Controlled Precision Generators

Tilman Plehn

Universität Heidelberg

Bützmich Workshop, Hamburg, February 2024

LHC theory predictions

First-principle simulations

- start with Lagrangian generate Feynman diagrams
- compute hard scattering amplitudes for on-shell, include decays add QCD jet radiation [ISR/FSR]
- add parton shower [still QCD]
 push fragmentation towards QCD
- · all theory, except for detectors
- → Simulations, not modeling!

LHC theory predictions

First-principle simulations

- start with Lagrangian generate Feynman diagrams
- compute hard scattering amplitudes for on-shell, include decays add QCD jet radiation [ISR/FSR]
- add parton shower [still QCD]
 push fragmentation towards QCD
- · all theory, except for detectors
- → Simulations, not modeling!

Pythia/Madgraph/Sherpa... for HL-LHC

- · factor 25 more expected (= simulated) data
- more complex final states higher-orders precision
- · parameter coverage for signals
- enable analysis reinterpretation? enable global LHC analyses?
- \rightarrow Theory nightmare

Generative-network revolution

Generative networks

- encode density in target space sample from Gaussian into target space
- · reproduce training data, statistically independently

Generative-network revolution

Generative networks

- encode density in target space sample from Gaussian into target space
- · reproduce training data, statistically independently
- \cdot Variational Autoencoder \rightarrow low-dimensional physics, high-dimensional representation
- · Generative Adversarial Network \rightarrow generator playing against discriminator
- Normalizing Flow/INN
 → stable (bijective) mapping
- · Diffusion Model
 - \rightarrow discrete (okay) or continuous (great)
- · Generative Transformer
 - \rightarrow learning correlations successively
- \rightarrow Bayesian NN uncertainty on estimated density

2012 B-INN as starting point

LHC event generation

- · *n*-particle phase space $n \times 4$ d.o.f. [training on events]
- · conceptual playgound for

MadNIS: phase space sampling [similar to Sherpa] inference: unfolding, matrix element method, Bayesian inference efficient event shipping

 $\cdot ~Z_{\mu\mu} + \{1,2,3\}~ ext{jets}~$ [Z-peak, variable jet number, jet-jet topology]

2012 B-INN as starting point

LHC event generation

- · *n*-particle phase space $n \times 4$ d.o.f. [training on events]
- $\cdot\,$ conceptual playgound for

MadNIS: phase space sampling [similar to Sherpa] inference: unfolding, matrix element method, Bayesian inference efficient event shipping

 $\cdot \,\, Z_{\mu\mu} + \{1,2,3\} \,\, jets \,\,$ [Z-peak, variable jet number, jet-jet topology]

INN-generator [2110.13632]

· stable bijective mapping

Controlled precision generator

Best of GAN: discriminator

- · D = 0 (generator) vs D = 1 (training)
- Neyman Pearson-optimal discriminator $D(x) \rightarrow \frac{p_{\text{data}}(x)}{p_{\text{data}}(x)}$
- · learned event weight $w(x) = \frac{D(x)}{1 D(x)} \rightarrow \frac{p_{\text{data}}(x)}{p_{\text{model}}(x)} \rightarrow 1$
- ⇒ Dual purpose: control and reweight

Controlled precision generator

Best of GAN: discriminator

- · D = 0 (generator) vs D = 1 (training)
- Neyman Pearson-optimal discriminator $D(x) \rightarrow \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)} \rightarrow \frac{1}{2}$
- · learned event weight $w(x) = \frac{D(x)}{1 D(x)} \rightarrow \frac{p_{\text{data}}(x)}{p_{\text{model}}(x)} \rightarrow 1$
- \Rightarrow Dual purpose: control and reweight

Joint training [GAN inspiration]

- · GAN-like training unstable [Nash equilibrium??]
- · coupling through weights

$$\mathcal{L} = -\int dx \; rac{p_{ ext{data}}^{lpha+1}(x)}{p_{ ext{model}}^{lpha}(x)} \; \log rac{p_{ ext{model}}(x)}{p_{ ext{data}}(x)}$$

 \Rightarrow Unweighted, controlled events

Precision generator with uncertainties

Bayesian network generator

- network with weight distributions [Gal (2016)] sample weights [defining error bar] working for regression, classification frequentist: efficient ensembling
- \Rightarrow Training-related error bars

Precision generator with uncertainties

Bayesian network generator

- network with weight distributions [Gal (2016)] sample weights [defining error bar] working for regression, classification frequentist: efficient ensembling
- ⇒ Training-related error bars

