Uncertainties in Generative AI

Tilman Plehn

Universität Heidelberg

Japan-Heidelberg Workshop, October 2024

Modern LHC physics

Classic motivation

- · dark matter?
- · matter vs antimatter?
- · origin of Higgs boson?

Modern LHC physics

Classic motivation

- · dark matter?
- · matter vs antimatter?
- origin of Higgs boson?

LHC physics

- · fundamental questions
- huge data set
- · first-principle, precision simulations
- · complete uncertainty control

Successful past

- · measurements of total rates
- · analyses inspired by simulation
- model-driven Higgs discovery

Modern LHC physics

Classic motivation

- dark matter?
- · matter vs antimatter?
- origin of Higgs boson?

LHC physics

- fundamental questions
- huge data set
- · first-principle, precision simulations
- · complete uncertainty control

Successful past

- · measurements of total rates
- $\cdot\,$ analyses inspired by simulation
- model-driven Higgs discovery

First-principle, precision simulations

- · start with Lagrangian
- · calculate scattering using QFT
- simulate collisions
- · simulate detectors
- → LHC collisions in virtual worlds

BSM searches

- $\cdot\,$ compare simulations and data
- · understand LHC data systematically
- · infer underlying theory [SM or BSM]
- · publish useable results
- → Lots of data science...

LHC Theory

Turning data into knowledge

- · QFT
 - start with Lagrangian generate Feynman diagrams
- compute hard scattering compute decays compute jet radiation
- partons inside protons hadron-level QCD
- \rightarrow First-principle simulations, not modeling

HL-LHC: optimal inference with 10×more data

- $\cdot \;$ statistical improvement $\sqrt{10} > 3$
- $\cdot\,$ rate over phase space to <0.1%
- $\cdot \,$ SBI starts with Simulation \leftrightarrow theory
- · speed the key to precision
- \rightarrow MadNIS & Co

Calibration function for ATLAS calorimeter

Regression with uncertainties

- energy measurement for cluster/jet j $\langle E \rangle = \int dE \ E \ p(E)$
- · weighted by reproducing training data $p(\theta|T)$ $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distributions defining Bayesian NN

Regression with uncertainties

Calibration function for ATLAS calorimeter

- energy measurement for cluster/jet j $\langle E \rangle = \int dE \ E \ p(E)$
- · weighted by reproducing training data $p(\theta|T)$ $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distributions defining Bayesian NN

Variational approximation

definition of training [think
$$q(\theta)$$
 as Gaussian with mean and width]
 $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T) \approx \int d\theta \ p(E|\theta) \ q(\theta)$

 $\begin{array}{ll} \cdot \mbox{ similarity through minimal KL-divergence } & \mbox{ [Bayes' theorem to remove unknown posterior]} \\ D_{\mathsf{KL}}[q(\theta), p(\theta|T)] &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)}{p(\theta|T)} \\ &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(T)}{p(T|\theta)p(\theta)} \\ &= D_{\mathsf{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta) + \log p(T) \int d\theta \ q(\theta) \end{array}$

Regression with uncertainties

Calibration function for ATLAS calorimeter

- energy measurement for cluster/jet j $\langle E \rangle = \int dE \ E \ p(E)$
- · weighted by reproducing training data $p(\theta|T)$ $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distributions defining Bayesian NN

Variational approximation

definition of training [think
$$q(\theta)$$
 as Gaussian with mean and width]
 $p(E) = \int d\theta \ p(E|\theta) \ p(\theta|T) \approx \int d\theta \ p(E|\theta) \ q(\theta)$

· similarity through minimal KL-divergence [Bayes' theorem to remove unknown posterior]

$$\begin{split} D_{\mathsf{KL}}[q(\theta), p(\theta|T)] &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)}{p(\theta|T)} \\ &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(T)}{p(T|\theta)p(\theta)} \\ &\approx D_{\mathsf{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta) \equiv \mathcal{L} \end{split}$$

→ Two-term loss: likelihood + prior

Generative AI Tilman Plehn LHC physics BNNs Calibration

Relation to deterministic networks

Regularization

· BNN loss

$$\begin{split} \mathcal{L} &= -\int d\theta \; q(\theta) \; \log p(T|\theta) + D_{\mathsf{KL}}[q(\theta), p(\theta)] \\ &= -\int d\theta \; q(\theta) \; \log p(T|\theta) + \frac{\sigma_q^2 - \sigma_p^2 + (\mu_q - \mu_p)^2}{2\sigma_p^2} + \dots \end{split}$$

 $\cdot \,$ deterministic network

$$q(heta) = \delta(heta - heta_0) \quad \Rightarrow \quad \mathcal{L} \approx -\log p(T| heta_0) + rac{(heta_0 - \mu_p)^2}{2\sigma_p^2}$$

