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- fundamental motivation
- first-principle simulations
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- uncertainty control

Glorious past
- measurements of event counts
- model-driven Higgs discovery
- vast analysis landscape
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Modern LHC physics

Classic motivation First-principle simulations
- dark matter? - Lagrangian/Hamiltonian
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Modern LHC physics

Classic motivation First-principle simulations
- dark matter? - Lagrangian/Hamiltonian
- baryogenesis? - quantum field theory calculation
- origin of Higgs field? - simulated collisions

- simulated detectors

Defining LHC physics — LHC collisions in virtual worlds

- fundamental motivation

- first-principle simulations Infer underlying theory
- huge data set - simulations vs data
- uncertainty control - symmetries the key
- phase space interpretable
Glorious past . SM or BSM?
- measurements of event counts — ML-case obvious [2203.07460]

- model-driven Higgs discovery
- vast analysis landscape

forward

scattering decay QCD shower detectors
CEEEEED®




LHC data

Collaborations

- ATLAS & CMS general purpose
LHCb, ALICE, FASER specialized

- 1000s of scientists per experiment

Detectors
- built around pp interaction point
- measuring outgoing particles
- collision rate 40 MHz

Muon detector

Solenoid End-cap toroid



LHC data

Collaborations Event format
- ATLAS & CMS general purpose - ATLAS event size 1.6 MB
LHCb, ALICE, FASER specialized data stream 3 PB/s
- 1000s of scientists per experiment - measure:

energy, momentum, charge, etc

Detectors - electrons, muons easy
quarks, gluons as jets  [20-50 particles]

- built around pp interaction point "
— Event: 100+ ntuples (E, p, Q...)

- measuring outgoing particles
- collision rate 40 MHz

Muon detector

$ATLAS

EXPERIMENT




LHC data

Collaborations Event format
- ATLAS & CMS general purpose - ATLAS event size 1.6 MB
LHCb, ALICE, FASER specialized data stream 3 PB/s
- 1000s of scientists per experiment - measure:
energy, momentum, charge, etc
Detectors - electrons, muons easy
. built around pp interaction point quarks, gluons as jets  [20-50 particles]

- measuring outgoing particles — Event: 100+ ntuples (E, p, Q...)

- collision rate 40 MHz o
ML applications

Muon detector

- data selection/compression
- object reconstruction
- object classification
- calibration
- analysis preprocessing
— Everything, faster and better




LHC Theory

Turning data to knowledge @

- Quantum Field Theory
start with Lagrangian  Hamitonian]
generate Feynman diagrams

- compute hard scattering
compute decays
compute gluon radiation

- partons inside protons
hadron-level QCD

— Simulations, not modeling




LHC Theory

Turning data to knowledge

- Quantum Field Theory
start with Lagrangian  Hamitonian]
generate Feynman diagrams

- compute hard scattering
compute decays
compute gluon radiation

- partons inside protons
hadron-level QCD

— Simulations, not modeling

HL-LHC: inference with 20x more data
- SBI starts with Simulation...
- statistical improvement v/20 = 4.5
- rate over phase space to < 0.1%
- theory to follow
— precision = QFT * CPU

.

Evolution of the Universe.
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Ask a data physicist

LHC questions

- How to get from 3 PB/s to 300 MB/s?
Data compression  Netfiix]
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Ask a data physicist

LHC questions

- How to get from 3 PB/s to 300 MB/s?
Data compression  Netfiix]

- How to analyze events as ntuples?
Graph neural networks [esia)

- How to incorporate symmetries?
Covariant networks  [qualcomm

- How to incorporate more symmetries?
Contrastive learning  [Google]

- How to combine different detectors?
Super-resolution  (Gaming]

- How to learn correlations?
Transformers  [openal]

- How to look for new physics?
Autoencoders  (sap|

— Uncertainties, Inference, Understanding?  (physics-xAl




Shortest ML-intro ever

Fit-like approximation
- approximate fy(x) =~ f(x)
- no parametrization, just very many 0
- new representation/latent space 0

Training
- minimize loss to find best 6
- back propagation for gradient

Applications
- regression X — fo(x)
- classification  x — fp(x) € [0,1]
- generation r~N = fy(r)

