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Modern LHC physics

Classic motivation

· dark matter?

· baryogenesis?

· origin of Higgs field?

Defining LHC physics

· fundamental motivation

· first-principle simulations

· huge data set

· uncertainty control

Glorious past

· measurements of event counts

· model-driven Higgs discovery

· vast analysis landscape
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Modern LHC physics

Classic motivation

· dark matter?

· baryogenesis?

· origin of Higgs field?

Defining LHC physics

· fundamental motivation

· first-principle simulations

· huge data set

· uncertainty control

Glorious past

· measurements of event counts

· model-driven Higgs discovery

· vast analysis landscape

First-principle simulations

· Lagrangian/Hamiltonian

· quantum field theory calculation

· simulated collisions

· simulated detectors

→ LHC collisions in virtual worlds

Infer underlying theory

· simulations vs data

· symmetries the key

· phase space interpretable

· SM or BSM?

→ ML-case obvious [2203.07460]

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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· ATLAS event size 1.6 MB
data stream 3 PB/s
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· electrons, muons easy
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→ Event: 100+ ntuples (E , ~p,Q...)
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LHC data

Collaborations

· ATLAS & CMS general purpose
LHCb, ALICE, FASER specialized

· 1000s of scientists per experiment

Detectors

· built around pp interaction point

· measuring outgoing particles

· collision rate 40 MHz

Event format

· ATLAS event size 1.6 MB
data stream 3 PB/s

· measure:
energy, momentum, charge, etc

· electrons, muons easy
quarks, gluons as jets [20-50 particles]

→ Event: 100+ ntuples (E , ~p,Q...)

ML applications

· data selection/compression

· object reconstruction

· object classification

· calibration

· analysis preprocessing

→ Everything, faster and better
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Turning data to knowledge
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· Quantum Field Theory
start with Lagrangian [Hamiltonian]

generate Feynman diagrams

· compute hard scattering
compute decays
compute gluon radiation

· partons inside protons
hadron-level QCD

→ Simulations, not modeling



Transforming
Theory

Tilman Plehn

LHC physics

Theory

ML introduction

Examples

Generative AI

Unfolding

Anomalies

LHC Theory

Turning data to knowledge
detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse· Quantum Field Theory
start with Lagrangian [Hamiltonian]

generate Feynman diagrams

· compute hard scattering
compute decays
compute gluon radiation

· partons inside protons
hadron-level QCD

→ Simulations, not modeling

HL-LHC: inference with 20× more data

· SBI starts with Simulation...

· statistical improvement
√

20 = 4.5

· rate over phase space to < 0.1%

· theory to follow

→ precision = QFT * CPU

Scienti�c simulators

9 / 36
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LHC questions

· How to get from 3 PB/s to 300 MB/s?

Data compression [Netflix]
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Ask a data physicist

LHC questions

· How to get from 3 PB/s to 300 MB/s?

Data compression [Netflix]

· How to analyze events as ntuples?

Graph neural networks [Tesla]

· How to incorporate symmetries?

Covariant networks [Qualcomm]

· How to incorporate more symmetries?

Contrastive learning [Google]

· How to combine different detectors?

Super-resolution [Gaming]

· How to learn correlations?

Transformers [OpenAI]
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Ask a data physicist

LHC questions

· How to get from 3 PB/s to 300 MB/s?

Data compression [Netflix]

· How to analyze events as ntuples?

Graph neural networks [Tesla]

· How to incorporate symmetries?

Covariant networks [Qualcomm]

· How to incorporate more symmetries?

Contrastive learning [Google]

· How to combine different detectors?

Super-resolution [Gaming]

· How to learn correlations?

Transformers [OpenAI]

· How to look for new physics?

Autoencoders [SAP]
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Ask a data physicist

LHC questions

· How to get from 3 PB/s to 300 MB/s?

Data compression [Netflix]

· How to analyze events as ntuples?

Graph neural networks [Tesla]

· How to incorporate symmetries?

Covariant networks [Qualcomm]

· How to incorporate more symmetries?

Contrastive learning [Google]

· How to combine different detectors?

