Transforming Theory Tilman Plehn LHC physics Theory ML introduction Examples Generative AI

Tilman Plehn

Universität Heidelberg

Rutgers, March 2024

LHC physics

- Theory ML introduct Examples Generative / Unfolding
- Anomalies

Modern LHC physics

Classic motivation

- · dark matter?
- \cdot baryogenesis?
- · origin of Higgs field?

LHC physics

- Theory ML introduct Examples Generative /
- Unfolding
- Anomalies

Modern LHC physics

Classic motivation

- · dark matter?
- · baryogenesis?
- · origin of Higgs field?

Defining LHC physics

- · fundamental motivation
- · first-principle simulations
- huge data set
- · uncertainty control

LHC physics

- Theory ML introduct Examples Generative / Unfolding
- Unfolding
- Anomalies

Modern LHC physics

Classic motivation

- · dark matter?
- baryogenesis?
- · origin of Higgs field?

Defining LHC physics

- · fundamental motivation
- · first-principle simulations
- huge data set
- · uncertainty control

Glorious past

- · measurements of event counts
- model-driven Higgs discovery
- · vast analysis landscape

LHC physics

- Theory ML introduct Examples Generative A Unfolding
- Unfolding
- Anomalies

Modern LHC physics

Classic motivation

- dark matter?
- · baryogenesis?
- origin of Higgs field?

Defining LHC physics

- · fundamental motivation
- · first-principle simulations
- huge data set
- · uncertainty control

Glorious past

- · measurements of event counts
- · model-driven Higgs discovery
- · vast analysis landscape

First-principle simulations

- · Lagrangian/Hamiltonian
- · quantum field theory calculation
- simulated collisions
- simulated detectors
- \rightarrow LHC collisions in virtual worlds

LHC physics

- Theory ML introduct Examples Generative A Unfolding
- ornolung

Defining LHC physics

- · fundamental motivation
- · first-principle simulations
- huge data set
- · uncertainty control

Modern LHC physics

Classic motivation

dark matter?

· baryogenesis?

origin of Higgs field?

Glorious past

- · measurements of event counts
- model-driven Higgs discovery
- vast analysis landscape

First-principle simulations

- · Lagrangian/Hamiltonian
- · quantum field theory calculation
- simulated collisions
- simulated detectors
- \rightarrow LHC collisions in virtual worlds

Infer underlying theory

- · simulations vs data
- · symmetries the key
- · phase space interpretable
- · SM or BSM?
- \rightarrow ML-case obvious [2203.07460]

LHC physics

- Theory ML introduc Examples Generative Unfolding
- Anomalias

LHC data

Collaborations

- · ATLAS & CMS general purpose LHCb, ALICE, FASER specialized
- · 1000s of scientists per experiment

Detectors

- · built around pp interaction point
- measuring outgoing particles
- · collision rate 40 MHz

LHC physics

- Theory ML introduc Examples Generative
- Annalian

LHC data

Collaborations

- · ATLAS & CMS general purpose LHCb, ALICE, FASER specialized
- · 1000s of scientists per experiment

Detectors

- · built around pp interaction point
- measuring outgoing particles
- · collision rate 40 MHz

Event format

- ATLAS event size 1.6 MB data stream 3 PB/s
- measure: energy, momentum, charge, etc
- electrons, muons easy quarks, gluons as jets [20-50 particles]
- \rightarrow Event: 100+ ntuples (*E*, \vec{p} , *Q*...)

LHC physics

- Theory ML introduc Examples Generative
- -Anomalias

LHC data

Collaborations

- ATLAS & CMS general purpose LHCb, ALICE, FASER specialized
- · 1000s of scientists per experiment

Detectors

- · built around pp interaction point
- measuring outgoing particles
- · collision rate 40 MHz

Event format

- ATLAS event size 1.6 MB data stream 3 PB/s
- measure: energy, momentum, charge, etc
- electrons, muons easy quarks, gluons as jets [20-50 particles]
- \rightarrow Event: 100+ ntuples (*E*, \vec{p} , *Q*...)