Architecture
- optimized input and data format
- structures, like symmetries or locality
- mostly, images vs language
— Transforming numerical science and everything




Learning by minimizing

Learning energy E(x)

- maximize probability of #-encoding
p(Etrain ‘9) p(6’)
0| Eyain) = ——— 22277
P( l 1ra|n) p(Etrain)
- assume Gaussians and neglect error
(Eo = Evan)® (0 = 00)°

2 2
20% 205

~ (0] Eirain) p(6)

~ (Eg - Etrain)2

= — log p(0| Eyrain) =

— MSE loss mimimization
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Learning energy E(x)

- maximize probability of #-encoding
p(Etrain ‘9) p(e)
0| Eyain) = ——— 22277
p( I "am) p(Etrain)
- assume Gaussians and neglect error
(Eo = Evan)® (0 = 00)°
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~ (0] Eirain) p(6)

~ (EG - Etrain)2

= — log p(6| Eyrain) =

— MSE loss mimimization

Physics: energy probability [cal (2016))
- expectation value from (learnd) probability

(E) = [ dE E p(E)
- complete internal representation 6
(€)= [ dE E [ do p(EI0) p(6]Euar)
- maximum probability — latent probability

[ 96 pLEI6) pl61Ewn) ~ [ b p(EI6) a(0)



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Learning by minimizing
Physics: energy probability [cal (2016)]
- expectation value from (learnd) probability
= / dE E p(E)
- complete internal representation 6
(E) = [ aE E [ do p(EI0) p(6IErai)
- maximum probability — latent probability
[ 90 p(E1D) p(01Evan) ~ [ o pLEIO) q(0)
- similar for minimal KL-divergence (optimal transport]

Dk.[g(0), p(0|Eyain)] = / do q(6) |og%

)p(Elram)
= [ a0 o) s G TR
q(9)

7/d0 q(9) Iogp(Erain|9)+/d0 q(6) log —— O
— Bayesian NN: sampling 6 for uncertainty

2= [ 40 a(0) 10g p(Eanl6) + Daala(®). 0]



http://www.cs.ox.ac.uk/people/yarin.gal/website/

ML in experiment

Top tagging [classification, 2016-2019]
- ‘hello world’ of LHC-ML =
- end of QCD-taggers
- different NN-architecturesE‘
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ML in experiment

TOp taggi NQg [classification, 2016-2019]

- ‘hello world’ of LHC-ML =
- end of QCD-taggers T
- different NN-architecturesE’

0 01 0z 03

Particle flow [2003.08863]
mother of jet tools
- combined detector channels
- similar studies in CMS
— Modern jet-analysis tool

Towards a Computer Vision Particle Flow *

Sanmay Gangoly?, Eilam Gros!, Marumi Kado'!,
jonathan Shiomi!
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ML in phenomenology

Speeding up amplitudes  [regression, Sherpa, Madgraph,..]
- loop-amplitudes expensive
- training fit or interpolation Optimising simulatons for diphoton production st
— Precision NN-amplitudes m——

o At Bk Simn B Ry Mo

1200 gg-yye )

process-boosted
1901 PR eaiing

normalized
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ML in phenomenology

Speeding up amplitudes [regression, Sherpa, Madgraph,...]

- loop-amplitudes expensive

- training fit or interpolation Optimisig smalations for diphoton production at

hadron colliders using amplitude neural networks

— Precision NN-amplitudes

120 ggayye

100] process boosted
BNN training

oot 00z 000 00z 004
AT+ ovorlow bin

NNPDF/N3PDF parton densities [Forte etal, since 2002]

- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
— Leaders in ML-theory AL - I

A data-based parametrization of parton distribution functions




ML in theory

Optimizing integration paths [invertible networks]
- find optimal integration paths

- learn variable transformatior

— Theory-integrator !

