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Classic motivation First-principle simulations
- dark matter? - start with Lagrangian
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- symmetries crucial
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Modern LHC physics

Classic motivation First-principle simulations
- dark matter? - start with Lagrangian
- baryogenesis? - then quantum field theory
- origin of Higgs field? - finally detectors

- symmetries crucial

Unique LHC setting — LHC collisions in virtual worlds

- first-principle simulations

- huge data set Modern inference
- uncertainty control - simulations vs data — SBI ftnis morning]
- understand all of LHC data
Gilorious past - discover BSM physics?
- measurements of event counts — ML-case obvious

- model-driven Higgs discovery
- lots of exclusions  [plus LHCb hadrons]
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LHC Theory

Turning data into knowledge

- QFT
start with Lagrangian
generate Feynman diagrams
- compute hard scattering
compute decays
compute jet radiation

- partons inside protons
hadron-level QCD

— First-principle simulations, not modeling




Turning data into knowledge ) @
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start with Lagrangian

generate Feynman diagrams
- compute hard scattering

compute decays

compute jet radiation

- partons inside protons
hadron-level QCD

— First-principle simulations, not modeling

HL-LHC: optimal inference with 20 xmore data
. statistical improvement v/20 = 4.5
- rate over phase space to < 0.1%
- SBI starts with simulation — theory
- speed the key [aiso to precision]
- module-wise improvements
— MadNIS & Co




Forward simulations

Generative Al

- learn phase space density
sample Gaussian — phase space
- Variational Autoencoder

— low-dimensional physics

- Generative Adversarial Network
— generator trained by classifier

- Normalizing Flow/Diffusion

— (bijective) mapping NN

- JetGPT, VIiT

— non-local structures

. Equivariant L-GATr [with Jesse and QualComm Al]
— guarantee Lorentz symmetry

— Combine models: Transfermer, TraCFM,...

forward

Neural classifier AUC

[Favaro, Heimel, Hiitsch, Palacios Schweitzer, Spinner, Villadamigo, Winterhalder...]
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Generative Al

Forward simulations  [Favaro, Heimel, Hiitsch, Palacios Schweitzer, Spinner, Villadamigo, Winterhalder...]

- learn phase space density with error bar]
sample Gaussian — phase space

- Variational Autoencoder
- Generative Adversarial Network
- Normalizing Flow/INN/Diffusion
- JetGPT, ViT
- Equivariant L-GATr
— Combine models: Transfermer, TraCFM,...

QUa“ty control [Das, Favaro, Heimel, Krause, TP, Shih]

- classifier easier to train

training vs generated 10t
D(Xi) rain (X[) 100
W(Xj) = ——— = —7F—~ T
(xi) 1 — D(x;) Pgen(Xi) | o
2
- performance from width of distribution S

- w(x;) > 1 missing feature o

w(x;) < 1 missing cut -
— Systematic performance test




Transforming LHC physics

Number of searches

- optimal inference: signal and background simulations
- CPU-limitation for many signals?

Optimal analyses

- theory limiting many analyses, but continuous progress
- allow for analyses to be updated?

Public LHC data

- common lore:
LHC data too complicated for amateurs

- in truth:
hard scattering and decay simulations public
BSM physics not in hadronization and detector

— Unfold to suitable level (eFr7

forward
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ML-Unfolding

Basic structure
- four phase space distributions

unfolding inference
Psim(Xpart)  ————— Punfold(Xpart)
p(xreco | Xpart) J TP(Xpan | Xreco)
forward inference
Psim (Xreco) Pdata(Xreco)

- two conditional probabilities
Psim ( Xpart
p(Xpart‘Xreco) = P(Xreco|xpart) X M
Psim (Xreco)
- forward and inverse generation symmetric [stochastic]
- learnable from paired events (Xpart, Xreco)

— ML for unbinned and high-dimensional unfolding?




ML-Unfolding

Basic structure
- four phase space distributions

unfolding inference
Psim (Xpan) <  Punfold (Xpart)
Pp(xreco | Xpan)J [P(Xpan Ixreco)
forward inference
Psim (Xreco ) Pdata (Xreco )

— ML for unbinned and high-dimensional unfolding?

OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler]
- learn Psim (Xreco) <> pdata(xreco) [Neyman-Pearson lemma, CWoLa]

- reweight Psim(Xpart) — Punfold (Xpart)

classifier weights

Psim (Xpart) Punfold (Xpart)
pull/push weights[
classifier weights
Psim (Xreco) Poata(Xreco)

- Z+jetsin 24D (atLas)
— Driven by (now) established ML-classification




Unfolding by generation

Targeting conditional probability (guter, TR, winterhalder,...]
- just like forward ML-generation
- learn inverse conditional probability from (Xpart, Xreco)

Psim (Xpart) Punfold (Xpart)
paired data ] [ Pmodel (Xpart | Xreco)
correspondence
Psim (Xreco) Pdata (Xreco)

Improvements crucial

1 likelihood loss to generate posterior — cINN
2 make networks more precise — TraCFM

3 remove training prior  (Backes, Butter, Dunford, Malaescu]
— Driven by generative networks




Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first  measure m; in unfolded data
then unfold full kinematics

- model dependence: simulation ms vs data my

Psim (Xpart | Ms) Punfold (Xpart| Ms, My)

p(xreco |Xpart)J Tpmodel (Xpart | Xreco - Ms)

correspondence

Psim (Xreco| Ms) Pdata(Xreco| M)
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

- first measure m; in unfolded data
then unfold full kinematics

- complete training bias my — Ms  [too bad to reweight]

Psim (Xpart | Ms)

Punfold (Xpart| Ms, 774
p(xreco | Xpart)J

[pmodel (Xpart | Xreco »Ms)
correspondence

Psim (Xreco|Ms)  +——————  Pgata(Xreco|Mq)

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise my ~ Mj; € Xreco

Preliminary unfolding results  [macrm;

- 4D for calibrated mass measurement
- 12D published data
— CMS data next

My, (unfolded)

M;, (unfolded)



Generative networks with uncertainties

Bayesian generative networks  [geliagente, Haussmann, Luchmann, TP]

- network weight distributions for density

- sampling phase space
events with error bars on weights

- learned density & uncertainty
reflecting network learning?

— INNs like fitted functions

Normalized
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Generative networks with uncertainties

Bayesian generative networks  [Bellagente, Haussmann, Luchmann, TP]
- network weight distributions for density

- sampling phase space
events with error bars on weights

- learned density & uncertainty
reflecting network learning?

Z + 1 jet exclusive

— INNs like fitted functions

LHC events with uncertainties (Heimel, vent...]

normalized

- classifier weight for improvement  pcTr] T el
- statistical training limitation 10.0
encoded in Bayesian generator £ 10
- systematic training limitation ) (1)1 : Tl
w=1+a (M)z R R e
100 GeV

sampled through conditional generator

— Comprehensive uncertainty control
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pry [GeV]




Understandable calorimeter calibration

Calibration with uncertainties [vogel, Loch, TP...]

- interpretable topo-cluster phase space x

- learned calibration
EEM(X)
BNN _ _
R (x) =R(x) = B (x)

- learned uncertainties AR(X) [Nathan' talk]
Bayesian neural networks
repulsive ensembles

— check error vs data spread using pull
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Understandable calorimeter calibration

Calibration with uncertainties [vogel, Loch, TP...]
- interpretable topo-cluster phase space x
- learned calibration
EEM(X)
BNN _ _
R (x) =R(x) = B (x)

- learned uncertainties AR(X) [Nathan' talk]
Bayesian neural networks
repulsive ensembles

— check error vs data spread using pull
— Understand data using uncertainties
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Understandable calorimeter calibration

Calibration with uncertainties

[Vogel, Loch, TP,...]

- interpretable topo-cluster phase space x

- learned calibration

REW(x) = R(x)

- learned uncertainties AR(X) [Nathan' talk]

Bayesian neural networks
repulsive ensembles

— check error vs data spread using pull
— Understand data using uncertainties
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ML for LHC Theory

Developing ML for the best science

- just another numerical tool for a numerical field
- transformative new common language




ML for LHC Theory

Developing ML for the best science

- just another numerical tool for a numerical field

- transformative new common language

- driven by money from data science and medical research
- 1000 Einsteins...

...improving established tools
...developing new tools for established tasks
...transforming through new ideas

— You are the golden generation!

Modern Machine Learning for LHC Physicists

Tilman Plehn®; Anja Butter"?, Barry Dillon”,
Theo Heimel”, Claudius Krause®, and Ramon Winterhalder?

“ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
" LPNHE. Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
© HEPHY, Austrian Academy of Sciences. Vienna, Austria
“ CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

 bullying its way into For young

range of LHC These Tead students with basic knowledge of y
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
ks and the . and

problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics.  All examples are chosen from
particle physics publications of the last few years.'
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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