ML applications

- · data selection/compression
- object reconstruction
- object classification
- calibration
- · analysis preprocessing
- \rightarrow Everything, faster and better

LHC physics

Theory

- ML introduction
- Examples
- Generative A
- Unfolding
- Anomalies

LHC Theory

Turning data to knowledge

- Quantum Field Theory start with Lagrangian [Hamiltonian] generate Feynman diagrams
- compute hard scattering compute decays compute gluon radiation
- partons inside protons hadron-level QCD
- $\rightarrow\,$ Simulations, not modeling

LHC physics

Theory

- ML introduction
- Examples
- Generative A
- Unfolding
- Anomalies

LHC Theory

Turning data to knowledge

- Quantum Field Theory start with Lagrangian [Hamiltonian] generate Feynman diagrams
- compute hard scattering compute decays compute gluon radiation
- partons inside protons hadron-level QCD
- \rightarrow Simulations, not modeling

HL-LHC: inference with 20 \times more data

- · SBI starts with Simulation...
- $\cdot\,$ statistical improvement $\sqrt{20}=4.5$
- $\cdot~$ rate over phase space to <0.1%
- · theory to follow
- \rightarrow precision = QFT * CPU

LHC physics

Theory

- ML introduction
- Example
- Generative Al
- Unfolding
- Anomalies

Ask a data physicist

- · How to get from 3 PB/s to 300 MB/s?
 - Data compression [Netflix]

- LHC physics
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Ask a data physicist

- How to get from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events as ntuples? Graph neural networks [Tesla]

- LHC physics
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Ask a data physicist

- How to get from 3 PB/s to 300 MB/s?
 Data compression [Netflix]
- How to analyze events as ntuples? Graph neural networks [Tesla]
- How to incorporate symmetries?
 - Covariant networks [Qualcomm]

LHC physics

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Ask a data physicist

- How to get from 3 PB/s to 300 MB/s?
 Data compression [Nettlix]
- How to analyze events as ntuples?
 Graph neural networks [Tesla]
- How to incorporate symmetries?
 Covariant networks [Qualcomm]
- How to incorporate more symmetries?
 Contrastive learning [Google]

LHC physics

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Ask a data physicist

- How to get from 3 PB/s to 300 MB/s?
 Data compression [Nettlix]
- How to analyze events as ntuples?
 Graph neural networks [Tesla]
- How to incorporate symmetries?
 Covariant networks [Qualcomm]
- How to incorporate more symmetries?
 Contrastive learning [Google]
- How to combine different detectors?
 Super-resolution [Gaming]

LHC physics

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Ask a data physicist

- How to get from 3 PB/s to 300 MB/s?
 Data compression [Nettlix]
- How to analyze events as ntuples?
 Graph neural networks [Tesla]
- How to incorporate symmetries?
 Covariant networks [Qualcomm]
- How to incorporate more symmetries?
 Contrastive learning [Google]
- How to combine different detectors?
 Super-resolution [Gaming]
- How to learn correlations?
 Transformers [OpenAl]

- LHC physics
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Ask a data physicist

- How to get from 3 PB/s to 300 MB/s?
 Data compression [Nettlix]
- How to analyze events as ntuples? Graph neural networks [Tesla]
- How to incorporate symmetries?
 Covariant networks [Qualcomm]
- How to incorporate more symmetries?
 Contrastive learning [Google]
- How to combine different detectors?
 Super-resolution [Gaming]
- How to learn correlations?
 Transformers [OpenAl]
- How to look for new physics?
 Autoencoders [SAP]

- LHC physics
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Ask a data physicist

- How to get from 3 PB/s to 300 MB/s?
 Data compression [Nettlix]
- How to analyze events as ntuples?
 Graph neural networks [Tesla]
- How to incorporate symmetries?
 Covariant networks [Qualcomm]
- How to incorporate more symmetries?
 Contrastive learning [Google]
- How to combine different detectors?
 Super-resolution [Gaming]
- How to learn correlations?
 Transformers [OpenAl]
- How to look for new physics?
 Autoencoders [SAP]
- → Uncertainties, Inference, Understanding? [Physics-xAI]

- Theory
- ML introduction
- Examples
- Generative Al
- Unfolding
- Anomalies

Shortest ML-intro ever

Fit-like approximation

- · approximate $f_{\theta}(x) \approx f(x)$
- $\cdot \,$ no parametrization, just very many θ
- · new representation/latent space θ

Training

- $\cdot \,$ minimize loss to find best θ
- · back propagation for gradient

Applications

- \cdot regression $x o f_{ heta}(x)$
- · classification $x \to f_{\theta}(x) \in [0, 1]$
- \cdot generation $r \sim \mathcal{N}
 ightarrow f_{ heta}(r)$