N o ﬂﬂ

vt 12,120

‘Targeting multi-loop integrals with neural networks

Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the

ical precision 1

loop inegral can depend critcally on the chosen

rmalizing flow: They can lead o a signficant gan in



ML in theory

Optimizing integration paths [invertible networks]
- find optimal integration paths — e

- learn variable transformatior ‘
— Theory-integrator ‘

N o ﬂﬂ
Zp 1 Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the

loop inegral can depend critcally on the chosen

ical precision 1

iring flow They can lead to 3 signiicant gain in

Navigating string landscape  [reinforcement learning]

- searching for viable vacua
high dimensions, unknown global structure

— Model space sampling

Probing the Structure of String Theory Vacua with
Genetic Algorithms and Reinforcement Learning
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Generative networks for optimal inference

Forward simulations [Butter, Hiitsch, Palacios Schweitzer, TP, Spinner]

- learn phase space density
sample Gaussian — phase space

- Variational Autoencoder
— low-dimensional physics, high-dimensional objects

- Generative Adversarial Network (erkeley-Heidelberg]
— generator trained by classifier

. Normalizing Flow/INN/Diffusion [Rutgers-Heidelberg]
— bijective mapping

- JetGPT
— learning all structures

forward

scattering decay QCD shower

P [T [T | g [ [0&

detectors

&

Y



Generative networks for optimal inference

Forward simulations [sutter, Hiitsch, Palacios Schweitzer, TP, Spinner]
- learn phase space density
sample Gaussian — phase space
- Variational Autoencoder
— low-dimensional physics, high-dimensional objects
- Generative Adversarial Network (erkeley-Heidelberg]
— generator trained by classifier
. Normalizing Flow/INN/Diffusion [Rutgers-Heidelberg]
— bijective mapping
- JetGPT
— learning all structures

Use case and fundamental questions

- train on first-principle simulations faining on data: David
speed up generation/simulaton
efficient way to ship data
bridge simulation-reality gap
- GANplification (Berkeley-Hamburg-Heidelberg]
initial data reproducing training sample

more data from fit/interpolation
too much data reproducing statistical fluctiations?




Generative networks with uncertainties

Bayesian generative networks  [geliagente, Haussmann, Luchmann, TP]

- network weight distributions for density

- sampling phase space
events with error bars on weights

- learned density & uncertainty
reflecting network learning?

— INNs like fitted functions

Absolute Uncertainty

Normalized
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0.06

0.04

0.02

0.2
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—— Fit: Azg = 0.04, Ay = 0.01
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Generative networks with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]
- network weight distributions for density

- sampling phase space
events with error bars on weights

- learned density & uncertainty
reflecting network learning?

— INNs like fitted functions

Z + 1 jet exclusive

LHC events with uncertainties [Heimel, vent..]

—— Reweighted

- ntuples for two muons and 1-3 jets —— Train
- classifier Weight [check and reweight] _10'0 .TTI‘ . - ,"I:— ;'[ 3 fI.I
. . §1_0 799t 'L 27 ST8TILII TP L]
won) = ol - Panti) = A T T

1- D(Xi) B pmodel(xf)
- systematics in training data

. —15 GeV ) 2
w=1+a (7137,,1 )

100 GeV

- sampling a through conditional INN
— Precision and uncertainty control




Generative networks with uncertainties

BayeSian generative networks  [Bellagente, Haussmann, Luchmann, TP]
- network weight distributions for density

- sampling phase space
events with error bars on weights

- learned density & uncertainty
reflecting network learning?

— INNs like fitted functions

Quality control [Das, Favaro, Heimel, Krause, TP, Shih]

- classifier easier to train
- training vs generated

B D(x;) - rain (Xi)
W) = by ~ Paen(Xi)

10-°

Z+2j
Truth
Gen
00nn H
1072 100 107

w(z)

- w(x;) > 1 too little generated
w(x;) < 1 too much generated

- precision from width of distribution
— Systematic benchmarking

80 90 100
My, [GeV)

1




Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event

forward

scattering decay QCp shower detectors

[T | sy |2 | 0| T
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Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known

detector unfolding

unfolding to QCD partons - jet algorithm
unfolding jet radiation - jet combinatorics
unfolding to hard process - top analyses
matrix element method an old dream

forward

scattering decay QCp shower detectors

inverse

=
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Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]
- forward: r — events trained on model
- inverse: r — anything trained on model, conditioned on event
- individual steps known

detector unfolding

unfolding to QCD partons - jet algorithm
unfolding jet radiation - jet combinatorics
unfolding to hard process - top analyses
matrix element method an old dream

1- reweighting  [omniola]