Theory uncertainties

- · BNN regression/classification: systematics from data augmentation
- · systematic uncertainties in tails

$$w = 1 + a \left(rac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}}
ight)^2$$

- augment training data $[a = 0 \dots 30]$
- train conditionally on a error bar from sampling a
- ⇒ Controlled per-cent precision

Controlling generative networks

Compare generated with training data [2305.16774]

- \cdot easy for regression $~\Delta = (\textit{A}_{data} \textit{A}_{model}) / \textit{A}_{data}$
- $\cdot \,$ unsupervised density \rightarrow supervised density ratio

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

- · classifier more precise and reliable
- \rightarrow Weight ratio over interpretable phase space

Controlling generative networks

Compare generated with training data [2305.16774]

- $\cdot~$ easy for regression $~~\Delta = (\textit{A}_{data} \textit{A}_{model}) / \textit{A}_{data}$
- $\cdot \,$ unsupervised density \rightarrow supervised density ratio

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

- $\cdot\,$ classifier more precise and reliable
- \rightarrow Weight ratio over interpretable phase space

Event generators [same for jets, calorimeter showers]

- · shapes of w-histogram vs phase space
- · shifted weights indicating poor resolution

Controlling generative networks

Compare generated with training data [2305.16774]

- $\cdot~$ easy for regression $~\Delta = (\textit{A}_{data} \textit{A}_{model}) / \textit{A}_{data}$
- $\cdot \,$ unsupervised density \rightarrow supervised density ratio

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

- · classifier more precise and reliable
- \rightarrow Weight ratio over interpretable phase space

Event generators [same for jets, calorimeter showers]

- · shapes of w-histogram vs phase space
- · small weights indicating missing feature

 \rightarrow Generative xAI

Conditional flow matching

Diffusion, better than flows [2305.10475]

· denoising as generative model

$$p(x, t) \rightarrow \begin{cases} p_{\text{data}}(x) & t \rightarrow 0\\ p_{\text{latent}}(x) = \mathcal{N}(x; 0, 1) & t \rightarrow 1 \end{cases}$$

encode density in velocity [continuity equation]

$$\frac{\partial p(x,t)}{\partial t} + \nabla_x \left[p(x,t) v(x,t) \right] = 0$$

generate from velocity [using ODE solvers]

$$\frac{\partial p(x,t)}{\partial t} + \nabla_x \left[p(x,t) v(x,t) \right] = 0 \qquad \Leftrightarrow \qquad \frac{dx(t)}{dt} = v(x(t),t)$$

Diffusion, better than flows [2305.10475]

Conditional flow matching

· denoising as generative model

$$p(x, t) \rightarrow \begin{cases} p_{\text{data}}(x) & t \rightarrow 0\\ p_{\text{latent}}(x) = \mathcal{N}(x; 0, 1) & t \rightarrow 1 \end{cases}$$

· encode density in velocity [continuity equation]

$$\frac{\partial p(x,t)}{\partial t} + \nabla_x \left[p(x,t) v(x,t) \right] = 0$$

generate from velocity [using ODE solvers]

$$\frac{\partial \rho(x,t)}{\partial t} + \nabla_x \left[\rho(x,t) v(x,t) \right] = 0 \qquad \Leftrightarrow \qquad \frac{dx(t)}{dt} = v(x(t),t)$$

· linear interpolation conditional on data distribution

$$x(t|x_0) = (1-t)x_0 + tr \rightarrow \begin{cases} x_0 & t \rightarrow 0\\ r \sim \mathcal{N}(0,1) & t \rightarrow 1 \end{cases}$$

$$p(x, t|x_0) = \mathcal{N}(x; (1 - t)x_0, t)$$

$$\nu(x(t|x_0), t|x_0) = \frac{dx(t|x_0)}{dt} = -x_0 + r$$

· conditional continuity equation

$$\frac{\partial p(x,t|x_0)}{\partial t} + \nabla_x \left[p(x,t|x_0) v(x,t|x_0) \right] = 0$$

 \rightarrow evolution for single path done

Conditional flow matching

Unconditional density and velocity

· probability distribution using prior

$$p(x,t) = \int dx_0 \ p(x,t|x_0) \ p_{\text{data}}(x_0)$$

· velocity from continuity equation

$$v(x,t) = \int dx_0 \ \frac{p(x,t|x_0)v(x,t|x_0)p_{data}(x_0)}{p(x,t)}$$

regression loss for velocity [no likelihood, fudged BNN option]

$$\mathcal{L}_{\mathsf{CFM}} = \left\langle \left[v_{\theta}(x(t|x_0), t) - v(x(t|x_0), t|x_0) \right]^2 \right\rangle_{t, x_0 \sim \rho_{\mathsf{data}}, r}$$