Architecture

- · optimized input and data format
- · structures, like symmetries or locality
- mostly, images vs language
- \rightarrow Transforming numerical science and everything

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Learning by minimizing

Learning energy E(x)

 \cdot maximize probability of θ -encoding

$$p(heta|E_{ ext{train}}) = rac{p(E_{ ext{train}}| heta) \ p(heta)}{p(E_{ ext{train}})} pprox p(heta|E_{ ext{train}}) \ p(heta)$$

· assume Gaussians and neglect error

$$\mathcal{L} \equiv -\log p(heta|\mathcal{E}_{ ext{train}}) = rac{(\mathcal{E}_ heta - \mathcal{E}_{ ext{train}})^2}{2\sigma_E^2} + rac{(heta - heta_0)^2}{2\sigma_ heta^2} pprox \left(\mathcal{E}_ heta - \mathcal{E}_{ ext{train}}
ight)^2$$

 $\rightarrow\,$ MSE loss mimimization

Transforming Theory Tilman Plehn LHC physics

ML introduction

- Examples
- Generative AI
- Unfolding
- Anomalies

Learning by minimizing

Learning energy E(x)

 \cdot maximize probability of θ -encoding

$$p(\theta|E_{ ext{train}}) = rac{p(E_{ ext{train}}| heta) p(heta)}{p(E_{ ext{train}})} pprox p(heta|E_{ ext{train}}) p(heta)$$

· assume Gaussians and neglect error

$$\mathcal{L} \equiv -\log p(heta|E_{ ext{train}}) = rac{(E_ heta - E_{ ext{train}})^2}{2\sigma_E^2} + rac{(heta - heta_0)^2}{2\sigma_ heta^2} pprox (E_ heta - E_{ ext{train}})^2$$

 \rightarrow MSE loss mimimization

Physics: energy probability [Gal (2016)]

· expectation value from (learnd) probability

$$\langle E \rangle = \int dE \ E \ p(E)$$

 \cdot complete internal representation θ

$$\langle E \rangle = \int dE \ E \int d\theta \ p(E|\theta) \ p(\theta|E_{\text{train}})$$

 $\cdot \;$ maximum probability \rightarrow latent probability

$$\int d heta \ p(E| heta) \ p(heta|E_{ ext{train}}) pprox \int d heta \ p(E| heta) \ q(heta)$$

Transforming Theory Tilman Plehn LHC physics

- Theory
- ML introduction
- Examples
- Generative Al
- Unfolding
- Anomalies

Learning by minimizing

Physics: energy probability [Gal (2016)]

· expectation value from (learnd) probability

$$\langle E \rangle = \int dE \ E \ p(E)$$

 \cdot complete internal representation θ

$$\langle E \rangle = \int dE \ E \ \int d\theta \ p(E|\theta) \ p(\theta|E_{\text{train}})$$

 \cdot maximum probability \rightarrow latent probability

$$\int d heta \ p(E| heta) \ p(heta|E_{ ext{train}}) pprox \int d heta \ p(E| heta) \ q(heta)$$

· similar for minimal KL-divergence [optimal transport]

$$\begin{split} D_{\mathsf{KL}}[q(\theta), p(\theta|\mathcal{E}_{\mathsf{train}})] &\equiv \int d\theta \ q(\theta) \ \log \frac{q(\theta)}{p(\theta|\mathcal{E}_{\mathsf{train}})} \\ &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(\mathcal{E}_{\mathsf{train}})}{p(\mathcal{E}_{\mathsf{train}}|\theta)p(\theta)} \\ &= -\int d\theta \ q(\theta) \ \log p(\mathcal{E}_{\mathsf{train}}|\theta) + \int d\theta \ q(\theta) \log \frac{q(\theta)}{p(\theta)} + \cdots \end{split}$$

 \rightarrow Bayesian NN: sampling θ for uncertainty

$$\mathcal{L} = -\int d heta \; q(heta) \; \log p(\mathcal{E}_{ ext{train}}| heta) + D_{ ext{KL}}[q(heta), p(heta)]$$

Theory

- ML introduction
- Examples
- Generative A
- Unfolding
- Anomalies

ML in experiment

Top tagging [classification, 2016-2019]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · different NN-architectures
- \rightarrow Non-NN left in the dust... $\frac{g}{2}$ 10'

