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Modern LHC physics

Classic motivation

· dark matter?

· matter vs antimatter?

· origin of Higgs boson?

LHC physics

· fundamental questions

· huge data set

· first-principle, precision simulations

· complete uncertainty control

Successful past

· measurements of total rates

· analyses inspired by simulation

· model-driven Higgs discovery

First-principle, precision simulations

· start with Lagrangian

· calculate scattering using QFT

· simulate collisions

· simulate detectors

→ LHC collisions in virtual worlds

BSM searches

· compare simulations and data

· understand LHC data systematically

· infer underlying theory [SM or BSM]

· publish useable results

→ Lots of data science...

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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Likelihood loss & uncertainties

Loss to train θ-distributions

· energy measurement for jet j
〈E〉 =

∫
dE E p(E)

· weighted by reproduced training data p(θ|T )

p(E) =

∫
dθ p(E|θ) p(θ|T )

→ θ-distributions means Bayesian NN
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Likelihood loss & uncertainties

Loss to train θ-distributions

· energy measurement for jet j
〈E〉 =

∫
dE E p(E)

· weighted by reproduced training data p(θ|T )

p(E) =

∫
dθ p(E|θ) p(θ|T )

→ θ-distributions means Bayesian NN

Variational approximation

· definition of training [think q(θ) as Gaussian with mean and width]

p(E) =

∫
dθ p(E|θ) p(θ|T ) ≈

∫
dθ p(E|θ) q(θ)

· similarity through minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

DKL[q(θ), p(θ|T )] =

∫
dθ q(θ) log

q(θ)

p(θ|T )

=

∫
dθ q(θ) log

q(θ)p(T )

p(T |θ)p(θ)

= DKL[q(θ), p(θ)]−
∫

dθ q(θ) log p(T |θ) + log p(T )

∫
dθ q(θ)
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Likelihood loss & uncertainties

Loss to train θ-distributions

· energy measurement for jet j
〈E〉 =

∫
dE E p(E)

· weighted by reproduced training data p(θ|T )

p(E) =

∫
dθ p(E|θ) p(θ|T )

→ θ-distributions means Bayesian NN

Variational approximation

· definition of training [think q(θ) as Gaussian with mean and width]

p(E) =

∫
dθ p(E|θ) p(θ|T ) ≈

∫
dθ p(E|θ) q(θ)

· similarity through minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

DKL[q(θ), p(θ|T )] =

∫
dθ q(θ) log

q(θ)

p(θ|T )

=

∫
dθ q(θ) log

q(θ)p(T )

p(T |θ)p(θ)

≈ DKL[q(θ), p(θ)]−
∫

dθ q(θ) log p(T |θ) ≡ L

→ Two-term loss: likelihood + prior
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Relation to deterministic networks

Regularization

· BNN loss
L = −

∫
dθ q(θ) log p(T |θ) + DKL[q(θ), p(θ)]
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Relation to deterministic networks

Regularization

· Gaussian prior

L = −
∫

dθ q(θ) log p(T |θ) +
σ2

q − σ
2
p + (µq − µp)2

2σ2
p

+ ...

· deterministic network

q(θ) = δ(θ − θ0) ⇒ L ≈ − log p(T |θ0) +
(θ0 − µp)2

2σ2
p

→ Likelihood with L2-regularization
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Relation to deterministic networks

Regularization

· Gaussian prior

L = −
∫

dθ q(θ) log p(T |θ) +
σ2

q − σ
2
p + (µq − µp)2

2σ2
p

+ ...

· deterministic network

q(θ) = δ(θ − θ0) ⇒ L ≈ − log p(T |θ0) +
(θ0 − µp)2

2σ2
p

→ Likelihood with L2-regularization

Dropout

· Bernoulli weights

q(θ)→ q(x) = ρ
x (1− ρ)1−x

∣∣∣∣∣
x=0,1

with θ = xθ0

· likelihood loss
L = −

∑
x=0,1

[
ρ

x (1− ρ)1−x
]

log p(T |xθ0) ≈ −ρ log p(T |θ0)

· likelihood Gaussian or whatever else...