Super-resolution [Gaming]

· How to learn correlations?

Transformers [OpenAI]

· How to look for new physics?

Autoencoders [SAP]

→ Uncertainties, Inference, Understanding? [Physics-xAI]
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Shortest ML-intro ever

Fit-like approximation

· approximate fθ(x) ≈ f (x)

· no parametrization, just very many θ

· new representation/latent space θ

Training

· minimize loss to find best θ

· back propagation for gradient

Applications

· regression x → fθ(x)

· classification x → fθ(x) ∈ [0, 1]

· generation r ∼ N → fθ(r)

Architecture

· optimized input and data format

· structures, like symmetries or locality

· mostly, images vs language

→ Transforming numerical science and everything
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Learning by minimizing

Learning energy E(x)

· maximize probability of θ-encoding

p(θ|Etrain) =
p(Etrain|θ) p(θ)

p(Etrain)
≈ p(θ|Etrain) p(θ)

· assume Gaussians and neglect error

L ≡ − log p(θ|Etrain) =
(Eθ − Etrain)2

2σ2
E

+
(θ − θ0)2

2σ2
θ

≈ (Eθ − Etrain)2

→ MSE loss mimimization
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Learning by minimizing

Learning energy E(x)

· maximize probability of θ-encoding

p(θ|Etrain) =
p(Etrain|θ) p(θ)

p(Etrain)
≈ p(θ|Etrain) p(θ)

· assume Gaussians and neglect error

L ≡ − log p(θ|Etrain) =
(Eθ − Etrain)2

2σ2
E

+
(θ − θ0)2

2σ2
θ

≈ (Eθ − Etrain)2

→ MSE loss mimimization

Physics: energy probability [Gal (2016)]

· expectation value from (learnd) probability

〈E〉 =

∫
dE E p(E)

· complete internal representation θ

〈E〉 =

∫
dE E

∫
dθ p(E|θ) p(θ|Etrain)

· maximum probability→ latent probability∫
dθ p(E|θ) p(θ|Etrain) ≈

∫
dθ p(E|θ) q(θ)

http://www.cs.ox.ac.uk/people/yarin.gal/website/
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Learning by minimizing

Physics: energy probability [Gal (2016)]

· expectation value from (learnd) probability

〈E〉 =

∫
dE E p(E)

· complete internal representation θ

〈E〉 =

∫
dE E

∫
dθ p(E|θ) p(θ|Etrain)

· maximum probability→ latent probability∫
dθ p(E|θ) p(θ|Etrain) ≈

∫
dθ p(E|θ) q(θ)

· similar for minimal KL-divergence [optimal transport]

DKL[q(θ), p(θ|Etrain)] ≡
∫

dθ q(θ) log
q(θ)

p(θ|Etrain)

=

∫
dθ q(θ) log

q(θ)p(Etrain)

p(Etrain|θ)p(θ)

= −
∫

dθ q(θ) log p(Etrain|θ) +

∫
dθ q(θ) log

q(θ)

p(θ)
+ · · ·

→ Bayesian NN: sampling θ for uncertainty

L = −
∫

dθ q(θ) log p(Etrain|θ) + DKL[q(θ), p(θ)]

http://www.cs.ox.ac.uk/people/yarin.gal/website/
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ML in experiment

Top tagging [classification, 2016-2019]

· ‘hello world’ of LHC-ML

· end of QCD-taggers

· different NN-architectures

→ Non-NN left in the dust...
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ML in experiment

Top tagging [classification, 2016-2019]

· ‘hello world’ of LHC-ML

· end of QCD-taggers

· different NN-architectures

→ Non-NN left in the dust...

Particle flow [2003.08863]

· mother of jet tools

· combined detector channels

· similar studies in CMS

→ Modern jet-analysis tool



Transforming
Theory

Tilman Plehn

LHC physics

Theory

ML introduction

Examples

Generative AI

Unfolding

Anomalies

ML in phenomenology

Speeding up amplitudes [regression, Sherpa, Madgraph,...]

· loop-amplitudes expensive

· training fit or interpolation

→ Precision NN-amplitudes
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ML in phenomenology

Speeding up amplitudes [regression, Sherpa, Madgraph,...]