Conditional flow matching

Unconditional density and velocity

· probability distribution using prior

$$p(x,t) = \int dx_0 \ p(x,t|x_0) \ p_{\text{data}}(x_0)$$

· velocity from continuity equation

$$v(x,t) = \int dx_0 \ \frac{p(x,t|x_0)v(x,t|x_0)p_{data}(x_0)}{p(x,t)}$$

· regression loss for velocity [no likelihood, fudged BNN option]

$$\mathcal{L}_{\mathsf{CFM}} = \left\langle \left[v_{\theta}(x(t|x_0), t) - v(x(t|x_0), t|x_0) \right]^2 \right\rangle_{t, x_0 \sim \rho_{\mathsf{data}}, r}$$

B-CFM for LHC events

- · toy models: CFM more expressive
- · events:

Conditional flow matching

Unconditional density and velocity

· probability distribution using prior

$$p(x,t) = \int dx_0 \ p(x,t|x_0) \ p_{\text{data}}(x_0)$$

· velocity from continuity equation

$$v(x,t) = \int dx_0 \ \frac{p(x,t|x_0)v(x,t|x_0)p_{data}(x_0)}{p(x,t)}$$

· regression loss for velocity [no likelihood, fudged BNN option]

$$\mathcal{L}_{\mathsf{CFM}} = \left\langle \left[v_{\theta}(x(t|x_0), t) - v(x(t|x_0), t|x_0) \right]^2 \right\rangle_{t, x_0 \sim \rho_{\mathsf{data}}, r}$$

B-CFM for LHC events

- · toy models: CFM more expressive
- · events:

Conditional flow matching

Unconditional density and velocity

· probability distribution using prior

$$p(x,t) = \int dx_0 \ p(x,t|x_0) \ p_{\text{data}}(x_0)$$

· velocity from continuity equation

$$v(x,t) = \int dx_0 \ \frac{p(x,t|x_0)v(x,t|x_0)p_{data}(x_0)}{p(x,t)}$$

· regression loss for velocity [no likelihood, fudged BNN option]

$$\mathcal{L}_{\mathsf{CFM}} = \left\langle \left[v_{\theta}(x(t|x_0), t) - v(x(t|x_0), t|x_0) \right]^2 \right\rangle_{t, x_0 \sim \rho_{\mathsf{data}}, r}$$

B-CFM for LHC events

- · toy models: CFM more expressive
- · events:
- \rightarrow Sub-percent precision

Direct diffusion

Structural advantage of CFM model [2311.17175]

- sample from one distribution into another avoid learning some features
- · example: off-shell top decays from on-shell top decays

$$x \sim p_{ ext{on}}(x) \quad \longleftrightarrow \quad x \sim p_{ ext{model}}(x) \sim p_{ ext{off}}(x)$$

· standard CFM with boundary conditions

$$p(x, t) \rightarrow \begin{cases} p_{\text{off}}(x) & t \rightarrow 0\\ p_{\text{on}}(x) & t \rightarrow 1 \end{cases}$$

 $\rightarrow~$ Similar to Flows4Flows, much easier

Expressivity

Direct diffusion

Structural advantage of CFM model [2311.17175]

- sample from one distribution into another avoid learning some features
- · example: off-shell top decays from on-shell top decays

 $x \sim p_{ ext{on}}(x) \quad \longleftarrow \quad x \sim p_{ ext{model}}(x) \sim p_{ ext{off}}(x)$

· standard CFM with boundary conditions

$$p(x, t) \rightarrow \begin{cases} p_{\text{off}}(x) & t \rightarrow 0\\ p_{\text{on}}(x) & t \rightarrow 1 \end{cases}$$

 $\rightarrow~$ Similar to Flows4Flows, much easier

Precision benefits

· data-driven optimal transport

Expressivity

Direct diffusion

Structural advantage of CFM model [2311.17175]

- sample from one distribution into another avoid learning some features
- $\cdot\,$ example: off-shell top decays from on-shell top decays

 $x \sim p_{ ext{on}}(x) \quad \longleftarrow \quad x \sim p_{ ext{model}}(x) \sim p_{ ext{off}}(x)$

