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Modern LHC physics

Classic motivation
- dark matter?
- matter vs antimatter?
- origin of Higgs boson?
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Modern LHC physics

Classic motivation
- dark matter?
- matter vs antimatter?
- origin of Higgs boson?

LHC physics
- fundamental questions
- huge data set
- first-principle, precision simulations
- complete uncertainty control

Successful past
- measurements of total rates
- analyses inspired by simulation
- model-driven Higgs discovery



Modern LHC physics

Classic motivation First-principle, precision simulations
- dark matter? - start with Lagrangian
- matter vs antimatter? - calculate scattering using QF T
- origin of Higgs boson? . simulate collisions

- simulate detectors

LHC physics — LHC collisions in virtual worlds

- fundamental questions

- huge data set BSM searches

- first-principle, precision simulations - compare simulations and data

- complete uncertainty control - understand LHC data systematically

- infer underlying theory (smorBsw

Successful past - publish useable results

- measurements of total rates — Lots of data science...

- analyses inspired by simulation
- model-driven Higgs discovery

forward

scattering decay Qco shower detectors.
CHEEHETE®




LHC Theory

Turning data into knowledge

- QFT
start with Lagrangian
generate Feynman diagrams
- compute hard scattering
compute decays
compute jet radiation

- partons inside protons
hadron-level QCD

— First-principle simulations, not modeling

HL-LHC: optimal inference with 10 xmore data
- statistical improvement v/10 > 3
- rate over phase space to < 0.1%
- SBI starts with Simulation «+» theory
- speed the key to precision
— MadNIS & Co




Regression with uncertainties

Calibration function for ATLAS calorimeter
- energy measurement for cluster/jet j
(Ey = [ o E p(E)
- weighted by reproducing training data p(0|T)
P(E) = [ 06 p(EI6) p(0]T)

— @-distributions defining Bayesian NN



Regression with uncertainties

Calibration function for ATLAS calorimeter
- energy measurement for cluster/jet j
(Ey = [ o E p(E)
- weighted by reproducing training data p(0|T)
P(E) = [ 06 p(EI6) p(0]T)

— @-distributions defining Bayesian NN

Variational approximation

- definition of training [think g(©) as Gaussian with mean and width]
p(E) = [ a0 p(EI6) pl6]T) ~ [ db p(EIO) (6)

. similarity thl’OUgh minimal KL—divergence [Bayes’ theorem to remove unknown posterior]

Die[q(0), p(OIT)] = / 99 (9) log p?(gwg;)

q(0)p(T)
p(T10)p(0)

— Dlq(6). p(6)] — [ b a(6) 1og p(TI6) + logp(T) [ do a(e)

= / do q(6) log




Regression with uncertainties

Calibration function for ATLAS calorimeter
- energy measurement for cluster/jet j
€)= [ dEEp(E)
- weighted by reproducing training data p(6| T)
p(E) = [ b plEI0) p(0]T)

— 6@-distributions defining Bayesian NN

Variational approximation
- definition of training [think g(©) as Gaussian with mean and width]
p(E) = [ 06 p(EI6) p(oIT) ~ [ 0B p(EIS) q(0)
. similarity thl’OUgh minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

aqmwyMMTn=§/dGQW)bgA$?)
O)p(T)
P(T10)p(0)

~ Dula(6), p(0)] ~ [ 06 q(0) logp(TI6) = £

= / d q(6) log

— Two-term loss: likelihood + prior




Relation to deterministic networks

Regularization

- BNN loss
£ =~ [ do.q(o) 1ogp(TI6) + DL [a(0). P(O)]
2 2 RY:
=~ [ d0.q) 0p(TI0) + %a= %t (o pe)
20p
- deterministic network
(60 — #p)2

q(0) =6(6 —60) = L~ —logp(Tlbo) + —5—
Tp

— Likelihood with L2-regularization




Relation to deterministic networks

Regularization
- BNN loss
£ =~ [ do.q(o) 1ogp(TI6) + DL [a(0). P(O)]

o = op + (g — pp)?®

= —/de q(0) log p(T|0) + —L— - ¥
20p

- deterministic network
(60 — #p)z

q(0) =6(6 —60) = L~ —logp(Tlbo) + —5—
Tp

— Likelihood with L2-regularization

Dropout
- Bernoulli weights

q(0) = q(x) = p*(1 — p)' ™~ with 6 = X0
x=0,1

— Regularized likelihood with dropout




Statistics vs systematics

Network evaluation
- expectation value using trained network g(6)

(Ey = [ dds E p(EI6) a(6)
= /d9 qOE®©®)  with  E(0) = /dE E p(E|0)
- corresponding variance
Tt = /dEd9 (E — (E))? p(E|0) q(0)
— [ o a(e) [E¥(6) - 2(EVE(6) + (E)Y]
= [ @0 q0) [E0) - E@)* + (E0) - ())°] = B+ o
Two uncertainties

- statistical — vanishing for perfect training: q(6) — §(0 — 6p)

o%w = [ @0 a(6) [E(6) - (E)]
- systematic — vanishing for perfect data: p(E|0) — 6(E — Ep)

2

[E0) - (8)]°

ok = [ 06 a(0) [E2(0) ~ E(0)7]




Transforming LHC analyses

Calibration with uncertainties [vogel, Loch, TP...]