· loop-amplitudes expensive

· training fit or interpolation
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NNPDF/N3PDF parton densities [Forte etal, since 2002]

· starting point: pdfs without functional ansatz

· moving on: cutting-edge ML everywhere

→ Leaders in ML-theory
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ML in theory

Optimizing integration paths [invertible networks]

· find optimal integration paths

· learn variable transformation

→ Theory-integrator
SciPost Phys. 12, 129 (2022)
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Figure 1: Feynman diagrams for our four example integrals, which we call pen-
tagon1L, ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines
denote massive lines, green lines denote massive or off-shell external legs (with a
mass different from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in Fig-
ure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production of a
top quark pair in association with another massive particle and depends on four independent
Mandelstam invariants as well as the top quark mass and the invariant mass of p5. Analyti-
cally it depends on logarithms and dilogarithms of ratios of kinematic invariants, leading to a
complicated branch-cut structure. After Feynman parametrization the corresponding integral
is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and one
off-shell leg. This diagram is a topology occurring for example in t t̄V production at two loops,
where the boson V is radiated off an external top quark. It is close to the configuration of a
2-loop gluon ladder diagram where the exchange of gluons between two top quark lines gives
rise to a Coulomb singularity. The analytic expression for this type of diagram is not known,
but it is anticipated that it will contain elliptic functions. This integral depends on 6 Feynman
parameters and is the most complicated example we consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with a massive
sub-triangle occurring, for instance, in NLO corrections to Higgs production in gluon fusion.
It is the easiest 2-loop diagram we consider and serves as a stepping stone towards more
complicated 2-loop diagrams. Analytic results for this diagram can be found in Refs. [49–51].
Depending on 5 Feynman parameters this integral is in between the previous two examples in
terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in gluon
fusion at two loops. Its analytic expression contains elliptic functions and therefore is cut-
ting edge for integrals that are currently accessible analytically. It has been calculated (semi-
)analytically in Refs. [52, 53] and also served as a benchmark for the development of the
program pySECDEC [45], where it is contained in the list of examples. This integral is 5-
dimensional, so it has the same number of Feynman parameters as the triangle diagram, but
it depends on four kinematic invariants rather than two.
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Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the
integration contour into the complex plane. While valid contours are easy to construct,
the numerical precision for a multi-loop integral can depend critically on the chosen
contour. We present methods to optimize this contour using a combination of optimized,
global complex shifts and a normalizing flow. They can lead to a significant gain in
precision.
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tagon1L, ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines
denote massive lines, green lines denote massive or off-shell external legs (with a
mass different from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in Fig-
ure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production of a
top quark pair in association with another massive particle and depends on four independent
Mandelstam invariants as well as the top quark mass and the invariant mass of p5. Analyti-
cally it depends on logarithms and dilogarithms of ratios of kinematic invariants, leading to a
complicated branch-cut structure. After Feynman parametrization the corresponding integral
is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and one
off-shell leg. This diagram is a topology occurring for example in t t̄V production at two loops,
where the boson V is radiated off an external top quark. It is close to the configuration of a
2-loop gluon ladder diagram where the exchange of gluons between two top quark lines gives
rise to a Coulomb singularity. The analytic expression for this type of diagram is not known,
but it is anticipated that it will contain elliptic functions. This integral depends on 6 Feynman
parameters and is the most complicated example we consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with a massive
sub-triangle occurring, for instance, in NLO corrections to Higgs production in gluon fusion.
It is the easiest 2-loop diagram we consider and serves as a stepping stone towards more
complicated 2-loop diagrams. Analytic results for this diagram can be found in Refs. [49–51].
Depending on 5 Feynman parameters this integral is in between the previous two examples in
terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in gluon
fusion at two loops. Its analytic expression contains elliptic functions and therefore is cut-
ting edge for integrals that are currently accessible analytically. It has been calculated (semi-
)analytically in Refs. [52, 53] and also served as a benchmark for the development of the
program pySECDEC [45], where it is contained in the list of examples. This integral is 5-
dimensional, so it has the same number of Feynman parameters as the triangle diagram, but
it depends on four kinematic invariants rather than two.
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Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the
integration contour into the complex plane. While valid contours are easy to construct,
the numerical precision for a multi-loop integral can depend critically on the chosen
contour. We present methods to optimize this contour using a combination of optimized,
global complex shifts and a normalizing flow. They can lead to a significant gain in
precision.
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Navigating string landscape [reinforcement learning]