The Machine Learning Landscape of Top Taggers

 Kasisenia (ed)¹, T. Pishn (ed)², A. Bortse², K. Crazner², D. Dobrath⁴, B. M. Dilso², M. Birishim⁶, D. A. Forcoghy², W. Federko², C. Goy², L. Grasho², J. F. Kaneil^{3,A}, P. T. Konido⁴, S. Lois⁴, A. Luet², S. Matalan⁴, E. M. Motoles⁴, J. Mosril, B. Nochman, ^{10,10}, K. Norbitzin^{11,13}, J. Pesiko², H. Qe⁴, Y. Ruhl⁶, M. Rieger⁵, D. Shih⁴, J. M. Thompso², and S. Varna⁶

Institut für Experimentalphysik, Universität Hamburg, Germany
 Institut für Theoretische Physik, Universität Heishlberg, Germany
 Scatter for Concollege and Particle Physics and Conter for Dan Science, NYU, USA
 NIECT, Dept. of Physics and Astroneurg, Engerg, Tan State University of NJ, USA
 MIECT, Dept. of Physics and Intersecting Engines. Generative Science, Science Science, Scien

6 Theorem 31 Parks State Markets, Frightmen 2014, 2

16 III. Physics Institute A, RWTH Aschen University, Germany

Transforming Theory Tilman Plehn LHC physics

- Theory ML introd
- Examples
- Generative A Unfolding
- Anomalies

ML in experiment

Top tagging [classification, 2016-2019]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · different NN-architectures
- \rightarrow Non-NN left in the dust...

The Machine Learning Landscape of Top Taggers

 Kasisenia (ed)¹, T. Pishn (ed)², A. Bortse², K. Crazner², D. Dobrath⁴, B. M. Dilso², M. Birishim⁶, D. A. Forcoghy², W. Federko², C. Goy², L. Grasho², J. F. Kaneil^{3,A}, P. T. Konido⁴, S. Lois⁴, A. Luet², S. Matalan⁴, E. M. Motoles⁴, J. Mosril, B. Nochman, ^{10,10}, K. Norbitzin^{11,13}, J. Pesiko², H. Qe⁴, Y. Ruhl⁶, M. Rieger⁵, D. Shih⁴, J. M. Thompso², and S. Varna⁶

Institut für Experimentalphysik, Universität Haarburg, Germany
 Institut für Theoretische Physik, Universität Heidstlerer, Germany
 Center for Concollege und Particle Physics and Center for Dan Science, NYU, USA
 4 NIECT, Dept. of Physics and Astroneurs, Engrey, The State University of NJ, USA
 5 Jacof Stellen Institute, Endblane, Slovenia

6 Theoretical Parkins' Paylors and Community, Expl: Ording Loads, Daulis Explored Paylors, Harrison J, Karland M, Lindon K, Kanada L, Lindon K Kanada L, Lindon K K

16 III. Physics Institute A, RWTH Aschen University, Ger

Particle flow [2003.08863]

- · mother of jet tools
- · combined detector channels
- · similar studies in CMS
- \rightarrow Modern jet-analysis tool

Towards a Computer Vision Particle Flow *

Francesco Armando Di Bello^{1,1}, Sanmay Gangaly^{3,1}, Eilam Gross¹, Marumi Kado^{3,4}, Michael Pitt², Lorenzo Santi ³, Jonathan Shlomi¹

¹Weizmann Institute of Science, Rehveet 76100, Israel ²CBRN, CH 1211, Geneva 23, Switzerland ³Universitä Auto, Sapienza, Piazza Aldo Maes, 2, (0185 Roma, Italy c INFN, Italy ³Universitä Patris Sakajo, CNRSKN279, JRCLab, 91405, Ossay, Finnce Fig. 7. An event display of total energy shower (within topocluster), as captured by a calorimeter layer of 8 × 8 granularity, along with the location of the track, denoted by a red cross (left) and the same shower is captured by a calorimeter layer of 32 × 32 granularity (middle). The bottom right panel shows the corresponding event predicted by the NN. The figure shows that the shower originating from a $n^2 \rightarrow \gamma$ is resolved by a 32 × 32 granularity layer.

Theory

- ML introduction
- Examples
- Generative A
- Unfolding
- Anomalies

ML in phenomenology

Speeding up amplitudes [regression, Sherpa, Madgraph,...]