· standard CFM with boundary conditions

$$p(x, t) \rightarrow \begin{cases} p_{\text{off}}(x) & t \rightarrow 0\\ p_{\text{on}}(x) & t \rightarrow 1 \end{cases}$$

 \rightarrow Similar to Flows4Flows, much easier

Precision benefits

- · data-driven optimal transport
- high-precision features

Direct diffusion

Structural advantage of CFM model [2311.17175]

- sample from one distribution into another avoid learning some features
- · example: off-shell top decays from on-shell top decays

$$x \sim p_{ ext{on}}(x) \quad {\longleftarrow} \quad x \sim p_{ ext{model}}(x) \sim p_{ ext{off}}(x)$$

· standard CFM with boundary conditions

$$p(x, t) \rightarrow \begin{cases} p_{\text{off}}(x) & t \rightarrow 0 \\ p_{\text{on}}(x) & t \rightarrow 1 \end{cases}$$

 \rightarrow Similar to Flows4Flows, much easier

Precision benefits

- · data-driven optimal transport
- high-precision features
- minimal failure modes
- \rightarrow More applications?

JetGPT

Correlations through self-attention [2305.10475]

- think of data as bins in phase-space directions self-attention: encode relation between bins input x, learn relation $x_i \leftrightarrow x_i$
- · latent query representation $q = W^Q x$ latent key representation $k = W^K x$ define correlation as $A_{ij} = q_i \cdot k_j$
- · latent value representation $v = W^V x$ output z = A v

JetGPT

Correlations through self-attention [2305.10475]

- think of data as bins in phase-space directions self-attention: encode relation between bins input *x*, learn relation $x_i \leftrightarrow x_i$
- · latent query representation $q = W^Q x$ latent key representation $k = W^K x$ define correlation as $A_{ij} = q_i \cdot k_j$
- · latent value representation $v = W^V x$ output z = A v

Autoregressive generator

· factorized density

$$p_{\text{model}}(x|\theta) = \prod_i p(x_i|x_1,...,x_{i-1})$$

- $\cdot \ \mbox{bins} \rightarrow \mbox{Gaussian mixture model}$
- · autoregressive $A_{ij} = 0$ for j > i
- \rightarrow Bayesian version for uncertainties

Expressivity

JetGPT

Correlations through self-attention [2305.10475]

- think of data as bins in phase-space directions self-attention: encode relation between bins input x, learn relation $x_i \leftrightarrow x_j$
- latent query representation $q = W^{Q}x$ latent key representation $k = W^{K}x$ define correlation as $A_{ij} = q_i \cdot k_j$
- · latent value representation $v = W^V x$ output z = A v

· sometimes you win...

Expressivity

JetGPT

Correlations through self-attention [2305.10475]

- think of data as bins in phase-space directions self-attention: encode relation between bins input x, learn relation $x_i \leftrightarrow x_j$
- · latent query representation $q = W^Q x$ latent key representation $k = W^K x$ define correlation as $A_{ij} = q_i \cdot k_j$
- · latent value representation $v = W^V x$ output z = A v

Bayesian JetGPT

- · sometimes you win...
 - ... and sometimes there is work to do...

Towards ML-Madgraph/MadNIS

MadNIS [2212.06172,2311.01548]

- · replacing Vegas in Madgraph
- · INN with online-buffered training
- · multi-channel network
- → Gain over Madgraph

Matrix element method [2210.00019,2310.07752]

- · parton-level likelihood per event
- · CFM/transformer for evolution
- · INN for integration
- · efficiency network
- → Method working

Modern Machine Learning for LHC Physicists

Tilman Plehna; Anja Buttera, Barry Dillona, Claudius Krausea, and Ramon Winterhalderd

^a Institut für Theoretische Physik, Universität Heidelberg, Germany ^b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France ^c NHETC, Dept. of Physics and Astronomy, Rutgers University Piscataway, USA ^d CP3, Université Catholique de Louvain, Louvain, La-Neuve, Belgium

July 21, 2023

Abstract

Modern machine learning in transforming particle physics, faster than we can folder, and bullying its way iuso our minerical tool Not. For yours generatories in its could to stop out op of his development, which mean gaphying entityes edge methods, and solids to the full arrange of LHC physics problems. These lexter noises are meant to lead attendent with possible. They are not in a LHC specific noticities and a store start the store attendent of the stop of the store of the classification, suspervised classification, generative networks, and increae problems. Two denses defining neurols of the applications, the noise studied non-store and ensets and and uncertainty-aware networks. A plan of the application, the noise studied non-store attendent of the store of