· searching for viable vacua

· high dimensions, unknown global structure

→ Model space sampling



Transforming
Theory

Tilman Plehn

LHC physics

Theory

ML introduction

Examples

Generative AI

Unfolding

Anomalies

Generative networks for optimal inference

Forward simulations [Butter, Hütsch, Palacios Schweitzer, TP, Spinner]

· learn phase space density
sample Gaussian→ phase space

· Variational Autoencoder
→ low-dimensional physics, high-dimensional objects

· Generative Adversarial Network [Berkeley-Heidelberg]

→ generator trained by classifier

· Normalizing Flow/INN/Diffusion [Rutgers-Heidelberg]

→ bijective mapping

· JetGPT
→ learning all structures

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse
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Generative networks for optimal inference

Forward simulations [Butter, Hütsch, Palacios Schweitzer, TP, Spinner]

· learn phase space density
sample Gaussian→ phase space

· Variational Autoencoder
→ low-dimensional physics, high-dimensional objects

· Generative Adversarial Network [Berkeley-Heidelberg]

→ generator trained by classifier

· Normalizing Flow/INN/Diffusion [Rutgers-Heidelberg]

→ bijective mapping

· JetGPT
→ learning all structures

Use case and fundamental questions

· train on first-principle simulations [training on data: David]

speed up generation/simulaton
efficient way to ship data
bridge simulation-reality gap

· GANplification [Berkeley-Hamburg-Heidelberg]

initial data reproducing training sample
more data from fit/interpolation
too much data reproducing statistical fluctiations?



Transforming
Theory

Tilman Plehn

LHC physics

Theory

ML introduction

Examples

Generative AI

Unfolding

Anomalies

Generative networks with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

· network weight distributions for density

· sampling phase space
events with error bars on weights

· learned density & uncertainty
reflecting network learning?

→ INNs like fitted functions 0.0
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Generative networks with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

· network weight distributions for density

· sampling phase space
events with error bars on weights

· learned density & uncertainty
reflecting network learning?

→ INNs like fitted functions

LHC events with uncertainties [Heimel, Vent...]

· ntuples for two muons and 1-3 jets

· classifier weight [check and reweight]

wD(xi ) =
D(xi )

1− D(xi )
=

pdata(xi )

pmodel(xi )

· systematics in training data

w = 1 + a

(
pT ,j1 − 15 GeV

100 GeV

)2

· sampling a through conditional INN

→ Precision and uncertainty control
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Generative networks with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

· network weight distributions for density

· sampling phase space
events with error bars on weights

· learned density & uncertainty
reflecting network learning?

→ INNs like fitted functions

Quality control [Das, Favaro, Heimel, Krause, TP, Shih]

· classifier easier to train
· training vs generated

w(xi ) =
D(xi )

1− D(xi )
=

ptrain(xi )

pgen(xi )

· w(xi )� 1 too little generated
w(xi )� 1 too much generated

· precision from width of distribution

→ Systematic benchmarking
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Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

· forward: r → events trained on model

· inverse: r → anything trained on model, conditioned on event
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Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

· forward: r → events trained on model

· inverse: r → anything trained on model, conditioned on event

· individual steps known
detector unfolding
unfolding to QCD partons - jet algorithm
unfolding jet radiation - jet combinatorics
unfolding to hard process - top analyses
matrix element method an old dream
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Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

· forward: r → events trained on model

· inverse: r → anything trained on model, conditioned on event

· individual steps known
detector unfolding
unfolding to QCD partons - jet algorithm
unfolding jet radiation - jet combinatorics
unfolding to hard process - top analyses
matrix element method an old dream

1- reweighting [Omnifold]