N
h

distribution mapplng [Schrédinger bridge, Direct Diffusion]
generative unfolding  [cInN, cFv)
— Transformative progress for HL-LHC

w
T

forward N

scattering decay QCp shower detectors

inverse
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Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

- compare to theory without detector

— Reco
. i y — Hard
- analyse data with public tools P — CINN/CFM
- example: quark/gluon jets E — DiDi/sB
4

- measure QCD splittings and as
search for light dark matter

— All methods at per-cent level

20 40 60
Jet mass m [GeV]




Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

- compare to theory without detector

— Reco
. i — Hard
- analyse data with public tools — CINN/CFM
- example: quark/gluon jets — DiDi/sB

- measure QCD splittings and as
search for light dark matter

— All methods at per-cent level

20 40 60
Jet mass m [GeV]

Kinematic migration  (Hitsch, villadamigo]

- forward detector simulation as reference
- learned mapping from DiDi
learned mapping from generative unfolding

Jet mass m [GeV] Jet mass m [GeV]

Jet mass m [GeV)

60 4 60 60



Unfolding

Detector unfolding  [Heidelberg-Berkeley-Irvine]
- compare to theory without detector
- analyse data with public tools
- example: quark/gluon jets

- measure QCD splittings and as
search for light dark matter

— All methods at per-cent level

Kinematic migration  [Hatscn, villadamigo]

- forward detector simulation as reference

- learned mapping from DiDi
learned mapping from generative unfolding

Unfolding to partons
- event kinematics in SMEFT
- example: {f production
- search for new particles in kinematics
— All methods at per-cent level

Normalized

0.006

£ 0.004

normalized

0.002

0.000
1.2

— Reco
— Hard
¢INN/CFM
DiDi/SB

%0 )
Jet mass m [GeV]

Hard

INN

CFM
Tra-CFM
Transfermer

: el

200 400 600 800
Ew,



Anomaly searches

1@40x40  10@40x40  10@20x20 5@20x20 400100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Non-resonant searches

. key: bottleneck [Rutgers-Heideberg]
training on background
minimize reconstruction-MSE
unknown signal from bad MSE

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like jet
— Symmetric performance S + B?
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Non-resonant searches

. key: bottleneck [Rutgers-Heideberg]
training on background
minimize reconstruction-MSE
unknown signal from bad MSE

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QCD jets just simple top-like iet
— Symmetric performance S <+ B?

top S 3.60
QO 38

Missing and anomalous features
- compact latent space: sphere
- energy-based model
normalized Boltzmann mapping (£, =msE]
e Eo0)
T Z
L = —(logpg(x)) = (Eq(x) + log Zp)
- inducing background metric
- Zy from Markov Chain

Po(x) =
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Non-resonant searches

. key: bottleneck [Rutgers-Heideberg]
training on background
minimize reconstruction-MSE
unknown signal from bad MSE

- reconstruct QCD jets — top jets hard to describe
- reconstruct top jets — QGCD jets just simple top-like jet
— Symmetric performance S «» B? —

Missing and anomalous features

- compact latent space: sphere

- energy-based model "
normalized Boltzmann mapping (£, =msE] 05
—Eg(x) 00 —
e o 0
Po(x) = — . -
0
QCD tagging
L = —(logpe(x)) = (Eo(x) +log Zo)

- inducing background metric
- Zy from Markov Chain

o Qcp

— Proper anomaly search, at last  (For more, ask Davidi]

107
MSE



ML for LHC Theory

ML-applications

- just another numerical tool for a numerical field
- driven by money from data science and medical research

- goals are to...
...improve established tools

...develop new tools for established tasks
...transform through new ideas

- XAl through...

...precision control
...uncertainties
...phase space
...symmetries
...formulas

— Opportunities!!

2211.01421v2 [hep-ph] 17 Mar 2024

Modern Machine Learning for LHC Physicists

‘Tilman Plehn®; Anja Butter*", Barry Dillon®,
Theo Heimel, Claudius Krause®, and Ramon Winterhalder

 Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
¥ LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
“ HEPHY, Austrian Academy of Sciences. Vienna, Austria
 CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

March 19, 2024

Abstract

& ts way into our numerical tool box. For young

range of LHC These of d significant
enthusiasm for machine Iearning to relevant applications. They start with an LHC-specific motivation and a non-standard

problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-asvare networks,
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years."


http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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