Psim (Xpart | Ms) Punfold (Xpart| Ms, My)

P(xreco |Xpart)J Tpmodel (Xpart [ Xreco ;Ms)

correspondence

Psim (Xreco| Ms) Pdata(Xreco| M)




Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

. Complete training bias Mg — Ms  [too bad to reweight]
Psim (Xpart| Ms) Puntold (Xpart| Ms, 174

P(xreco |Xpart)J Tpmodel (Xpart | Xreco ;Ms)

correspondence
Psim (Xreco| Ms) Pdata(Xreco| M)

1 weaken bias by training on range of ms-values
2 strengthen data by including batch-wise my ~ Mj; € Xreco




Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]
Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence
Psim (Xreco | Ms) Pata(Xreco | Mq)
1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise my ~ Mj; € Xreco

Reduced phase space [wacrw

0.061 m, =171.5 GeV

gen

- dedicated parametrization o ded

- 4D for calibration and top mass

160
M;j; [GeV]



Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets
- complete training bias my — Ms  [too bad to reweight]

Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence

Psim (Xreco| Ms) Pata(Xreco |Mq)

1 weaken bias by training on range of ms-values
2 strengthen data by including batch-wise my ~ Mj; € Xreco

Reduced phase space [wacrw

- dedicated parametrization 9
- 4D for calibration and top mass 'Tzo.oz
s

gen
unfolded

M, [GeV]




Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]

Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence
Psim (Xreco | Ms) Pata(Xreco | Mq)
1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise my ~ Mj; € Xreco

%' 7““\““\““““““““7

8 o 1o ]

Reduced phase space (macrm) £ L L 1
2 F & 4d 12bins 4

. . . 5 o4 & ad10bms g

- dedicated parametrization g 1 e ]

- 4D for calibration and top mass g0 B
w L 4

— unbiased top mass , b H;J 1
oy E

v 3

-4 t B

06 -
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]
Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

Correspondence
Pata(Xreco |Mq)

Psim (Xreco| Ms)
1 weaken bias by training on range of ms-values

2 strengthen data by including batch-wise my ~ Mj; € Xreco

Full 12D unfolding

- using measured top mass 3
- azimuthal angle derived Ev -
- correlations not special 2 o.
0.00
©1.25
2098
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Unfolding top decays

Enjoying a technical challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded boosted decays
then unfold kinematics of 3 subjets

- complete training bias my — Ms  [too bad to reweight]
Psim (Xpar1|ms) punfold(xpart|ms,y§)

P(xreco | Xpart)J L’model (Xpart | Xreco »Ms)

correspondence
Psim(Xreco|Ms) ¢~ Pdata(Xreco | Mq)

1 weaken bias by training on range of ms-values
2 strengthen data by including batch-wise my ~ Mj; € Xreco

Full 12D unfolding

- using measured top mass

- azimuthal angle derived

- correlations not special
— CMS data next

M,; (unfolded)




ML for LHC Theory

ML-applications

- just another numerical tool for a numerical field
- driven by money from data science and medical research

- goals are...
...improve established tasks

...develop new tools for established tasks

...transform through new ideas
- XAl through...

...precision control
...uncertainties
...symmetries
...formulas

— Lots of fun with hard LHC problems

Modern Machine Learning for LHC Physicists

Tilman Plehn®; Anja Butter*", Barry Dillon”, Claudius Krause®*, and Ramon Winterhalder!

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany

 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

 NHETC, Dept. of Physics and Astronomy. Rutgers University, Piscataway, USA
#CP3, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

July 21,2023

Abstract

Modern machine learming s transforming partcle physics, faster than we can follow, and bullying its way into our

bavc knowldse of paricle phy
possible. They siart v

irs. Given that these notes will be outdated alrcady at the time of sul
Vi aset 2023, they il Updaed frequenty.


http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf

JetGPT

Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions
self-attention: encode relation between bins

input x, learn relation x; < x; VV
- latent query representation g = W9x o Ywk, M @k softmax | Y
latent key representation k = WKx . } < ke —g ~:I\:(7} ac
define correlation as Aj = g; - k; " )\ ¢
W vy v —
- latent value representation v = WVx v agug = T

outputz = Av



JetGPT

Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions
self-attention: encode relation between bins

input x, learn relation x; < x;

- latent query representation g = W%x
latent key representation k = WKx
define correlation as Aj = q; - k;

- latent value representation v = WVx
outputz = Av

Autoregressive generator
- factorized density

Prodei(x16) = T T p(xilx1, .. xi—1)
i
- bins — Gaussian mixture model

- autoregressive Aj = 0 forj > i
— Bayesian version for uncertainties

T

pi Rk }m.
} — L(, —q ~'1.',(7
.'r(‘

wVv v v —
D —_— B !
ve acve —

’@’w‘“‘* Plal0®)
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JetGPT

Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions

self-attention: encode relation between bins
input x, learn relation x; <> x;

- latent query representation g = W%x
latent key representation k = WKx
define correlation as A; = q; - k;

- latent value representation v = WVx
outputz = Av
Bayesian JetGPT
- sometimes you win...