2- distribution mapping [Schrödinger bridge, Direct Diffusion]

3- generative unfolding [cINN, CFM]

→ Transformative progress for HL-LHC
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Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

· compare to theory without detector

· analyse data with public tools

· example: quark/gluon jets

· measure QCD splittings and αs
search for light dark matter

→ All methods at per-cent level
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Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

· compare to theory without detector

· analyse data with public tools

· example: quark/gluon jets

· measure QCD splittings and αs
search for light dark matter

→ All methods at per-cent level
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Kinematic migration [Hütsch, Villadamigo]

· forward detector simulation as reference

· learned mapping from DiDi
learned mapping from generative unfolding
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Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

· compare to theory without detector

· analyse data with public tools

· example: quark/gluon jets

· measure QCD splittings and αs
search for light dark matter

→ All methods at per-cent level
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Kinematic migration [Hütsch, Villadamigo]

· forward detector simulation as reference

· learned mapping from DiDi
learned mapping from generative unfolding

Unfolding to partons

· event kinematics in SMEFT

· example: t t̄ production

· search for new particles in kinematics

→ All methods at per-cent level
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Anomaly searches

Non-resonant searches
· key: bottleneck [Rutgers-Heideberg]

training on background
minimize reconstruction-MSE
unknown signal from bad MSE

· reconstruct QCD jets → top jets hard to describe

· reconstruct top jets → QCD jets just simple top-like jet

→ Symmetric performance S ↔ B?



Transforming
Theory

Tilman Plehn

LHC physics

Theory

ML introduction

Examples

Generative AI

Unfolding

Anomalies

Anomaly searches

Non-resonant searches
· key: bottleneck [Rutgers-Heideberg]

training on background
minimize reconstruction-MSE
unknown signal from bad MSE

· reconstruct QCD jets → top jets hard to describe

· reconstruct top jets → QCD jets just simple top-like jet

→ Symmetric performance S ↔ B?

Missing and anomalous features

· compact latent space: sphere

· energy-based model
normalized Boltzmann mapping [Eθ =MSE]

pθ(x) =
e−Eθ (x)

Zθ
L = −

〈
log pθ(x)

〉
=
〈
Eθ(x) + log Zθ

〉
· inducing background metric

· Zθ from Markov Chain
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Anomaly searches

Non-resonant searches
· key: bottleneck [Rutgers-Heideberg]

training on background
minimize reconstruction-MSE
unknown signal from bad MSE

· reconstruct QCD jets → top jets hard to describe

· reconstruct top jets → QCD jets just simple top-like jet

→ Symmetric performance S ↔ B?

Missing and anomalous features

· compact latent space: sphere

· energy-based model
normalized Boltzmann mapping [Eθ =MSE]

pθ(x) =
e−Eθ (x)

Zθ
L = −

〈
log pθ(x)

〉
=
〈
Eθ(x) + log Zθ

〉
· inducing background metric

· Zθ from Markov Chain

→ Proper anomaly search, at last [For more, ask David!]
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ML for LHC Theory

ML-applications

· just another numerical tool for a numerical field

· driven by money from data science and medical research

· goals are to...
...improve established tools
...develop new tools for established tasks
...transform through new ideas

· xAI through...
...precision control
...uncertainties
...phase space
...symmetries
...formulas

→ Opportunities!!

Modern Machine Learning for LHC Physicists

Tilman Plehna*, Anja Buttera,b, Barry Dillona,
Theo Heimela, Claudius Krausec, and Ramon Winterhalderd

a Institut für Theoretische Physik, Universität Heidelberg, Germany
b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

c HEPHY, Austrian Academy of Sciences. Vienna, Austria
d CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics fast, bullying its way into our numerical tool box. For young
researchers it is crucial to stay on top of this development, which means applying cutting-edge methods and tools to the full
range of LHC physics problems. These lecture notes lead students with basic knowledge of particle physics and significant
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
introduction to neural networks and then cover classification, unsupervised classification, generative networks, and inverse
problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years.1

*plehn@uni-heidelberg.de
1Given that these notes are by definition always outdated, they will be updated frequently, together with the corresponding tutorials.
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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