- · loop-amplitudes expensive
- · training fit or interpolation
- → Precision NN-amplitudes

PREPARED FOR SUBMISSION TO JHEP

Optimising simulations for diphoton production at hadron colliders using amplitude neural networks

Joseph Aylett-Bullock^{4,3} Simon Badger' Ryan Moodle'

^a Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, DWI 2147, United Kingdom

¹Institute für Data Science, Darkam Üniversity, Durham, DRI IEE, United Kingdom ²Djustitustis di Pision and Arsald-Suppe Center, Università di Tarina, and DNPS, Sezione di Torriso, Vin F. Cherris J., Foldell' Terriso, Budy.

E-wait j.p.bulleckBdurham.ac.uk, minendavid.badgerBunite.it, ryam.i.meedieDdurbam.ar.uk

- Examples

ML in phenomenology

100

60

Speeding up amplitudes [regression, Sherpa, Madgraph,...]

- loop-amplitudes expensive
- training fit or interpolation
- → Precision NN-amplitudes $\alpha \alpha \rightarrow \gamma \gamma \alpha$ process-boosted

IPPP/20/116

Optimising simulations for diphoton production at hadron colliders using amplitude neural networks

Joseph Aylett-Bullock** Simon Badger' Ryan Moodle'

* Institute for Particle Planics Planamenoions: Department of Planics, Darham University, Darham

¹Institute for Data Science, Darkam University, Darkam, DRI 2LE, United Kinadow "Dipartments di Fisica and Arnold-Rogge Center, Università di Tarina, and IMFN, Scotter di

E-mail j.p.bulleckBdurbas.ac.uk, simesdavid.badgerBasite.it, rvan.i.moodie@darban.ac.uk

ADSTRACT: Machine learning technology has the potential to dramatically optimize event generation and simulations. We continue to investigate the use of neural networks to approximate matrix elements for high-multiplicity scattering processes. We focus on the case lation method that can be applied to hadron collider observables. Neural networks are trained using the one-loop amplitudes implemented in the 8Jet C++ library, and interfaced to the Sherma Monte Carlo event generator, where we perform a detailed study for $2 \rightarrow 3$ and $2 \rightarrow 4$ scattering problems. We also consider how the trained networks perform when varying the kinematic cuts effecting the phase space and the reliability of the neural network

NNPDF/N3PDF parton densities [Forte etal, since 2002]

- starting point: pdfs without functional ansatz
- moving on: cutting-edge ML everywhere
- → Leaders in ML-theory

A data-based parametrization of parton distribution functions

TIF Leb, Dipartiesenio di Faira, Univenità degli Stadi di Minao and INFN Sectors di Minao. GEN, Theoretical Physics Department, CD-1211 Genera 22, Seitzerkasi, Quantum Research Centre, Technology Inscention Institute, Alm Dhabi, U.R.

Alaryny, Since the first determination of a structure function many decades age, all methodologies used to determine structure functions or particul distribution functions (PED) have employed a common preferior or part of the parametrization. The SNPUP reliaberation pieceword the nucl of consult networks to every common structure of the structu

PACS. 12.38-4 Quantum chromodynamics - 13.38-a: Physicaneoclopical case's models - 86.35.+1 Neural

Theory

- ML introduction
- Examples
- Generative A
- Unfolding
- Anomalies

ML in theory

Optimizing integration paths [invertible networks]

- · find optimal integration paths
- · learn variable transformation
- \rightarrow Theory-integrator

Targeting multi-loop integrals with neural networks

SciPost Phys. 12, 129 (2022)

Ramon Winterhalder^{1,2,3}, Vitaly Magerya⁴, Emilio Villa⁴, Stephen R Jones³, Matthias Kerner^{4,6}, Anja Butter^{1,2}, Gudrun Heinrich^{2,4} and Tilman Plehn^{1,2}

1 Instinut für Theoretische Physik, Usierweisk Heidelberg, Gernasy 1 2003, J. Heidelberg Richnich Storzeger, Parmarchip, Heidelberg Usierweity, Karlmeise Ianstane of Technology (1017), Gernasy 3 Cartaer för Grunnologe, Paricite Physica ad Phenomenology (2023), Usivernist catabolique de Louvoin, Hogkum Humite für Theoretische Physica Leinenhene Institute för Försteiche Physica Federaterenkogt (2023), 5 Januties för Amerikane Physica Fenoremology, Darban Usiversity, UK Statutte för Amerikanehmeiskon. Fankterenkogt (2023), 6 Janute für Amerikanehmeiskon. Fankterenkogt (2023), 6 Janute für Amerikanehmeiskon. Fankterenkogt (2023), 6 Janute für Amerikanehmeiskon. Fankterenkogt (2023), 7 Janute für Amerikanehmeiskon (2023), 7 Janute für Amerikanehmeiskon (2023), 7 Janute für Amerikanehmeiskon (2023),

Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize the contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.