 \rightarrow Likelihood with L2-regularization

Control

Infolding

Relation to deterministic networks

Regularization

· BNN loss

$$\mathcal{L} = -\int d\theta \ q(\theta) \ \log p(T|\theta) + D_{\mathsf{KL}}[q(\theta), p(\theta)]$$
$$= -\int d\theta \ q(\theta) \ \log p(T|\theta) + \frac{\sigma_q^2 - \sigma_\rho^2 + (\mu_q - \mu_\rho)^2}{2\sigma_\rho^2} + \dots$$

 $\cdot \,$ deterministic network

$$q(heta) = \delta(heta - heta_0) \quad \Rightarrow \quad \mathcal{L} pprox - \log p(T| heta_0) + rac{(heta_0 - \mu_p)^2}{2\sigma_p^2}$$

 \rightarrow Likelihood with L2-regularization

Dropout

· Bernoulli weights

$$q(\theta) \rightarrow q(x) = \rho^{x} (1-\rho)^{1-x} \bigg|_{x=0,1}$$
 with $\theta = x \theta_{0}$

 $\rightarrow\,$ Regularized likelihood with dropout

Generative AI Tilman Plehn LHC physics BNNs

Calibration Generative A Events Control

Unfolding

Statistics vs systematics

Network evaluation

· expectation value using trained network $q(\theta)$

$$E\rangle = \int dEd\theta \ E \ p(E|\theta) \ q(\theta)$$
$$\equiv \int d\theta \ q(\theta)\overline{E}(\theta) \quad \text{with} \quad \overline{E}(\theta) = \int dE \ E \ p(E|\theta)$$

· corresponding variance

$$\begin{aligned} \sigma_{\text{tot}}^{2} &= \int dEd\theta \ (E - \langle E \rangle)^{2} \ \rho(E|\theta) \ q(\theta) \\ &= \int d\theta \ q(\theta) \left[\overline{E^{2}}(\theta) - 2\langle E \rangle \overline{E}(\theta) + \langle E \rangle^{2} \right] \\ &= \int d\theta \ q(\theta) \left[\overline{E^{2}}(\theta) - \overline{E}(\theta)^{2} + \left(\overline{E}(\theta) - \langle E \rangle \right)^{2} \right] \equiv \sigma_{\text{syst}}^{2} + \sigma_{\text{stat}}^{2} \end{aligned}$$

Two uncertainties

· statistical — vanishing for perfect training: $q(\theta) \rightarrow \delta(\theta - \theta_0)$

$$\sigma_{\text{stat}}^2 = \int d\theta \ q(\theta) \left[\overline{E}(\theta) - \langle E \rangle \right]^2 = \left[\overline{E}(\theta_0) - \langle E \rangle \right]^2$$

 \cdot systematic — vanishing for perfect data: $p(E| heta)
ightarrow \delta(E-E_0)$

$$\sigma_{\rm syst}^2 = \int d\theta \ q(\theta) \left[\overline{E^2}(\theta) - \overline{E}(\theta)^2\right]$$

Transforming LHC analyses

Calibration with uncertainties [Vogel, Loch, TP,...]

- · interpretable topo-cluster phase space x
- · learned calibration

$$\mathcal{R}^{\mathsf{BNN}}(x) = \mathcal{R}(x) = rac{E^{\mathsf{EM}}(x)}{E^{\mathsf{dep}}(x)}$$

- · learned uncertainties $\Delta \mathcal{R}(x)$ [Nina Elmer's poster] Bayesian neural networks vs repulsive ensembles
- $\rightarrow~{\rm error}~{\rm vs}$ data spread checked by pull

Transforming LHC analyses

Calibration with uncertainties [Vogel, Loch, TP,...]

- · interpretable topo-cluster phase space x
- · learned calibration

$$\mathcal{R}^{\mathsf{BNN}}(x) = \mathcal{R}(x) = rac{E^{\mathsf{EM}}(x)}{E^{\mathsf{dep}}(x)}$$

- learned uncertainties $\Delta \mathcal{R}(x)$ [Nina Elmer's poster] Bayesian neural networks vs repulsive ensembles
- ightarrow error vs data spread checked by pull
- \rightarrow Understand data using uncertainties

Unfolding

Generative AI

Forward simulations

- \cdot learn phase space density sample Gaussian \rightarrow phase space
- \cdot Variational Autoencoder \rightarrow low-dimensional physics
- \cdot Generative Adversarial Network \rightarrow generator trained by classifier
- · Normalizing Flow/Diffusion \rightarrow (bijective) mapping [INN]
- $\cdot\,$ JetGPT, ViT \rightarrow non-local structures
- Equivariant L-GATr
 → guarantee Lorentz symmetry
- → Combinations: equivariant transformer CFM...