T

Iy
kl

2

Wk

wY

; ihr } _softmax__ a
< kF — 31 ke dc

Z+3 jet exclusive

—— Truth
— AT




JetGPT

Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions
self-attention: encode relation between bins ,

input x, learn relation x; <> x; Iy
i kl ik } _softmax__ =

- latent query representation g = W9x WK
latent key representation k = WKx } ke —q ke ac
define correlation as Aj = q; - k; " ajul .
- latent value representation v = WVx A

outputz = Av

Bayesian JetGPT
. sometimes you win... Z+1 jet exclusive
. . 0.2
...and sometimes there is work to do... 3 Truth
;g — AT
Eo.
Z

1.2
[z o—wggasﬁ@%ﬁ
<:E N

. rmmq ’It
I

i fHi
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High-dimensional and unbinned

Simple process pp — W, be [Brehmer, Dawson, Homiller, Kling, TP, long time ago]

. example operators [wf vs vertex structure vs 4-point]
~ 1 "
Omp = (670)0(6" ) = 4 (#7D"9)" (' Du @)
Ouw = ¢T¢Wsu whva

— Cup

— Cuw

— Cin

SM WH

QCD Backgrounds

@) 1153 V(G o
OHq = (¢ IDM ¢)(Qo 'y“QL)

0 200 100 600 800 1000
prav (GeV)



High-dimensional and unbinned

Simple process pp — WyHpp  [Brehmer, Dawson, Homiller, Kiing, TP, long time ago]
- example operators  wivs vertex structure vs 4-point]
Buo = (6 606" 9) — 5 (6'D"9)" (9' D,16)
Onw = ¢T¢Ws,, whva

@) 1153 V(G o
OHq = (¢ IDM ¢)(Qo 'y“QL)

Full kinematics vs pr w — mr 1ot

- bulk operators

0.6] — Pull Kin. P 15 — Full Kin
Full 2D dist. /;’/ Full 2D dist.
044 -=-- STXS,stage L1 19 --== STXS, stage 1.1
~= Imp. STXS /// ;
0.2 A 0.5 P
. PN
= 0 S
© )
-0.2 T s
-0.4 1
-0.6 15
2 0 2 5 0 5




High-dimensional and unbinned

Simple process pp — Wy Hpp  [Brehmer, Dawson, Homiller, Kiing, TP, long time ago]
- example operators  wivs vertex structure vs 4-point]
Ouo = (¢! 6" 6) — 3(6'0"9)" 6/ D)
Oww = ¢ oW, W

0 = (41D $)(Quo*+"Q
Hq (¢'i ,ui’)( Loy QL)

Full kinematics vs pr w — mr 1ot

- bulk operators

. %102 10
- tail operator . .
Cyp Profiled B Cyp Profiled
L =300fb~" L =300fb"
2 4
1 2
=g >
=3 0 =z 0
&) Qm
R 2
—— Full Kin. —— Full Kin.
o Full 2D d 4 Full 2D dist. \
---- STXS, stage 1.1 ---- STXS, stage 1.1 R
3] —— Imp. STXS 61 == Tmp. STXS

-1 -0.5 0.5 1 -0.2

] 0
Crw (Ch)?

— Full, unbinned kinematics the key [top groups doing better]




Inverting to QCD

cINN for inference (Bieringer, Butter, Heimel, Hoche, Kothe, TP, Radev]

condition jets with QCD parameters
train model parameters — Gaussian latent space

test Gaussian sampling — parameter measurement
- beyond C4 vs Cr

D a1 2+ Gt - )

1—z(1—y)

) 2(1—y) (=20 -y - -
Pgg = 2C4 [Dgg (1 T + 1T—(1-20 7y)> + Fggz(1 — 2) + Cggyz(1 z)]
Pgg = Tg [qu (22 +(1 - 2)2)  Cgayz(t Z)]

Training

Pqq = C¢ [qu

Inference

{=}

Summary LHC Summary
net Jets net
v

z
NN [ Qe NN
measurement

g(m;h) P(2)

{zm}

QCD
model

P(ml{z}) 9(z:h)




Inverting to QCD

cINN for inference [Bieringer, Butter, Heimel, Héche, Kéthe, TP, Radev]

- condition jets with QCD parameters
train model parameters — Gaussian latent space
test Gaussian sampling — parameter measurement

- beyond C4 vs Cg
2z(1 —y)

1—z(1-y)
z(1 —y) (1-20-y)

1—z1—-y) 1-(1-2(1=-»

Pqq = C¢ [qu + Fgq(1 — 2) + Cqqyz(1 — Z)]

) + Fggz(1 —2z)+ ngyz(1 — z)}

Pgg = 2Ca [Dyg <
0.4

Pgg = Tr [qu (z2 +(1— 2)2) + Cgqyz(1 — z)] ’
- idealized shower [sherpa)
- More ML-opportunities... ’ 2

= Posterior
—— Gaussian fit
== Absolute error of 2.5

Caq fo-08 =56

-10 0 10 -10 0 10 -10 o 10
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