Transforming Theory Tilman Plehn LHC physics

- Theory
- ML introduction
- Examples
- Generative A
- Unfolding
- Anomalies

ML in theory

Optimizing integration paths [invertible networks]

- · find optimal integration paths
- · learn variable transformation
- \rightarrow Theory-integrator

Post

Targeting multi-loop integrals with neural networks

SciPost Phys. 12, 129 (2022

Ramon Winterhalder^{1,2,3}, Vitaly Mayerya⁴, Emilio Villa⁴, Stephen R Jones³, Matthias Kerner^{4,6}, Anja Butter^{1,2}, Gudrun Heinrich^{2,4} and Tilman Piehn^{1,2}

1 Instinie für Theoretische Physik, Usiversikä Heidelberg, Gernasy 1 2013A. Heidelberg Rachnels Stearoger, Darmarship, Heidelberg Usiversity, Karlenske Institute of Technology (UTI), Gernasy 3 Cartes for Genomology, Parisch Physics and Phenomenology (UT3), Usiversitä catabolique de Louvoin, Bolgian Huntur für Theoretische Physik, Rachnets entaint für Technologis, Gernasy 3 bantins fers Parische Physics Phenomenology, Grantary 5 Institus fer Brutischerburghis, Karlansten Institute für Theoretischerburghis, Gernard

Abstract

Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize the contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.

Navigating string landscape [reinforcement learning]

- searching for viable vacua
- · high dimensions, unknown global structure
- \rightarrow Model space sampling

Figure 1: Left: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA on all samples of GA and RL). The colors indicate individual GA runs. Right: Dependence on flux (input) values (N₃ and N₅ respectively) in relation to principal components for a PCA fit of the individual output of GA and RL.

Probing the Structure of String Theory Vacua with Genetic Algorithms and Reinforcement Learning

Alex Cole University of Amsterdam Amo a.e.colo@yva.ml gram	Sven Krippendorf Id Sommerfuld Center for Theoretical Physic LMU Manich .krippendorf@physik.uni-meenchen.de
Andreas Schachner Centre for Mathematical Sciences University of Cambridge as26736can.oc.vik	Gary Shia University of Wisconsin-Madison shiu@physics.visc.odu
	bstract

Identifying arting theory wares with desired physical properties at low energies requires searching fromly high-dimensional solution spaces. Coefficient preferences to as the string landscape. We highlight that this search problem is surreaded to indeferencess il canage of aggesting providely middentified symmetries in the string theory solutions required for properties such as the testing cooking, large energies to its desired symmetry of the string of the string of the symmetry was which we require its integrative growth with the string theory solutions required for provide symmetry and which we stape its integrative for providely middentified protections the which we stape its integrative for producing sampling bias.

- LHC physics
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Generative networks for optimal inference

Forward simulations [Butter, Hütsch, Palacios Schweitzer, TP, Spinner]

- \cdot learn phase space density sample Gaussian \rightarrow phase space
- Variational Autoencoder
 → low-dimensional physics, high-dimensional objects
- $\begin{array}{l} \cdot \mbox{ Generative Adversarial Network } & \mbox{ [Berkeley-Heidelberg]} \\ \rightarrow \mbox{ generator trained by classifier} \end{array}$
- · Normalizing Flow/INN/Diffusion [Rutgers-Heidelberg] \rightarrow bijective mapping
- · JetGPT
 - \rightarrow learning all structures

- LHC physics
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Generative networks for optimal inference

Forward simulations [Butter, Hütsch, Palacios Schweitzer, TP, Spinner]

- \cdot learn phase space density sample Gaussian \rightarrow phase space
- · Variational Autoencoder
 - \rightarrow low-dimensional physics, high-dimensional objects
- $\begin{array}{l} \cdot \mbox{ Generative Adversarial Network } & \mbox{ [Berkeley-Heidelberg]} \\ \rightarrow \mbox{ generator trained by classifier} \end{array}$
- · JetGPT
 - \rightarrow learning all structures

Use case and fundamental questions

• train on first-principle simulations [training on data: David]

speed up generation/simulaton efficient way to ship data bridge simulation-reality gap

· GANplification [Berkeley-Hamburg-Heidelberg]

initial data reproducing training sample more data from fit/interpolation too much data reproducing statistical fluctiations?