Generative Uncertainties

Unsupervised Bayesian networks

- data: event sample [points in 2D space] learn phase space density standard distribution in latent space [Gaussian] sample from latent space
- Bayesian version allow weight distributions learn uncertainty map
- · 2D wedge ramp

$$p(x) = ax + b = ax + \frac{1 - \frac{a}{2}(x_{\max}^2 - x_{\min}^2)}{x_{\max} - x_{\min}}$$
$$(\Delta p)^2 = \left(x - \frac{1}{2}\right)^2 (\Delta a)^2 + \left(1 + \frac{a}{2}\right)^2 (\Delta x_{\max})^2 + \left(1 - \frac{a}{2}\right)^2 (\Delta x_{\min})^2$$

explaining minimum in $\sigma(x)$

 \rightarrow INNs, diffusion just (non-parametric) fits

Generative AI Tilman Plehn LHC physics BNNs Calibration

Conorativo Al

- Events
- Control
- Unfolding

Events with uncertainties

Bayesian network generator

- network with weight distributions [Gal sample weights [defining error bar] frequentist: efficient ensembling
- \Rightarrow Training-related error bars

Events with uncertainties

Bayesian network generator

- network with weight distributions [Gal (2016)] sample weights [defining error bar] frequentist: efficient ensembling
- ⇒ Training-related error bars

Theory uncertainties

- · BNN regression/classification: systematics from data augmentation
- · systematic uncertainties in tails

$$w = 1 + a \left(\frac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}} \right)^2$$

- augment training data $[a = 0 \dots 30]$
- train conditionally on a error bar from sampling a
- ⇒ Systematic/theory error bars

Control

Controlling generative networks

Compare generated with training data [Das, Favaro, Heimel, Krause, TP, Shih]

- $\cdot~$ easy for regression $~~\Delta = (E_{data} E_{\theta})/E_{data}$
- harder for generation, unsupervised density classify training vs generated events learned density ratio

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 \rightarrow Weight ratio over interpretable phase space

Controlling generative networks

Compare generated with training data [Das, Favaro, Heimel, Krause, TP, Shih]

- $\cdot~$ easy for regression $~~\Delta = (\textit{E}_{data} \textit{E}_{\theta})/\textit{E}_{data}$
- harder for generation, unsupervised density classify training vs generated events learned density ratio

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 \rightarrow Weight ratio over interpretable phase space

Progress in NN-generators

- · train to generate events
- · compare different architectures
- $\cdot\,$ performance from width of distribution
- accuracy of learned density over phase spa
- \rightarrow Systematic performance test

Controlling generative networks

Compare generated with training data [Das, Favaro, Heimel, Krause, TP, Shih]

- · easy for regression $\Delta = (E_{data} E_{\theta})/E_{data}$
- harder for generation, unsupervised density classify training vs generated events learned density ratio

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 \rightarrow Weight ratio over interpretable phase space

Weights over event phase space [same for jets, calorimeter showers]

- $w(x_i) \gg 1$ missing feature $w(x_i) \ll 1$ missing cut
- · shifted weights indicating poor resolution

Controlling generative networks

Compare generated with training data [Das, Favaro, Heimel, Krause, TP, Shih]

- · easy for regression $\Delta = (E_{data} E_{\theta})/E_{data}$
- harder for generation, unsupervised density classify training vs generated events learned density ratio

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 \rightarrow Weight ratio over interpretable phase space

Weights over event phase space [same for jets, calorimeter showers]

- $w(x_i) \gg 1$ missing feature $w(x_i) \ll 1$ missing cut
- · small weights indicating missing feature

Events

Unfalalian

Transforming LHC physics

Number of searches

- · SBI: signal and background simulations
- · CPU-limitation for many signals?

Optimal analyses

- $\cdot\,$ theory limiting many analyses, but continuous progress
- · allow for analyses to be updated?

Public LHC data

- common lore: LHC data too complicated for amateurs
- · in truth:

hard scattering and decay simulations public BSM physics not in hadronization and detector

→ Unfold to suitable level [EFT?]

Generative AI Tilman Plehn LHC physics

ML for LHC Theory

Developing ML for the best science

- · just another numerical tool for a numerical field
- · transformative new common language
- $\cdot\,$ driven by money from data science and medical research
- · be 10000 Einsteins,

...improving established tools

- ...developing new tools for established tasks
- ...transforming through new ideas
- → Nobel prize given mature field!

Modern Machine Learning for LHC Physicists

Tilman Plehn^a, Anja Butter^{a,b}, Barry Dillon^a, Theo Heimel^a, Claudius Krause^c, and Ramon Winterhalder^d

^a Institut für Theoretische Physik, Universität Heidelberg, Germany ^b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France ^c HEPHY, Austrian Academy of Sciences. Vienna, Austria ^d CP3, Université catholique de Louvain, Louvain-Ia-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics facts, bublying in way into our manufactor learning is transforming particle physics facts, bublying in way, into our manufactor and the start of the start

:2211.01421v2 [hep-ph] 17 Mar 2024