- interpretable topo-cluster phase space x

- learned calibration
EEM(X)
BNN _ _
R (x) =R(x) = B (x)

- learned uncertainties AR(X)  [Nina Eimer's poster]
Bayesian neural networks vs repulsive ensembles

— error vs data spread checked by pull
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Transforming LHC analyses

Calibration with uncertainties  (vogel, Loch, TP..]
- interpretable topo-cluster phase space x
- learned calibration
EM(x
- learned uncertainties AR(X)  [Nina Eimer's poster]
Bayesian neural networks vs repulsive ensembles
— error vs data spread checked by pull

— Understand data using uncertainties
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Generative Al

Forward simulations
- learn phase space density
sample Gaussian — phase space
- Variational Autoencoder
— low-dimensional physics
- Generative Adversarial Network
— generator trained by classifier
- Normalizing Flow/Diffusion
— (bijective) mapping (NN
- JetGPT, ViT
— non-local structures
- Equivariant L-GATr
— guarantee Lorentz symmetry

— Combinations: equivariant transformer CFM...

forward

Neural classifier AUC
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Generative Uncertainties

Unsupervised Bayesian networks

- data: event sample [points in 2D space]

learn phase space density
standard distribution in latent space [caussian]
sample from latent space

- Bayesian version
allow weight distributions

B —
learn uncertainty map L] -
0.2 0.4 0.6 0.8
- 2D wedge ramp x
2 2
p(X) —ax+b=ax+ 1- g(xmax — Xmin) 0.071 —— Fit: Aa = 0.09, Az = 0.01
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— INNs, diffusion just (non-parametric) fits




Events with uncertainties

Z + 1 jet exclusive

Bayesian network generator

- network with weight distributions  (cal (2016)] 2104 — True
sample WelghtS [defining error bar] ;210*3
frequentist: efficient ensembling 2
= Training-related error bars “1074 —=
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http://www.cs.ox.ac.uk/people/yarin.gal/website/

Events with uncertainties

Bayesian network generator

- network with weight distributions  [cal 2016)]
Sample Welghts [defining error bar]
frequentist: efficient ensembling

= Training-related error bars

Z + 1 jet exclusive

Theory uncertainties

- BNN regression/classification:
systematics from data augmentation

—— Reweighted

- systematic uncertainties in tails — Train
pT,/'1 — 15 GeV 2 gl(lli: .TTTWV‘T' fo508% H if ,T.%I"T z] i *I i
w=t+a (71 % Gev ) Y \‘\‘ e
a1l
- augment training data [a=o0...30 S TTUETERAp

- train conditionally on a
error bar from sampling a

= Systematic/theory error bars

0 50 100 150
pr (GeV]



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Controlling generative networks

Compare generated with training data  [pas, Favaro, Heimel, Krause, TP, Shih]

- easy for regression A = (Egata — Eo)/Edata

- harder for generation, unsupervised density
classify training vs generated events learned density ratio

D(X/) _ pdaia(xi)
1- D(Xi) pmodeI(Xi)
— Weight ratio over interpretable phase space

w(x) =




Controlling generative networks

Compare generated with training data  [pas, Favaro, Heimel, Krause, TP, Shih]

- easy for regression A = (Egata — Eo)/Edata

- harder for generation, unsupervised density
classify training vs generated events learned density ratio

w(x;) = o)

_ Pdata (Xi )

— Weight ratio over interpretable phase space

Progress in NN-generators
- train to generate events
- compare different architectures
- performance from width of distribution
- accuracy of learned density over phase spe
— Systematic performance test

107!

Normalized

1072
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1 —D(X;)  Pmodel(X;)
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CFM
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Controlling generative networks

Compare generated with training data  [pas, Favaro, Heimel, Krause, TP, Shih]

- easy for regression A = (Egata — Eo)/Edata

- harder for generation, unsupervised density
classify training vs generated events learned density ratio
D(x;) Pdata(Xi)
w(x;) = =
( I) 1— D(Xi) pmodel(xi)
— Weight ratio over interpretable phase space

Weights over event phase space [same for jets, calorimeter showers]

- w(x;) > 1 missing feature
w(x;) < 1 missing cut
- shifted weights indicating poor resolution

70 80 90 100 110
M, [GeV]




Controlling generative networks

Compare generated with training data  [pas, Favaro, Heimel, Krause, TP, Shih]

- easy for regression A = (Egata — Eo)/Edata

- harder for generation, unsupervised density
classify training vs generated events learned density ratio
D(x;) Pdata(Xi)
w(x;) = =
( I) 1— D(Xi) pmodel(xi)
— Weight ratio over interpretable phase space

Weights over event phase space [same for jets, calorimeter showers]

- w(x;) > 1 missing feature
w(xj) < 1 missing cut
- small weights indicating missing feature




Transforming LHC physics

Number of searches
- SBI: signal and background simulations
- CPU-limitation for many signals?

Optimal analyses

- theory limiting many analyses, but continuous progress
- allow for analyses to be updated?

Public LHC data

- common lore:
LHC data too complicated for amateurs

- in truth:
hard scattering and decay simulations public
BSM physics not in hadronization and detector

— Unfold to suitable level (eFr7

forward

scattering decay QCD shower i detectors

=
«

inverse




ML for LHC Theory

Developing ML for the best science

- just another numerical tool for a numerical field

- transformative new common language

- driven by money from data science and medical research
- be 10000 Einsteins,

...improving established tools
...developing new tools for established tasks
...transforming through new ideas

— Nobel prize given — mature field!
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Abstract

 bullying its way into For young

range of LHC These Tead students with basic knowledge of y
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
ks and the . and

problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years.'
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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