- Theory
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

- · network weight distributions for density
- sampling phase space events with error bars on weights
- learned density & uncertainty reflecting network learning?
- \rightarrow INNs like fitted functions

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomolioo

Generative networks with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

- · network weight distributions for density
- sampling phase space events with error bars on weights
- learned density & uncertainty reflecting network learning?
- → INNs like fitted functions

LHC events with uncertainties [Heimel, Vent...]

- · ntuples for two muons and 1-3 jets
- · classifier weight [check and reweight]

$$w_D(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

· systematics in training data

$$w = 1 + a \, \left(rac{p_{T,j_1} - 15 \, \, {
m GeV}}{100 \, \, {
m GeV}}
ight)^2$$

- · sampling a through conditional INN
- $\rightarrow~$ Precision and uncertainty control

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Generative networks with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

- · network weight distributions for density
- sampling phase space events with error bars on weights
- learned density & uncertainty reflecting network learning?
- \rightarrow INNs like fitted functions

Quality control [Das, Favaro, Heimel, Krause, TP, Shih]

- · classifier easier to train
- · training vs generated

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{train}}(x_i)}{p_{\text{gen}}(x_i)}$$

- $w(x_i) \gg 1$ too little generated $w(x_i) \ll 1$ too much generated
- $\cdot\,$ precision from width of distribution
- \rightarrow Systematic benchmarking

Theory

- ML introduction
- Example
- Generative A
- Unfolding
- Anomalies

Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]

- \cdot forward: *r* \rightarrow events trained on model
- \cdot inverse: $r \rightarrow$ anything trained on model, conditioned on event

Transforming Theory Tilman Plehn LHC physics Theory

- ML introduction
- Examples
- Generative Al

Unfolding

Anomalies

Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]

- \cdot forward: *r* \rightarrow events trained on model
- \cdot inverse: $r \rightarrow$ anything trained on model, conditioned on event
- · individual steps known

detector unfolding unfolding to QCD partons - jet algorithm unfolding jet radiation - jet combinatorics unfolding to hard process - top analyses matrix element method an old dream

Transforming Theory Tilman Plehn LHC physics Theory ML introduction Examples

Generative A

Unfolding

Anomalies

Inverse simulation for optimal inference

Invertible ML-simulation [Bellagente, Butter, Kasieczka, TP, Winterhalder]

- \cdot forward: *r* \rightarrow events trained on model
- \cdot inverse: $r \rightarrow$ anything trained on model, conditioned on event
- · individual steps known

detector unfolding unfolding to QCD partons - jet algorithm unfolding jet radiation - jet combinatorics unfolding to hard process - top analyses matrix element method an old dream

- 1- reweighting [Omnifold]
- 2- distribution mapping [Schrödinger bridge, Direct Diffusion]
- 3- generative unfolding [CINN, CFM]
- \rightarrow Transformative progress for HL-LHC

- Theory
- ML introductior
- Examples
- Generative AI
- Unfolding
- Anomalies

Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

- · compare to theory without detector
- $\cdot\,$ analyse data with public tools
- · example: quark/gluon jets
- measure QCD splittings and α_s search for light dark matter
- \rightarrow All methods at per-cent level

Transforming Theory Tilman Plehn -HC physics

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

- · compare to theory without detector
- · analyse data with public tools
- · example: quark/gluon jets
- $\cdot\,$ measure QCD splittings and $\alpha_{\rm S}\,$ search for light dark matter
- → All methods at per-cent level

Kinematic migration [Hütsch, Villadamigo]

- $\cdot\,$ forward detector simulation as reference
- learned mapping from DiDi learned mapping from generative unfolding

- Theory ML introdu Examples
- Generative A
- Unfolding
- Anomalies

Unfolding

Detector unfolding [Heidelberg-Berkeley-Irvine]

- · compare to theory without detector
- $\cdot\,$ analyse data with public tools
- · example: quark/gluon jets
- $\cdot\,$ measure QCD splittings and $\alpha_{\rm S}\,$ search for light dark matter
- \rightarrow All methods at per-cent level