→ Regularized likelihood with dropout
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Statistics vs systematics

Network evaluation

· expectation value using trained network q(θ)

〈E〉 =

∫
dEdθ E p(E|θ) q(θ)

≡
∫

dθ q(θ)E(θ) with E(θ) =

∫
dE E p(E|θ)

· corresponding variance

σ
2
tot =

∫
dEdθ (E − 〈E〉)2 p(E|θ) q(θ)

=

∫
dθ q(θ)

[
E2(θ)− 2〈E〉E(θ) + 〈E〉2

]
=

∫
dθ q(θ)

[
E2(θ)− E(θ)2 +

(
E(θ)− 〈E〉

)2
]
≡ σ2

syst + σ
2
stat

Two uncertainties
· statistical — vanishing for q(θ)→ δ(θ − θ0)

σ
2
stat =

∫
dθ q(θ)

[
E(θ)− 〈E〉

]2
=
[
E(θ0)− 〈E〉

]2

· systematic — vanishing for p(E |θ)→ δ(E − E0)

σ
2
syst =

∫
dθ q(θ)

[
E2(θ)− E(θ)2

]
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Generative networks

Unsupervised Bayesian networks

· data: event sample [points in 2D space]

learn phase space density
normalizing flow mapping to latent space
standard distribution in latent space [Gaussian]

mapping bijective
sample from latent space

· Bayesian version
allow weight distributions
learn uncertainty map

· 2D wedge ramp

p(x) = ax + b = ax +
1− a

2 (x2
max − x2

min)

xmax − xmin

(∆p)2 =

(
x −

1
2

)2
(∆a)2

+

(
1 +

a
2

)2
(∆xmax)2 +

(
1−

a
2

)2
(∆xmin)2

explaining minimum in σ(x)
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Fit: ∆a = 0.09, ∆xmax = 0.01
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→ INNs, diffusion just (non-parametric) fits
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Events with uncertainties

Bayesian network generator

· network with weight distributions [Gal (2016)]

sample weights [defining error bar]

frequentist: efficient ensembling

⇒ Training-related error bars 10−4

10−3

10−2

n
or

m
al
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Z + 1 jet exclusive

True
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Train
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]

http://www.cs.ox.ac.uk/people/yarin.gal/website/
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Events with uncertainties

Bayesian network generator

· network with weight distributions [Gal (2016)]

sample weights [defining error bar]

frequentist: efficient ensembling

⇒ Training-related error bars

Theory uncertainties

· BNN regression/classification:
systematics from data augmentation

· systematic uncertainties in tails

w = 1 + a

(
pT ,j1 − 15 GeV

100 GeV

)2

· augment training data [a = 0 ... 30]

· train conditionally on a
error bar from sampling a

⇒ Systematic/theory error bars
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Events with uncertainties

Bayesian network generator

· network with weight distributions [Gal (2016)]

sample weights [defining error bar]

frequentist: efficient ensembling

⇒ Training-related error bars

Theory uncertainties

· BNN regression/classification:
systematics from data augmentation

· systematic uncertainties in tails

w = 1 + a

(
pT ,j1 − 15 GeV

100 GeV

)2

· augment training data [a = 0 ... 30]

· train conditionally on a
error bar from sampling a

⇒ Systematic/theory error bars
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Transforming LHC physics

Number of searches

· optimal inference: signal and background simulations

· CPU-limitation for many signals?

Optimal analyses

· theory limiting many analyses, but continuous progress

· allow for analyses to be updated?

Public LHC data

· common lore:
LHC data too complicated for amateurs

· in truth:
hard scattering and decay simulations public
BSM physics not in hadronization and detector

→ Unfold to suitable level [EFT?]

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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ML-Unfolding

Basic structure

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)

y
xp(xpart|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

· two conditional probabilities

p(xpart|xreco) = p(xreco|xpart) ×
psim(xpart)

psim(xreco)

· forward and inverse generation symmetric [stochastic]

· learnable from paired events (xpart, xreco)

→ ML for unbinned and high-dimensional unfolding?
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ML-Unfolding

Basic structure

· four phase space distributions

psim(xpart)
unfolding inference←−−−−−−−−→ punfold(xpart)

p(xreco|xpart)

y
xp(xpart|xreco)

psim(xreco)
forward inference←−−−−−−−−−→ pdata(xreco)

→ ML for unbinned and high-dimensional unfolding?

OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler]

· learn psim(xreco)↔ pdata(xreco) [Neyman-Pearson lemma, CWoLa]

· reweight psim(xpart)→ punfold(xpart)

psim(xpart)
classifier weights−−−−−−−−−−→ punfold(xpart)

pull/push weights

xy
psim(xreco)

classifier weights←−−−−−−−−→ pdata(xreco)

· Z+jets in 24D [ATLAS]

→ Driven by (now) established ML-classification



LHC Physics

Tilman Plehn

LHC physics

BNNs

Generation

Events

Unfolding

Unfolding by generation

Targeting conditional probability [Butter, TP, Winterhalder,...]

· just like forward ML-generation

· learn inverse conditional probability from (xpart, xreco)

psim(xpart) punfold(xpart)

paired data

xy
xpmodel(xpart|xreco)

psim(xreco)
correspondence←−−−−−−−−→ pdata(xreco)

Improvements crucial

1 likelihood loss to generate posterior → cINN

2 make networks more precise → TraCFM

3 remove training prior [Backes, Butter, Dunford, Malaescu]

→ Driven by generative networks
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· model dependence: simulation ms vs data md

psim(xpart|ms) punfold(xpart|ms,md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Preliminary unfolding results [TraCFM]

· 4D for calibrated mass measurement
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Preliminary unfolding results [TraCFM]

· 4D for calibrated mass measurement
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Unfolding top decays

A challenge [Favaro, Kogler, Paasch, Palacios Schweitzer, TP, Schwarz]

· first measure mt in unfolded data
then unfold full kinematics
· complete training bias md → ms [too bad to reweight]

psim(xpart|ms) punfold(xpart|ms,��md )

p(xreco|xpart)

y
xpmodel(xpart|xreco,ms )

psim(xreco|ms)
correspondence←−−−−−−−−→ pdata(xreco|md )

1 weaken bias by training on ms-range

2 strengthen data by including batch-wise md ∼ Mjjj ∈ xreco

Preliminary unfolding results [TraCFM]

· 4D for calibrated mass measurement

· 12D published data

→ CMS data next
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M12 (unfolded)

20

40

60

80

100

120

140

160

M
23

(u
nf

ol
de

d)



LHC Physics

Tilman Plehn

LHC physics

BNNs

Generation

Events

Unfolding

ML for LHC Theory

Developing ML for the best science

· just another numerical tool for a numerical field

· transformative new common language

· driven by money from data science and medical research

· 1000 Einsteins...
...improving established tools
...developing new tools for established tasks
...transforming through new ideas

Modern Machine Learning for LHC Physicists

Tilman Plehna*, Anja Buttera,b, Barry Dillona,
Theo Heimela, Claudius Krausec, and Ramon Winterhalderd

a Institut für Theoretische Physik, Universität Heidelberg, Germany
b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

c HEPHY, Austrian Academy of Sciences. Vienna, Austria
d CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics fast, bullying its way into our numerical tool box. For young
researchers it is crucial to stay on top of this development, which means applying cutting-edge methods and tools to the full
range of LHC physics problems. These lecture notes lead students with basic knowledge of particle physics and significant
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
introduction to neural networks and then cover classification, unsupervised classification, generative networks, and inverse
problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years.1

*plehn@uni-heidelberg.de
1Given that these notes are by definition always outdated, they will be updated frequently, together with the corresponding tutorials.
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ML for LHC Theory

Developing ML for the best science

· just another numerical tool for a numerical field

· transformative new common language

· driven by money from data science and medical research

· 1000 Einsteins...
...improving established tools
...developing new tools for established tasks
...transforming through new ideas

→ You are the golden generation!
Modern Machine Learning for LHC Physicists

Tilman Plehna*, Anja Buttera,b, Barry Dillona,
Theo Heimela, Claudius Krausec, and Ramon Winterhalderd

a Institut für Theoretische Physik, Universität Heidelberg, Germany
b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

c HEPHY, Austrian Academy of Sciences. Vienna, Austria
d CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics fast, bullying its way into our numerical tool box. For young
researchers it is crucial to stay on top of this development, which means applying cutting-edge methods and tools to the full
range of LHC physics problems. These lecture notes lead students with basic knowledge of particle physics and significant
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
introduction to neural networks and then cover classification, unsupervised classification, generative networks, and inverse
problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years.1

*plehn@uni-heidelberg.de
1Given that these notes are by definition always outdated, they will be updated frequently, together with the corresponding tutorials.
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