Kinematic migration [Hütsch, Villadamigo]

- · forward detector simulation as reference
- learned mapping from DiDi learned mapping from generative unfolding

Unfolding to partons

- · event kinematics in SMEFT
- · example: $t\bar{t}$ production
- $\cdot \,$ search for new particles in kinematics
- \rightarrow All methods at per-cent level

- LHC physics
- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Anomaly searches

Non-resonant searches

- key: bottleneck [Rutgers-Heideberg] training on background minimize reconstruction-MSE unknown signal from bad MSE
- $\cdot \,$ reconstruct QCD jets $\, \rightarrow \,$ top jets hard to describe
- $\cdot \;$ reconstruct top jets \; \rightarrow \; QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Anomaly searches

Non-resonant searches

- key: bottleneck [Rutgers-Heideberg] training on background minimize reconstruction-MSE unknown signal from bad MSE
- $\cdot \;$ reconstruct QCD jets $\; \rightarrow \;$ top jets hard to describe
- $\cdot \;$ reconstruct top jets \; \rightarrow \; QCD jets just simple top-like jet
- \rightarrow Symmetric performance $S \leftrightarrow B$?

Missing and anomalous features

- · compact latent space: sphere
- energy-based model normalized Boltzmann mapping $[E_{\theta} = MSE]$

$$\begin{split} \rho_{\theta}(x) &= \frac{e^{-E_{\theta}(x)}}{Z_{\theta}} \\ \mathcal{L} &= -\big\langle \log p_{\theta}(x) \big\rangle = \big\langle E_{\theta}(x) + \log Z_{\theta} \big\rangle \end{split}$$

- · inducing background metric
- · Z_{θ} from Markov Chain

- Theory
- ML introduction
- Examples
- Generative AI
- Unfolding
- Anomalies

Anomaly searches

Non-resonant searches

- key: bottleneck [Rutgers-Heideberg] training on background minimize reconstruction-MSE unknown signal from bad MSE
- $\cdot \;$ reconstruct QCD jets $\; \rightarrow \;$ top jets hard to describe
- $\cdot \,$ reconstruct top jets $\, \rightarrow \,$ QCD jets just simple top-like jet

1@40x40

 \rightarrow Symmetric performance $S \leftrightarrow B$?

Missing and anomalous features

- · compact latent space: sphere
- energy-based model normalized Boltzmann mapping $[E_{\theta} = MSE]$

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}}$$

$$\mathcal{L} = -\langle \log p_{\theta}(x) \rangle = \langle E_{\theta}(x) + \log Z_{\theta} \rangle$$

- inducing background metric
- · Z_{θ} from Markov Chain
- → Proper anomaly search, at last [For more, ask David!]

100 400

5@20x20 5@40x40 10@40x40 1@40x4

10@20x20_5@20x20__400.100

- Theory
- ML introductior
- Examples
- Generative AI
- Unfolding
- Anomalies

ML for LHC Theory

ML-applications

- · just another numerical tool for a numerical field
- $\cdot\,$ driven by money from data science and medical research
- · goals are to...
 - ...improve established tools
 - ...develop new tools for established tasks
 - ...transform through new ideas
- · xAI through...
 - ...precision control
 - ...uncertainties
 - ...phase space
 - ...symmetries
 - ...formulas
- → Opportunities!!

:2211.01421v2 [hep-ph] 17 Mar 2024

Modern Machine Learning for LHC Physicists

Tilman Plehn^a^{*}, Anja Butter^{a,b}, Barry Dillon^a, Theo Heimel^a, Claudius Krause^c, and Ramon Winterhalder^d

^a Institut für Theoretische Physik, Universität Heidelberg, Germany ^b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France ^c HEPHY, Austrian Academy of Sciences. Vienna, Austria ^d CP3, Université catholique de Louvain, Louvain-Ia-Neuve, Belgium

March 19, 2024

Abstract

Modern machine learning is transforming particle physics facts, bullying in way into our numerical tool box. For young researchers it is created to our not possible advectory of the physics quinting-adje methods and hoot its often destination of the start of the physics embrasion for machine learning to retrievant applications. They start with an LHC -specific motivation and a non-standard motivation for machine learning to retrievant applications. They start with an LHC -specific motivation and a non-standard problem. The shares and the correspondence of the discussion are well defined loss functions and successing wave networks, applications of the last fact years.¹

